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PREFACE

nvestment theory currently commands a high level of intellectual attention—fueled
in part by some extraordinary theotetical developments in finance, by an explosive
growth of information and computing technology, and by the global expansion
of investment activity Recent developments in investment theory are being infused
into univessity classrooms, into financial service organizations, into business ventures,
and into the awareness of many individual investors This book is intended to be one
instrument in that dissemination process
The book endeavors to emphasize fundamental principles and to illustrate how
these principles can be mastered and transtormed into sound and practical solutions of
actual investment problems The book’s organizational structure reflects this approach:
the material covered in the chapters progresses from the simplest in concept to the
more advanced Particular financial products and investment problems are treated, for
the most part, in the order that they [all along this line of conceptual progression, their
analyses serving to illustrate concepts as well as to describe particular features of the
investment environment
The book is designed for individuals who have a technical background roughly
equivalent to a bachelor’s degree in engineering, mathematics, or science; o who
have some familiarity with basic mathematics The language of investment science
is largely mathematical, and some aspects of the subject can be expressed only in
mathematical terms The mathematics used in this book, howeves, is not complex—
for example, only elementary postions ol calculus are required—but the reader must
be comfortable with the use of mathematics as a method of deduction and problem
solving Such readers will be able to leverage thei technical backgrounds to accelerate
and deepen their study
Actually, the book can be i1ead at several levels, requiring different degrees of
mathematical sophistication and having different scopes of study A simple road map
to these different levels is coded into the typography of the text Some section and
subsection titles are set with an ending star s, for example, “2 6 Applications and
Extensions *” The star indicates that the section o1 subsection is special: the material

xiii
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PREFACE

may be somewhat tangential o1 ol higher mathematical level than elsewhere and can
be skipped at first teading This coding scheme is only approximate; the text itself
often explains what is ahead in each section and gives guidelines on how the reader
may wish to proceed

The end-of-chapter exercises are an impoitant past ol the text, and readers should
attempt several exercises in each chapter The exercises are also coded: an exer-
cise marked o is mathematically more difficult than the average exercise; an exercise
marked © requires numerical computation (usually with a spreadsheet program)

This text was influenced significantly by the existence of computer spread-
sheet packages Almost all the essential ideas ol investment science—such as present
value, portfolio immunization, cash matching, project optimization, factor models,
1isk-neutial valuation with binomial lattices, and simulation—can be illustiated easily
with a spreadsheet package This makes it possible to provide a variety of examples in
the text that are state-of-the-art in terms of conceptual content Furthermore, students
can formulate and solve realistic and challenging investment problems using readily
available software This process deepens understanding by fully engaging the student
in all aspects of the problem Many students who have taken this course have said
that they learned the most when completing the course projects (which are the more
ambitious of the exercises maiked o)

It has been fun to write this book, paitly because 1 1eceived so much encourage-
ment and help from colleagues and students 1 especially wish to thank Graydon Baiz,
Kian Esteghamat, Charles Feinstein, Marius Holtan, Blake Johnson, Robert Maxfield,
Paul McEntire, James Smith, Lucie Tepla, and Lauren Wang who all read substantial
poitions of the evolving manuscript and suggested impiovements. The final version was
improved by the insightful 1eviews of several individuals, including Joseph Cherian,
Boston Univessity; Phillip Daves, University of Tennessee; Jaime Cuevas Dermody,
University of Strathclyde; Myion Goidon, University of Toionto; Robeit Heinkel,
University of British Columbia; James Hodder, University of Wisconsin; Raymond
Kan, University of Toronto, Chris Lamouteux, University of Arizona; Duane Seppi,
Carnegie Mellon University; Suresh Sethi, Univeisity of Toionto; Costas Skiadas,
Northwestern University, and Jack Treynoi, Treynor Capital Management, Inc

1 also wish to thank my wile Nancy for her encouragement and understanding
of hours lost to my word processor Finally, 1 wish to thank the many enthusiastic
students who, by their classtoom questions and dilligent work on the exeicises and
projects, provided important feedback as the nianuscript took shape

DAVID G LUENBERGER
April 1997
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INTRODUCTION

1aditionally, investment is defined as the current commitment of resources in

order to achieve later benefits If 1esources and benefits take the form of money,

investment is the present commitment of money for the puipose of receiving
(hopefully more) money later In sonle cases, such as the purchase of a bank certificate
of deposit, the amount of money to be obtained later is known exactly However, in
most situations the amount of money to be obtained later is uncertain

There is also a broader viewpoint of investment—based on the idea of flows of
expenditures and receipts spanning a petiod of time From this viewpoint, the objective
of investment is to tailor the pattern of these flows over time to be as desirable as
possible When expenditures and 1eceipts are denominated in cash, the net receipts at
any time period are termed cash flow, and the series of flows over several peiiods
is termed a cash flow stream. The investment objective is that of tailoring this cash
flow stream to be moie desitable than it would be otherwise For example, by taking
out a loan, it may be possible to exchange a large negative cash flow next month
for a series of smaller negative cash flows over several months, and this alternative
cash flow stream may be preferred to the original one Often tuture cash flows have a
degiee of uncertainty, and part of the design, ot tailoring, of a cash flow stream may
be concerned with controlling that uncertainty, perhaps reducing the level of risk This
bioader definition of investment, as tailoring a pattern of cash flows, encompasses the
wide assortment of financial activities more fully than the traditional view 1t is this
broader interpretation that guides the presentation of this book

Investment science is the application of scientific tools to investments The
scientific tools used are primarily mathematical, but only a modest level of mathematics
is tequired to understand the primary concepts discussed in this book The purpose of
this book is to convey both the principles ol investment science and an understanding
of how these principles can be used in practice to make calculations that lead to good
investment decisions

There is also an ait to investment Part ol this art is knowing what to analyze and
hiow to go about it This part of the art can be enhanced by studying the material in this

1



2 Chapter T INTRODUCTION

book However, there is also an intuitive art of being able to evaluate an investment
from an assortment of gualitative information, such as the personality characteristics
of the people involved (the principals), whether a proposed new product will sell well,
and so forth This part of the art is not treated explicitly in this hook, although the
reader will gain some appieciation for just what this art entails

1.1 CASH FLOWS

According to the broad interpretation, an investment is defined in terms of its resulting
cash flow sequence-—the amounts of money that will flow to and {rom an investor over
time. Usually these cash flows (either positive or negative) occur at known specific
dates, such as at the end of each quarter of a year or at the end of cach year The stream
can then be described by listing the flow at each of these times This is simplest if the
flows are known deterministically, as in bank interest receipts or mortgage payments In
such cases the stream can be described by a series of numbers For example, if the ba-
sic time period is taken as one year, one possible stream over a yeat, {from beginning to
end, is (~1, 1.2), corresponding to an initial payment (the investment) of $1 at the be-
ginning of the year and the receipt of $1.20 a year later An investment over {our yems
might be (~1, 10, 10, 10, 1 10}, where an initial investiment of $1 leads to payment
of $ 10 at the end of each year for three yeais and then a final payment of $1 10 Note
that for a span of one year, two cash flow numbers are specified--one at the beginning
and one at the end Likewise, the four-year example involves five eash flow numbers

Cash flow streams can also be represented in diagram form, as illustiated in
Figure 1 | In such a figuie a time axis is diawn and a eagh flow at a particular time
is indicated by a vertical line at that time, the length of the line being propoitional to
the magnitude of the flow

If the magnitudes of some future cash flows are uncertain (as is irequently the
case), a more complex representation of a cash low stream must be employed There
are a few different techniques for doing this, and they are presented later in the book
But whether or not uncertainty is present, investments are described in terms of cash
{flow streams

A diveisity of investment issues can be stated in terms of cash flow streams,
such as the following: Which of two cash flow streams is most preferable? How much
would I be willing to pay to own a given stream? Aie two streams together worth moie
to me than the sum of their individual values? If | can puichase a shate of a sueam,
how much should I purchase? Given a collection of available cash (low streams, what
is the most favorable combination of them?

FIGURE 11 Cash flow slream. The cash flow stream of an
investment can be represented by a diagram In the example
shown, the cash flows occur periodically The first of these
| ' flows is negative, representing a cash outlay, and the subse-

X quent flows are all positive
Time
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Other mote complex questions also arise Foi example, sometimes the timing of
all cash flows is not fixed, but can be influenced by the investor If 1 purchase stock
in a company, 1 have a negative cash flow initially, corresponding to my purchase
payment; while | hold the stock, I perhaps receive dividends (relatively small positive
cash flows) on a regular basis; finally, when I sell the stock, 1 obtain a major cash
flow However, the time of the last cash flow is not predetermined; 1 am fiee to
choose it Indeed, investments sometimes can be actively managed to influence both
the amounts and the timing of all cash flows Foi example, if 1 puichase a gold mine
as an investment, 1 can decide how to mine it and thereby influence the cash flow
every year Detennination of suitable management strategies is also pait of investment
science

The view of investment science as the tailoring of cash flow streams gives the
subject wide application For individuals it applies to peisonal investment decisions,
such as deciding on a home mortgage or planning for retiiement It also applies
to business decisions, such as whether to invest in product development, whether
to build a new manufactming plant, and how to manage cash resources Finally, it
applies to government decisions, such as whethe:r to build a dam or change the tax
rate Investment science guides us in the process of combining stocks, bonds, and
other investment products into an oveiall package that has desirable properties This
process enhances total productivity by convesting projects that in isolation may be too
risky into members of attiactive combinations

1.2 INVESTMENTS AND MARKETS

At its root, investment analysis is a process of examining alternatives and deciding
which alternative is most preferable In this respect investment analysis is similar to
the analysis of other decisions—operating a production facility, designing a building,
planning a trip, or formulating an advestising campaign Indeed, much of investment
science relies on the same general tools used for analysis of these other decisions

Investment problems ditfer fiom other decision problems in an imipoitant respect,
lowever: most investments are carried out within the framework of a financial market,
and these markets provide alternatives not found in other decision situations This
structure is what makes investment analysis unigue and unusually power ful

The Comparison Principle

Financial markets simplify decision making through a concept that we term the comn-
parison principle. To introduce this principle, consider the {ollowing hypothetical
situation

Your uncle offers you a special investment It you give him $100 now, he will
repay you $110 in one year His repayment is fully guaranteed by a trust fund of U S
Treasury Securities, and hence there is virtually no risk to the investment Also there
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is no moral or personal obligation to make this investment You can either accept the
offer or not What should you do?

To anajyze this situation, you would certainly note that the investment offers
10% inteiest, and you could compare this rate with the prevailing iate of interest
that can be obtained elsewhere, say, at yow local bank or from the U S Government
through, for example, a Treasury bill If the prevailing interest rate were only 7%,
you would probably invest in this special offer by your uncle (assuming you have
the cash to invest) If on the other hand the prevailing inteiest rate were 12%, you
would surely decline the offer From a pure investment viewpoint you can evaluate this
oppoitunity very casily without engaging in deep reflection o1 mathematical analysis
If the investment offers a rate above normal, you accept; if it offers a 1ate below
normal, you decline.

This analysis is an example of the comparison principle You evaluate the in-
vestment by comparing it with other investments available in the financia} market The
financial market provides a basis {or compaiison

1f, on the other hand, your uncle offers to sell you a family portrait whose
value is largely sentimental, an outside compartison is not availuble You must decide
whether, to you, the portrait is worth his asking price

Arbitrage

When two similar investment alternatives are both available in the market, conclusions
stronger than the comparison principle hold Foi example, consider (idealized) banks
that offer to loan money or accept deposits at the same rate of interest Suppose that
the rate used at one bank for loans and deposits is 10% and at another bank the rate
is 12% You could go to the first bank and borrow, say, $10,000 at 10% and then
deposit that $10,000 in the second bank at 12% In one year you would eain 2% of
$10,000, which is $200, without investing any cash of your own This is a form of
arbitrage—eaining money without investing anything Presumably, you could even
make more money by running your scheme at a highei level Tt should be clear that
this kind of thing does not occui—at least not very often The interest rates in the two
banks would soon equalize

The example of the two banks assumed that the interest rate for loans and the
interest rate paid for deposits were equal within any one bank Generally, of couise,
there is a difference in these 1ates However, in markets of high volume, such as the
matkets for U S Treasury securities, the ditference between the buying piice and the
selling price is small Therefore two difierent securities with identical propertics must
have approximately the same price—otherwise there would be an arbitiage opportunity

Often it is assumed, for purposes of analysis, that no arbitiage opportunity exists
This is the no-arbitrage assumption

Ruling out the possibility of mbitage is a simple idea, but it has profound
consequences We shall find that the principle of no arbitiage implies that pricing
relations are linear, that stock piices must satisly certain ielations, and that the prices
of derivative securities, such as options and futures, can be determined analytically
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This one principle, based on the existence of well-developed maikets, peimeates a
good pottion of modein investment science

Dynamics

Another important {eatuie of financial maikets is that they are dynamic, in the sense
that the same o1 similar financial instuments are traded on a continuing basis This
means that the future price of an asset is not 1egarded as a single numbei, but 1ather as
a process moving in time and subject to unceitainty An important pait of the analysis
of an investment situation is the characterization of this process

There e a few standard frameworks that e used to represent price processes
These include binomial lattice models, difference equation models, and dilferential
equation models, afl ol which are discussed in this text Typically, a record of the past
prices and other infonmation ate used to specify the parameters of such a model

Because markets are dynamic, investment is itsell dynamic—the value of an
investment changes with time, and the composition of good portiolios may change
Once this dynamic character is undeistood and {ormalized, it is possible to structuie
investments to take advantage of their dynamic nature so that the overall portfolio
value increases 1apidly

Risk Aversion

Another principle of investment science is risk aversion. Suppose two possible invest-
ments have the same cost, and both a1e expected to return the same amount (somewhat
greater than the initial cost), whete the term expected is defined in a probabilistic sense
(explained in Chapter 6) However, the return is certain for one of these investments
and uncertain for the other Individuals seeking investment rather than outiight spec-
ulation will elect the first (certain) alternative over the second (risky) aiternative This
is the risk aversion principle

Another way to state this principle is in terms of market rates of return Suppose
one investment will pay a fixed return with certainty—say 10%—as obtained perhaps
from a goveinment-guaranteed bank certificate of deposit A second investment, say the
stock in a corporation, has an uncertain return Then the expected rate of retum on that
stock must be greater than 10%; otherwise investors will not purchase the stock In gen-
eral, we accept moze 1isk only if we expect to get gieater expected (or average) return

This risk aversion principle can be formalized (and made analytical) in a few
different ways, which are discussed in later chapteis Once a formalism is established,
the risk aveision principle can be used to help analyze many investment alternatives

One way that the 1isk aversion principle is formalized is thiough mean-variance
analysis. 1n thiy approach, the unceitainty of the return on an asset is characterized
by just two quantities: the mean value of the return and the variance of the return
The risk aversion principle then says that if several investment opportunities have the
same mean but different variances, a rational (risk-averse) investor will select the one
that has the smallest variance
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This mean-variance method of foimalizing risk is the basis {or the most well-
known method of guantitative portfolio analysis, which was pioneered by Haiy
Markowitz (who won the Nobel prize in economics for his work) This approach leads
to a comprehensive theory of investment and is widely considered to be the foundation
for modern poitfolio theory We discuss this important theory in Chapter 6

A more general way to formalize the risk aversion principle is through the
introduction of individual utility functions. This approach is presented in Chapter 9

Later, in Chapter 15, we find that risk aversion takes on a new character when
investments are made repeatedly over time In fact, shott-term variance will be found
to be good, not bad This is one of the surprising conclusions of the comprehensive
view of investment represented by investment science

1.3 TYPICAL INVESTMENT PROBLEMS

Every investment problem has unique features, but many fit into a few broad categorics
ot types We brielly outline some of the most impoitant pioblem types here Fuller
descriptions of these general types and more specific examples appear in the relevant
chapters

Pricing

Let us go back to our very first example of an investment situation, the first offer
from your uncle, but now let us tuin it around Imagine that theie is an investment
opportunity that will pay exactly $110 at the end of one year We ask: How much
is this investment woith today? In other words, what is the appropiiate price of this
investment, given the oveiall financial environment?

If the current interest rate for one-yeai investinents is 10%, then this investment
should have a piice of exactly $100 In that case, the $J 10 paid at the end of the year
would correspond to a iate of 1etuin of 10% I the cuirent interest rate for one-yeai
investments is Jess than 10%, then the price of this investment would be somewhat
greater than $100 In general, if the interest 1ate is 7 (expiessed as a decimal, such
as r = 10), then the piice of an investment that pays X after one yem should be
X/ +1)

We determined the price by a simple application of the comparison principle
This investment can be directly compaied with one of investing money in a one-year
certificate of deposit (or one-year Treasury bill), and hence it must bear the same
effective interest rate

This interest rate example is a simple example of the geneial pricing problem:
Given an investment with known payoff characteristics (which may be random), what
is the reasonable price; or, equivalently, what piice is consistent with the other se-
cities that are available? We shall encounter this problem in many contexts For
example, early in our study we shall determine the appropriate price of a bond Later
we shall compute the appropriate price of a share of stock with random return char-
acteristics Still later we shall coinpute suitable prices of more complicated securities,
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such as futures and options Indeed, the pricing problem is one of the basic pioblems
of modern investment science and has obvious practical applications

As in the simple interest rate example, the pricing problem is usually solved
by use of the comparison principle In most instances, howevei, the application of
that principle is not as simple and obvious as in this example Clever arguments have
been devised to show how a complex investment can be separated into parts, each of
which can be compared with other investments whose prices are known Nevertheless,
whether by a simple or a complex argument, compatison is the basis lor the sotution
of many pricing problems

Hedging

Hedging is the process of reducing the financial risks that either arise in the course
of noimal business operations or are associated with investments Hedging is one
ot the most important uses of financial markets, and is an essential pait of modemn
industrial activity One form of hedging is insurance where, by paying a fixed amount
(a premium), you can protect yoursel{ against certain specified possible losses—such
as losses due to fire, theft, or even adverse price changes—by arranging to be paid
compensation for the losses you incur More general hedging can arise in the following
way Imagine a large bakery This bakery will purchase flour (made trom wheat) and
otfier ingredients and transform these ingredients into baked goods, such as bread
Suppose the bakery wins a contract to supply a large quantity of bread to another
company over the next year at a fixed price The bakery is happy to win the contract,
but now faces risk with respect to flour prices The bakery will not immediatety
purchase all the flour needed to satisfy the contract, but will instead purchase flour
as needed during the yew Theretore, if the price of flour should inciease part way
during the year, the bakery will be forced to pay more to satisty the needs of the
contract and, hence, will have a lower piofit In a sense the bakery is at the mercy of
the flour market If the flour price goes up, the bakery will make fess profit, perhaps
even losing money on the contract If the flour price goes down, the bakery will make
even more money than anticipated

The bakery is in the baking business, not in the flour speculation business It
wants to eliminate the 1isk associated with flour costs and concentiate on baking It can
do this by obtaining an appropriate number of wheat futures contracts in the lutures
maiket Such a contract has small initial cash outlay and at a set future date gives
a profit (or loss) equal to the amount that wheat prices have changed since entering
the contract The price of flour is closely tied to the price of wheat, so it the price of
flouwr should go up, the value ol a wheat futuies contiact witl go up by a somewhat
compatable amount Hence the net effect to the bakery—the profit from the wheat
futuies contracts together with the change in the cost of flour—is neatly zero

There are many other examples of business risks that can be reduced by hedging
And there are many ways that hedging can be carried out: through futures contracts,
options, and other special arrangements Indeed, the majoi use, by far, of these financial
insttuments is for hedging—mnot for speculation
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INTRODUCTION
Pure Investment

Pure investment refers to the objective of obtaining increased future return for present
allocation of capital This is the motivation underlying most individual investments in
the stock market, for example The investment problem arising from this motivation
is referred to as the portfolio selection problem, since the real issue is to determine
where to invest available capital

Most approaches to the pure investment ptoblem rely on the risk aversion prin-
ciple, tor in this problem one must carefully assess one's preterences, deciding how to
balance risk and expected reward There is not a unique solution Judgment and taste
are important, which is evidenced by the vast amount of literature and advice directed
each year to helping individuals find solutions to this problem

The pure investment problem also characteiizes the activities of a profit-seeking
firm which, atter all, takes existing capital and tansforms it, through investment—
in equipment, people, and operations—into profit Hence the methods developed for
analyzing pute investment problems can be used to analyze potential projects within
firms, the overall financial structure of a firm, and even mergers of frms

Other Problems

Investment problems do not always take the special shapes outlined in the preceding
categories A hedging problem may contain an element of pure investment, and con-
versely an investment may be tempered with a degree of hedging Fortunately, the
same principles of analysis aie applicable to such combinations

One type of problem that occurs frequently is a combined consumption—invest-
ment problem For example, a married couple at retirement, living off the income from
their investments, will most likely invest differently than a young couple investing for
growth of capital The requirement for income changes the nature of the investment
problem Likewise, the management of an endowment for a public enterprise, such
as a university must consider growth objectives as well as consumptionlike objectives
associated with the current operations of the enterprise

We shall also find that the tramework of an investment problem is shaped by
the formal methods used to treat it Once we have logical methods for representing
investment issues, new ptoblems suggest themselves. As we progress through the book
we shall uncover additional problems and obtain a deeper appreciation for the simple
outlines given here

1.4 ORGANIZATION OF THE BOOK

The oiganization of this book reflects the notion that investment science is the study
of how to tailor cash flow streams. Indeed, the cash flow viewpoint leads to a natwal
partition of the subject into four main parts, as follows
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such as futures and options Indeed, the pricing problem is one of the basic problems
of modein investment science and has obvious practical applications

As in the simple interest 1ate example, the pricing problem is usually solved
by use of the comparison principle In most instances, however, the application of
that principle is not as simple and obvious as in this example Clever aiguments have
been devised to show how a complex investment can be separated into paits, each ol
which can be compared with other investments whose prices are known Nevertheless,
whether by a simple or a complex argument, comparison is the basis for the solution
of many pricing problems

Hedging

Hedging is the process of reducing the financial tisks that either arise in the cowse
of normal business operations or are associated with investments Hedging is one
of the most important uses of financial markets, and is an essential part of modern
industtial activity One torm ot hedging is insurance where, by paying a fixed amount
(a premium), you can protect yoursell against certain specified possible losses—such
as losses due to fire, theft, or even adveise price changes—by arranging to be paid
compensation for the losses you incut More general hedging can arise in the tollowing
way Imagine a large bakery This bakery will puichase flour (made from wheat) and
other ingredients and transform these ingredients into baked goods, such as biead
Suppose the bakery wins a contract to supply a laige quantity of bread to another
company over the next year at a fixed price The bakery is happy to win the contract,
but now faces risk with respect to flour prices The bakery will not immediately
purchase all the flour needed to satisly the contract, but will instead purchase flom
as needed during the year Therefore, if the price of flour should increase pmt way
during the year, the bakery will be forced to pay more to satisfy the needs of the
contract and, hence, will have a lower profit In a sense the bakey Is at the mercy of
the flour market It the flour ptice goes up, the bakery will make less profit, perhaps
even losing money on the contract If the flour price goes down, the bakery will make
even more money than anticipated

The bakery is in the baking business, not in the flour speculation business It
wants to eliminate the risk associated with flour costs and concentrate on baking It can
do this by obtaining an approprizte number of wheat futures contructs in the futwes
market Such a contract has small initial cash outlay and at a set future date gives
a profit (or loss) equal to the amount that wheat prices have changed since entering
the contract The price of flow is closely tied to the price ol wheat, so if the price of
flour should go up, the value of a wheat futures contract will go up by a somewhat
comparable amount Hence the net effect to the bakeiy—the profit {rom the wheat
futures contracts together with the change in the cost of flour—is neaily zero

Theie are many other examples of business 1isks that can be reduced by hedging
And there are many ways that hedging can be carried out: through futures contracts,
options, and other special arrangements Indeed, the major use, by far, ol these financial
instruments is tor hedging—not for speculation
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INTRODUCTION
Pure Investment

Pute investment refers to the objective of obtaining increased future return for present
allocation of capital. This is the motivation undettying most individual investments in
the stock market, for example The investment problem atising fiom this motivation
is refened to as the portfolio selection problem, since the real issue is to determine
where to invest available capital.

Most approaches to the pure investment problem rely on the risk aversion prin-
ciple, for in this problem one must carefully assess one’s preferences, deciding how to
balance risk and expected reward There is not a unique solution Judgment and taste
are important, whieh is evidenced by the vast amount of literatuie and advice directed
each year to helping individuals find solutions to this problem

The pure investment pioblem also charactetizes the activities of a profit-seeking
firm which, after all, takes existing capital and transforms it, through investmeni—
in equipment, people, and operations—into profit Hence the methods developed for
analyzing pure investment problems can be used to analyze potential projects within
firms, the overall financial structure of a firm, and even mergers of firms

Other Problems

Investment problems do not always take the special shapes outlined in the preceding
categories A hedging problem may contain an element of pure investment, and con-
versely an investment may be tempered with a degree of hedging Forwnately, the
same principles of analysis are applicable to such combinations

One type of problem that occurs frequemtly is a combined consumption—invest-
ment problem For example, a married couple at retirement, living oft the income from
their investments, will most likely invest diftetently than a young couple investing for
growth of capital The requirement for income changes the nature of the investment
pioblem. Likewise, the management of an endowment for a public enterprise, such
as a university must consider growth objectives as well as consumptionlike objectives
associated with the current operations of the enterprise

We shall also find that the framework of an investment problem is shaped by
the formal methods used to ueat it Once we have logical methods for representing
investment issues, new problems suggest themselves. As we progiess through the book
we shall uncover additional problems and obtain a deeper appreciation for the simple
outlines given here

1.4 ORGANIZATION OF THE BOOK

The orpanization of this book reflects the notion that investment science is the study
of how to tailor cash flow streams. Indeed, the cash flow viewpoint leads to a natural
partition of the subject into four main parts, as follows
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Deterministic Cash Flow Streams

The simplest cash flow streams are those that are deterministic (that is, not 1andom,
but definite) The fist part of the book treats these Such cash flows can be represented
by sequences such as (—1, 0, 3), as discussed earlier Investments ol this type, either
with one or with several peiiods, are analyzed mainly with varfous concepts of interest
rate Accordingly, interest rate theory is emphasized in this first part of the book This
theory provides a basis o a fairly deep understanding of investment and a framework
for addressing a wide variety of important and interesting problems

Single-Period Random Cash Flow Streams

The second level of complexity in cash tlow streams is associated with streams having
only a single period, with beginning and ending flows, but with the magnitude of the
second flow being uncertain Such a situation occurs when a stock is purchased at the
beginning of the year and sold at the end of the yew The amount received at the end
of the year is not known in advance and, hence, must be considered uncertain This
level of complexity captures the essence of many mvestment situations

In order to analyze cash flows of this kind, one must have a formal description
of uncertain returns. There are several such descriptions (all based on probability
theory), and we shall study the main ones, the simplest being the mean-variance de-
scription One must also have a formal description of how individuals assess uncertain
returns We shall consider such assessment methods, starting with mean-variance anal-
ysis These single-period uncertain cash flow situations are the subject of the second
part of the book

Derivative Assets

The third level of complexity in cash flow streams mvolves streauns that have ran-
dom flows at cach of several time points, but where the asset producing a stream is
functionally related to another asset whose price characteristics are known

An asset whose cash flow values depend functionally on another asset is termed
a derivative asset. A good example is a stock option To desciibe such an option,
suppose that T own 100 shaies of stock in company A This asset, the 100 shares, is
a basic asset. Now suppose that I have granted you the right (but not the obligation)
to buy, at say $54 per shae, alt 100 of my shares in thiee months This right is a call
option on 10 shares of stock in company A This option is an asset; it has value, and
that value may change with time It is, however, a derivative of the stock of company
A because the value of the option depends on the piice of the stock If the stock
price goes up, the option value also goes up Other derivative assets include futures
contracts, other kinds of options, and vaifous other financial contracts One example
secn by many home buyers is the adjustable-rate mortgage, which periodically adjusts
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interest payments according to an interest rate index Such a mortgage is a derivative
of the securities that determine the interest rate index.

The third part of the book is devoted to these derivative assets Analysis of
these assets is often simpler than that for assets with general multiperiod uncertain
cash flows because properties of a derivative can be traced back to the underlying
basic asset. The study of derfvative assets, however, is an important and lively aspect
of investment science, one for which strong theoretical results can be derived and
important numerical quantities, such as implied prices, can be obtained

General Cash Flow Streams

Finally, the fourth part of the book is devoted to cash flow streams with uncertain
cash flows at many different times—-flows that are not functionally related to other
assets As can be expected, this final level of complexity is the most difficult part
of the subject, but also the one that is the most important The cash flow stieams
encountered in most investments have this general form

The methods of this part of the book build on those of eailier parts, but new
coneepts are added The fact that the mix of investments—the portfolio structure—can
be changed as time progresses, depending on what has happened to that point, leads
to new phenomena and new opportunities. For example, the growth rate of a portiolio
can be enhanced by employing suitable reinvestment strategies. This part of the book
represents some of the newest aspects of the field

Investment science is a practical science; and because its main core is built on
a few simple principles, it can be easily learned and fruitfully applied to interesting
and important problems It is also an evolving science, which is expanding rapidly
Perhaps the reader, armed with a basic understanding of the field, will contribute to
this evolution through either theory or application
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nterest is frequently called the time value of monev, and the next few chapters

explore the structure and implications of this value In this first chapter on the

subject, we outline the basic elements of interest rate theory, showing that the the-
ory can be translated into analytic form and thus used as a basis for making intelligent
investment decisions

2.1 PRINCIPAL AND INTEREST

The basic idea of interest is quite familiar If you invest $1 00 in a bank acecount that
pays 8% interest per year, then at the end of I year you will have in your account the
principal (your original amount) of $I 00 plus interest of $ 08 for a total of $1 08
If you mvest a larger amount, say A dollars, then at the end of the yeur your account
will have grown to A x 1.08 dollars In general, if the interest rate is 7, cxpressed as
a decintal, then your initial investment would be multiplied by (1 +7) atier 1 year

Simple Interest

Under a simple interest rule, money invested for a period ditferent trom | yem
accumulates interest proportional to the total time of the investment So after 2 years,
the total interest due is 2: times the original investment, and so forth In other words,
the investment produces interest equal 1o ¢ times the original investment every year
Usually paitial years aie treated in & proportional manner; that is, afler a fraction f
of I year, interest of 7 f times the original investment is earmned

The general rule for simple interest is that if an amount A is left in an account
at simple interest 7, the total value after n years is

V=(+1mA

If the propoitional rule holds tor fractional years, then after any time ¢ (measued in
yeas), the account value is

V= (l+10)A
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The account grows linearly with time As shown in the preceding formula, the
account value at any time is just the sum of the original amount (the principal) and
the accumulated interest, which is piopoitional to time

Compound Interest

Most bank accounts and loans employ some form ot compounding—producing com-
pound interest Apgain, consider an account that pays interest at aiate of r per year
If interest is compounded yeaily, then after 1 yea, the first year's interest is added to
the original principal to define a larger principal base for the second year Thus during
the second year, the account earns interest on interest This is the compounding effect,
which is continued year after year

Under yearly compounding, money left in an account is multiplied by (1 4 1)
after | yeai. After the second yeai, it grows by another factor ot (I +7) to (1 +1)?
After n years, such an account will grow to (1 + )" times its original value, and
this is the analytic expiession for the account growth under compound interest. This
expiession is said to exhibit geometric growth because of its nth-power form

As n increascs, the growth due to compounding can be substantial For example,
Figure 2 | shows a graph of a $100 investment over time when it earns 10% interest
under simple and compound interest rules The figure shows the characteristic shapes
of lnear growth tor simple interest and of accelerated upward growth for compound
interest Note that under compounding, the valire doubles in about 7 years.

There is a cute litthe tule that can be used to estimate the effect of interest
compounding

FIGURE 2.1 Simple and compound inier-
est Simple interest leads 10 linear growih
over lime, whereas compound interest leads
to an accelerated increase defined by geomel-

e Simiple ric growih The figure shows both cases for an
=== Compound interest rate of 10%
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The seven—ten rule  Money invested at 7% per vear donbles in approximately 10
vears Also, money invested at 10% per vear doubles in approximately 7 vears

(More exactly, at 7% and 10 years, an account increases by a factor of 1 97, whereas
at 10% and 7 years il increases by a factor of 1.95) The rule can be generalized, and
slightly improved, to state that, for interest rates less than about 20%, the doubling
time is approximately 72/, where i is the interest rate expressed as a percentage (that
is, 10% interest coresponds to i == [0) (See Exercise 2 )

Compounding at Various Intervals

In the preceding discussion, interest was calculated at the end of each year and paid to
the account at that time Most banks now calculate and pay interest mote frequently—
quarteily, monthly, or in some cases daily This more frequent compounding raises
the effective yearly rate In this situation, it is traditional to still quote the interest 1ate
on a yearly basis, but then apply the appropriate propostion of that interest rate over
each compounding period For example, consider quarterly compounding Quarterly
compounding at an interest rate of v per year means that an interest rate of 1 /4 is
applied every quarter Hence money left in the bank for 1 quarter will grow by a
factor of 1 + (+/4) during that quarter If the money is left in for another quarter,
then that new amount will grow by another factor of 1 + (2/4) After | year the
account will have grown by the compound factor of [1 + (1 /4)]* For any ¢ > 0, it
holds that [1 + ¢+/#)}' > 1 4+ Hence at the same annual ate, the amount in the
bank account after 4 quarters of compounding is greater than the amount after 1 year
without compounding

The effect of compounding on yearly growth is highlighted by stating an ef-
fective interest rate, which is the equivalent yearly interest rate that would produce
the same result alter 1 year without compounding For example, an annual rate of
8% compounded quarterly will produce an increase of (1 02)* = 1 0824; hence the
effective interest rate is 8 24% The basic yearly rate (8% in this example) is termed
the nominal rate.

Compounding can be carried out with any frequency The general method is
that a year is divided into a fixed numbe: of equally spaced periods—say m periods
(In the case of monthly compounding the periods are not quite equal, but we shall
ignore that here and regard monthly compounding as simply setting m = 12) The
interest rate for each of the m periods is thus v /m, where 1 is the nominal annual
rate The account grows by I+ (2 /m) during 1 period Aftes k periods, the growth is
[1-(/m)}*, and hence after a full year of m periods it is [1 + (¢ /u)}" The effective
interest rate is the number 1’ that satisfies 1 + 1/ = [1 + (¢ /u)}"

Continuous Compounding

We can imagine dividing the year into smaller and smaller periods, and thereby apply
compounding monthly, weekly, daily, or even every minute or second This leads
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TABLE 2.1
Continuous Compounding

Interest rate (%)

Nominal 100 500 1000 2000 3000 5000 7500 10000
Effective 101 513 1052 2214 3499 6487 11170 17183

The nominal mierest raies i the top row correspond. wnder continnous com-
pownding. to the effeciive rates stown in the second 1ow The increase due fo
componnding iy guite dramaiic at large nominal rates

to the idea of continuous compounding We can determine the effect of continuous
compounding by considering the limit of ordinary compounding as the number m of
periods in a year goes to infinity To determine the yearly effect of this continuous
compounding we use the fact that

lim [1+ G /)" ="
e 00

where e == 2 7818 s the base of the natwial logarithm The effective rate of interest
1" is the value satisfying 1 + " = ¢ I the nominal inteiest rate is 8% per year,
then with continuous compounding the growth would be ¢ ® = 1.0833, and hence
the effective interest 1ate is 8 33% (Recall that quartetly compounding produces an
effective 1ate of 824% ) Table 2 1 shows the effect of continuous compounding for
various nominal rates Note that as the nominal 1ate increases, the compounding effect
becomes more dramatic

We can also calculate how much an account will have grown after any arbitrary
length of time We denote time by the variable s, measured in yeas Thus ¢ = 1
corresponds to [ year, and ¢ = 25 coiresponds to 3 months Select a time / and divide
the year into a (large) number m of small periods, each of length 1/m Then t 2 k/in
for some k, meaning that & periods approximately coincides with the time ¢ If m is
very large, this approximation can be made very accurate Therefore k = mr Using
the general formula for compounding, we know that the growth factor for & periods is

4 G/ =11+ G/m)}" = {1+ G /1" }l — e

where that last expression is valid in the limit as @ goes to infinity, cotresponding to
continuous compounding Hence continuous compounding leads to the {amiliar expo-
nential growth cutve Such a curve is shown in Figwie 2 2 for a 10% nominal interest
rate

Debt

We have examined how a single investment (say a bank deposit) giows over time
due to interest compounding It should be clewm that exactly the same thing huppens
10 debt 1f T borrow money from the bank at an interest rate : and make no payments
to the bank, then my debt increases accoiding to the sume formulas Specifically, if
my debt is compounded monthly, then after & months my debt will have grown by a
tactor of |14 (1 /1)1
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14 ~ FIGURE 2.2 Exponential growth curve; continuous
compound growth, Under continuous compounding at
10%, the value of §1 doubles in abow: 7 years In 20
years it grows by a factor of aboui 8
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Money Markets

Although we have treated interest as a given known value, in reality thete are many
different rates each dny Diffetent 1ates apply to different ciicumstances, different user
classes, and different periods Most tates are established by the forces of supply and
demand ta broad markets to which they apply These rates are published widely; a
sampling for one day s shown in Table 2 2 Many of these market rates are discussed

TABLE 2.2
Market Interest Rates

interest rates (August 9, 1995)

US Treasury bills and uotes
J-monrh bill 539
6G-tnonth bill 539
1-year bl 536
J-year note (% yield) 605
10-year note (% yield) 649
30-year bond (% yield) 692
Fed funds rate 56875
Discount rate 526
Prime 1ate 875
Comunercial paper 584
Certificates of deposit
1 motth 517
2 mouths 524
1 year 528
Banker’s acceptances (30 days} 568
Londou late Eurodolfars (1 tnortth) 575
Londot Interbank offered rate (1 nionth) 588
Federal Hotme Loan Montgage Corp (Freddie Mae) (30 yeas) | 794

Many different rates appls on any given day This 1¢ a sampling
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mote {ully in Chapters 3 and 4 Not all interest rates are broad market rates There may
be ptivate rates negottated by two private parties. Or in the context of a firm, special
1ates may be established for internal transactions or for the purpose of evalitating
projects, as discussed later in this chapter

2.2 PRESENT VALUE

The thetie of the previous section is that money invested today leads to increased
value in the future as a resitlt of intetest The fotmulas of the previous section show
how to detetmine this future value

That whole set of concepts and formulas can be reversed tn time to calculate the
value that should be assigned now, in the present, to money that is to be teceived at a
later titne This teversal is the essence of the extremely impottant concept of present
value.

To introduce this concept, consider two situations: (1) you will receive $110
in [ yeat, (2) you recetve $100 sow and deposit it in a bank account fot 1 year
at 10% interest Cleatly these sttuations ate identical after 1 year—you will receive
$110 We can restate this equivalence by saying that $110 received in 1 year is
equivalent to the receipt of $100 now when the tnlerest tate s 10% Or we say that
the $110 to be received in | year has a present value of $100 In general, $! to be
received a yeat in the future has a present value of $1/(1 +1), whete 1 is the intetest
rate

A stmilar ttansformation applies to fiture obligations such as the repayment of
debt Suppose that, fot sotie reason, you have an obligation to pay soteone $100 in
exactly | year This obligation can be regarded as a negative cash flow that occurs at
the end of the year To calculate the ptesent value of this obligation, you determine
how tmuch money you would need now in order to cover the obligation This is easy
to determine [f the cunent yearly interest tate is 1, you need $100/(1 + 1) If that
amount of money s deposited in the bank now, it will grow to $100 at the end of the
yeat You can then fully meet the obligation The present value of the obligation is
therefote $100/(1 +7).

The ptocess of evaluating futire obligations as an equivalent present value is
altesnattvely referred to as discounting. The present value of a future monetary amount
is less than the face value of that amount, so the fitture value must be discounted to
obtain the present value The factot by which the futute value must be discounted ts
called the discount factor. The 1-yeat discount factot is dy = 1/(1 +7), where 1 is
the 1-year intetest tate So tf an amount A is to be received in 1 year, the present
valite is the discounted amount d, A

The formula for present value depends on the interest rate that is avatlable
from a bank ot othet source If that source quotes rates with eompounding, then
such a compound interest 1ate should be used in the calculation of present value
As an example, suppose that the annual interest 1ate 7 is compounded at the end of
each of m equal periods each year, and suppose that a cash payment of amount
A will be received at the end of the kth period Then the appropriate discount
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factor is
- I
T+t

The ptesent value of a payment of A to be received k periods in the future is d; A

dy

2.3 PRESENT AND FUTURE VALUES OF STREAMS

The ptevious section studied the impact of interest on a single cash deposit o1 Joan; that
is, on a single cash flow We now extend that discussion to the case where cash flows
occur at several time periods, and hence constitute a cash flow stream or sequence
First we require a new concept

The Ideal Bank

When discussing cash flow streams, it is useful to define the notion of an ideal bank.
An ideal bank applies the smme 1ate of interest to both deposits and loans, and it has
no service charges or transactions fees Its interest rate applies equally to any size of
principal, from I cent (or fraction thereof) to $1 million (or even more) Furthermore,
separate transactions in an account are completely additive in their effect on future
balances

Note that the definition of an ideal bank does not imply that interest rates for
all uansactions are identical For example, a 2-year cettificate of deposit (CD) might
offer a higher rate than a 1-year CD However, the 2-year CD must offer the same
tate as 4 loan that is payable in 2 years

If an ideal bank has an interest 1ate that is independent of the length of time
for which it applies, and that interest ts compounded according to notmal rules, it is
said to be a constant ideal bank. In the test of this chapter, we always assume that
intetest tates ate indced constant

The constant ideal bank is the reference point used to describe the outside fi-
nancial market—the public market for money

Future Value

Now we retuin to the study of cash flow siteams Let us decide ot a fixed time cycle
for compounding (for example, yeatly) and let a period be the length of this cycle We
assume that cash flows occur at the end of each period (although some flows might be
zero) We shall take cach cash flow and deposit it tn a constant ideal bank as it arrives
(1f the flow is negative, we cover it by taking out a Joan ) Under the terms of a constant
tdeal bank, the final balance in owr account can be found by combining the results of
the individual lows Explicitly, consider the cash flow stieam (xp, ¥¢, , An) Atthe
end of # periods the tnitial cash flow vo will have grown to xo(1 + )", where 7 is the
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interest rate per period (which s the yearly rate divided by the number ol petiods per
year) The next cash flow, x¢, teceived after the first pertod, will at the final time have
been in the account for only »~1 pertods, and hence it will have a value of x¢ (1 Ayt
Likewise, the next flow 1, will eollect interest during » — 2 pertods and have value
x3(14+2)""? The final flow x, will not collect any tntetest, so will remain x, The total
value at the end of n periods ts therefore FV = xo(1 + 1) 4 x¢(1 +1¢ P 4
To summarize:

Future value of a stream  Given a cash flow sticam (xg, x¢, , v,) and interest 1ate
1 each period, the futmre value of the stream is

FV =t +0)" + 00+ 0"+ 4y,

Example 2.1 (A short stream) Consider the cash flow stream (~2,1,1,1) when
the periods are years and the interest rate is 10% The future vale s

FVe—2x (1 DP+1x (DI +1x11+1= 648 2.1

This formula for future value always uses the interest rate pet period and assumes
that interest rates are compounded euch pertod

Present Value

The present value of a general cash flow stream—like the future value—can also be
calculated by considering each flow element sepatately Again consider the stream
(xp, vy, ,2xy). The present value of the first element Yy is just that value itself since
to discounting is necessary The present value of the flow xy is 3y /(1 4+ 1), because
that flow must be discounted by one period (Again the interest 1ate 1 is the per-pertod
iate ) Continuing in this way, we find that the present value of the entire stream is
PV = xo+x¢ /(1 +1) +32/(1 +1)*+  +x,/(0 +1)" We summarize this important
esult as follows

Present value of a stream  Given a cash flow stieam (1, a¢, L An) and an interest
rate 1 per period, the piresent value of this eash flow streaut is

Ry X Y,
PV = xg 4~ 4 o z

S - 22
I+ (l+1)2+ +(l+1)" @2

Example 2.2 Again considet the cash flow stieam (~2,1,1,1) Using an interest
rate of 10% we have
I | 1

ll+(l!)2+(ll)3

PV =2+ = 487
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The piesent value of a cash flow stteatn can be tegatded as the ptesent payment
amount that ts equivalent to the entire stteam Thus we can think of tite entire stream
as being teplaced by a single flow at the tnittal time

Theie is another way to interpiet the formula fot ptesent value that is based
on tiansforming the formutla fot futute value Futuie value {s the amount of futire
payment that ts equivalent to the entiie stteats We can think of the stream 4s being
ttansformed into that single cash flow at period # The present value of this single
equivalent flow ts obtained by discounting it by (I 4 1)". That is, the present value
and the future value are related by

EV

PV =
(It

In the previous examples for the cash flow stteam (~2, 1,1, 1) we have 487 = PV =
FV/(1 1) = 648/1 331 = 487

Frequent and Continuous Compounding

Suppose that 1 ts the nominal annual interest rate and interest {s compounded at m
equally spaced petfods pet year Suppose that cash flows occur initially and at the
end of each pertod for a total of 1 perfods, forming a stteam (xy, x¢, ., %,) Then
according to the preceding we have

" .
Xt
PV = P T ATINEETS
& 0+ a/mf
Suppose now that the nominal interest 1ate 1 s compounded contintously and
cash flows occur at times fy, 7, .1, (We have f = k/m for the stieam tn the
previous paragraply; but the more general situation ts allowed ltere ) We denote the
cash flow at titme £ by v(#) In that case,

n

PV =y (e

k=0

This s the continuous compounding fornwla fot ptesent value

Present Value and an Icdeal Bank

We know that an tdeal bank cat be used to change the pattern of a cash flow stteam
Fot example, a {0% bank can change the stream (1, 0, 0) into the streatn (0,0, 1 21)
by receiving a deposit of $1 now and paying principal and interest of $1 21 in 2 years
The bank can also wotk in ¢ teverse fashion and ttattsfotm the second stream into the
fitst by tssuing a Joan fot $1 now
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AN

In general, ¢ an tdeal bank can transform the stream (xg, Xt,. ) into the
stream (W, ¥t,.. » ), it can also ttansform in the reverse direction Two streams
that can be transformed into each other are said to be equivalent streams.

How can we tell whether two given streams ate equivalent? The answer to this
is the main theorem on present vahie

Main theorem on present value The cash flow streams x = (xo, Xt, - ,x,) and
y= (v, ¥t, W) aieequivalent for a constant ideal bank with interest 1ate 1 if and
only if the present values of the two stieaws, evaluated at the bank’s interest 1ate, are
equal

Proof: Let vy and vy be the present values of the x and y streams, respec-
tively. Then the x stream s equivalent to the stream (v, 0,0, ,0) and the
y stream is equivalent to the stream (vy, 0,0, ,0)

It is clear that these two streams are equivalent if and only if vy = vy
Hence the original streams are equivalent if and only if vy = v, §

This result is impostant because it implies that present value is the only number
needed to characterize a cash flow stream when an ideal bank is available. The stream
can be transformed in a variety of ways by the bank, but the present value remains
the same So if someone offers you a cash flow stream, you only need to evaluate its
corresponding present value, because you can then use the bank to tailor the stream
with that present value to any shape you desire

INTERNAL RATE OF RETURN

Internal rate of return is another important concept of cash flow analysis It per-
tains specifically to the entire cash flow stream associated with an investment, not
to a partial stieam such as a cash flow at a single period The streams to which
this concept is applied typically have both negative and positive elements: the neg-
ative flows cortespond to the payments that must be made; the positive flows to
payments received A simple example is the process of investing in a certificate of
deposit for a fixed period of 1 year Here there are two cash flow elements: the
initial deposit or payment (a negative flow) and the final redemption (a positive
flow)

Given a cash flow stream (3p,%,, ,t,) associated with an investment, we
write the present value {formula

Y " %
- ;0 (1)

1f the investiment that coriesponds to this stream is constructed [rom a series of deposits
and withdrawals from a constant ideal bank at interest rate s, then from the main
theorem on present value of the previous section, PV would be zero The idea behind
internal rate of retuin is to turn the procedure around Given a cash flow stream, we
write the expression for present value and then find the value of + that renders this
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present value equal to zeto That value is called the internal rate of retum because it
is the interest 1ate implied by the inteinal structuie of the cash flow steam The idea
can be applied to any series of cash flows

The preliminary formal definition of the internal rate of teturn (IRR) is as fol-
lows:

Internal rate of return Let (xp,x1, X2, , v,) be a cash flow stream Then the iu-
ternal rate of return of this strean is a monber 1 satisfving the equation

0 = vy + o + RLCTR + + L

T+ (1 41)? 4oy

Equivaleutly, it 1s a mumber 1 satisfving 1/(V 1) = ¢ [that is, 1 = (1/c) — 1), whete
¢ satisfies the polvnomial equation

0=xo+vie +vac” + 4 (24)

@3)

We call this a preliminary definition because there may be smibiguity in the
solution of the polynomial equation of degree 1 We discuss this point shortly First,
however, let us illustiate the compulation of the internal rate of return

Example 2.3 (The old stream) Consider again the cash flow sequence (-2, 1,1, 1)
discussed earlier The internal 1ate of return is {ound by solving the equation

O0==2+c+?+¢*

The solution can be found (by trial and error) to be ¢ == 81, and thus IRR = (1 /¢c) —
1= 23,

Notice that the internal 1ate of return is defined without 1eference to a prevailing
interest rate It is determined entirely by the cash flows of the stieam This is the reason
why it is called the internal rate of return; it is defined internally without reference to
the external financial world It is the iate that an ideal bank would have to apply to
generate the given stream from an initial balance of zeio

As pointed out, equation (2 4) for the interunal rate of tetum is a polynomial equa-
tion in ¢ of degiee », which does not, in general, have an analytic solution However, it
is almost always easy to solve the equation with a computer From algebraic theory it
is known that such an equation always has at least one 1o00t, and may have as many as
1 rools, but some o1 all of these 1o00ts may be complex numbers Foitunately the most
common forn of investment, where there is an initial cash outlay followed by several
positive flows, leads to a unique positive solution Hence the internal rate of return
is then well defined and relatively easy to calculate (See Exercise 4) The formal
statement of the existence of the positive root embodies the main 1esult concerning
the inteinal 1ate of retum

Main theorem of internal rate of retwrn  Suppose the cash flow stream (xo, ¥,
xp) has xo < Oand v > 0 for all k, k = 1,2, n, with at least oue tern being
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floy FIGURE 2.3 Function for proof. If xp < 0
and v = Oforall k, 1 < k < n, with at
least one term being strictly positive, then
the function f{c) will start below the hori-
zontal axis and increase monotonically as ¢
increases Therefore there must be a unique
positive solution c satisfying f{c) = 0

sttietly positive Then thete is a unique positive 1oot to the equation
2
=+ xc+ wett+ +

Furthenmote, if ZLO v, > O (meaning that the total amonnt 1etned exceeds the
initial investnent), then the cortesponding internal rate of retin 1 = (1/c) — 1 is
positive

Proof: We plot the function f(c) = xg+ x1¢ +x3¢2 4+ +x,c", as shown
in Figure 23 Note that f(0) < 0 However, as ¢ increases, the value of f(c)
also incieases, since at least one of the cash flow texms is strictly positive
Indeed, it increases without limit as ¢ increases to infinity Since the function
is continuous, it must cross the axis at some value ol ¢ It cannot cross more
than once, because it is strictly increasing Hence there is a unique real value
co, which is positive, for which f(co) =0

1t ZZ:() x¢ > 0, which means that there fs a net positive (nondiscounted)
cash flow, then f (1) > O This means that the solution ¢p satislying f(co) =0
must be less than 1| Therefore 1p = (l/ep) — 1 > 0, where 1 is the internal
rate of return i

I some (or all) solutions to the equation for internal rate of return are complex,
the inteipretation of these values is not simple In general it is reasonable to select the
solution that has the largest 1eal part and use that eal part to determine the intemal
1ate of 1etuin In practice, however, this is not often a setious issue, since suitable 1cal
roots typically exist

2.5 EVALUATION CRITERIA

The essence of investment is selection fion1 a number of altermative cash flow streams
In oider to do this intelligently, the alternative cash flow streams must be evaluated
according to a logical and standard ciiterion Seveial different ciiteria ate used in
practice, but the two most important methods aie those based on present value and on
internal 1ate of 1eturn
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Net Present Value

Present value evaluates alternatives by simply ranking them according to their present
values-~the higher the present value, the more desirable the altemative When one
uses present value this way, one must include afl cash flows associated with the
investment, both positive and negative To emphasize that, the expression net present
value (NPV) is frequently used Net present value is the present value of the benefits
minus the present value of the costs Often, to emphasize this partition of benefits and
costs, the terms present worth of benefits and present worth of costs are used, both
of which are just present values Net present value is the difference between these
two tetms To be worthy of consideration, the cash flow stream associated with an
investment must have a positive net present value

Example 2.4 (When to cut a tree) Suppose that you have the opportunity to plant
trees that later can be sold for lumber This project 1equires an initial outlay of money
in order to pnichase and plant the seedlings No other cash flow occuis until the tees
are harvested However, you have a choice as to when to harvest: after 1 year or after
2 years If you harvest after 1 year, you get yom retmn quickly; but if you wait an
additional year, the trees will have additional growth and the revenue generated fiom
the sale of the trees will be greater

We assume that the cash flow streams associated with these two alternatives are

(a) (=1,2) cuteatly
b) (—1,0,3) cut later

We also assume that the prevailing interest rate is 10%. Then the associated net present
values are

(a) NPV = —1+2/1 1= 82
(b) NPV = —1 +3/(1 1)? =148,

Hence accoiding to the net present value critetion, it is best to cut later

The net present value criterion is quite compelling, and indeed it is generally
regarded as the single best measure of an investment’s merit, It has the special advan-
tage that the present values of different investments can be added together to obtain a
meaningful composite This is because the present value of a sum of cash flow streams
is equal to the sum of the present values of the cortesponding cash flows Note, for
example, that we were able to compare the two investment alternatives associated with
tree farming even though the cash flows were at ditferent times In general, an investor
can compute the present value of individual investments and also the present value of
an entire portfolio
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Internal Rate of Return

Intemal rate of return can also be used to vank alternative cash flow streams The rule
is simply this: the higher the internal rate of return, the more desirable the investment
However, a potential investment, or project, is presumably not woith considering unless
its intexnal rate of 1etwin is greater than the prevailing interest rate If the internal rate
of return is greater than the prevailing interest 1ate, the investment is considered better
than what is available externally in the financial maiket

Example 2.5 (When to cut a tree, continued) Let us use the intemal 1ate of retum
method to evaluate the two tiee haivesting proposals considered in Example 24 The
equations for the internal rate of retwin in the two cases are

(a)y —14+2=0
() —1+3¢7 =10

As usual, ¢ = /(1 +1) These have the following solutions:

i i
o ——— =1
(@ ¢ 2 b1 ! 0
3 1
(IJ)L=£: H 1 =3-1x7
3 P4+

In other words, for (a), cut early, the internal rate of retum is 100%, whereas
tor (b) it is about 70% Hence under the internal rate of ieturn criterion, the best
alternative is (@) Note that this is opposite to the conclusion obtained from the net
present value criterion

Discussion of the Criteria

There is considerable debate as to which of the two criteria, net present value or
internal rate of return, is the most appropriate for investment evaluation Both have
atwactive teatures, and both have lmitations (As shown, they can even give con-
ficting recommendations )} Net present value is simplest to compute; it does not have
the ambiguity associated with the several possible roots of the internal rate of returm
equation Also net present value can be broken into component pieces, untike internal
rate of return Howeve, internal rate of return has the advantage that it depends only
on the properties of the cash flow stream, and not on the prevailing interest rate (which
in practice may not be easily defined) In fact, the two methods both have appropriate
toles, but in different situations

The primary difference between the two criteria can be explained in terms of the
“when to cut a tree” example We must look beyond the single cycle of tree farming
to a series of cycles Suppose that the proceeds of the first havvest are used to plant
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additional uees, starting a long seies of expansion in the tree farming business Un-
der plan (a), cut early, the business can be doubled every year because the revenue
received at the end of the year is twice that required at the beginning In plan (b},
cut later, the business can be tipled every 2 years by the same reasoning Tripling
every 2 yems is equivalent, in the long run, to incieasing by a tactor of +/3 every
year The yearly growth rates of these two plans, tactors of 2 and /3, tespectively,
are each equal to I plus the internal 1ates of return of the plans—and this equality
is tiue in general So in this kind of situation, where the proceeds of the investment
can be repewtedly 1einvested in the same type of project but scaled in size, it makes
sense to select the project with the largest internat rate of return—in order to get the
greatest growth of capital

On the other hand, suppose that this investment is a one-time opportunity and
cannot be repeated Here the net present value method is the appropriate criterion,
since it compares the investment with what could be obtained through normat chan-
nels (which otfer the prevailing rate of interest)

It is widely agreed (by theorists, but not necessarily by piactitioners) that, over-
all, the best ciiterion is that based on net present value If used intetligently, it will
piovide consistency and rationality In the case of cutting the uees, tor example, an
enlightened present value analysis will agree with the result obtained by the interal
rate of return critetion 1f the two possible tutuies are developed {ully, coresponding
to the two cutting policies, the present value criterion, applied to the long series of
expanding cash flows, would also ditect that plan (a) be adopted

There are many other lactors that influence a good present value analysis-—and
pethaps make such an analysis more complex tfian suggested by the direct format
statement of the ciitetion One significant issue is the selection of the interest rate
to be used in the calculation In practice, theie ate several different “risk-lree” rates
of interest in the financial maket: the wate paid by bank ceutificates ot deposit, the
3-month US Treasury bill 1ate, and the rate paid by the highest grade commetcial
bonds are examples Fuithermote, the 1ates tor borrowing are typically stightly higher
than those for lending The difference between all these choices can be several pei-
centage points In business decisions it is common to use a figure called the cost of
capital as the baseline raie This figure is the rate of return that the company must
offer to potential investois in the company; that is, it is the cost the company must
pay to get additional funds Or sometimes it is taken to be the rate of retuin expected
on alternative desitable projects However, some of these cost ot capital figures are
derived {rom uncertain cash flow streams and ate not really appropriate measures of
a risk-fiee intetest 1ate For present value calculations it is best to use 1ates that rep-
1esent true interest rates, since we assume that the cash flows are certain Some of the
apparent differences in these rates arc explained and justified in Chapter 4, but stilt
there is room for judgment

Another factor to consider is that present value by itselt does not reveal much
about the rate of 1eturn Two alternative investments might each have a net present
value of $100, but one might require an investment ot $100 wheteas the other requites
$1,000,000 Cleatly these two alternatives should be viewed ditferently Net present
value is not the whole story (but we never said it was) It forms a solid staiting point,
but one must supplement its use with additional stiucture
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2.6 APPLICATIONS AND EXTENSIONS®

This section iltustiates how the concepts of this chapte: can be used to evaluate real
investment oppoitunities and projects Often cieative thinking is required to capture
the essence of a situation in a form that is suitable for analysis

Not all of these applications need be read during the first pass though this
chapter; but as one teturns to the chapter, these examples should help clarify the
underlying concepts

Net Flows

In conducting a cash flow analysis using either net present value or internal rate of
return, it is essential that the net of income niinus expense (that is, net profit) be used
as the cash flow each period. The net profit usually can be found in a straightforward
manner, but the process can be subtle in complex situations In particular, taxes often
introduce complexity because certain tax-accounting costs and profits are not always
equal to actual cash outflows or inflows Taxes are considered in a later subsection

Here we use a relatively simple example involving a gold mine to illustrate net
present value analysis Various gold mine examples are used throughout the book to
llustzate how, as we extend our conceptual understanding, we can develop deeper
analyses of the same kind of investment The Simplico gold mine is the simplest of
the series

Example 2.6 (Simplico gold mine) The Simplico gold mine has a great deal of
remaining gold deposits, and you are part of a team that i3 considering leasing the
mine from its owners for a period of 10 years Gold can be extracted from this mine
at a rate of up to 10,000 ounces per year at a cost of $200 per ounce This cost is the
total operating cost of mining and refining, exclusive of the cost of the lease Cuirently
the market price of gold is $400 per ounce The interest rate is 10% Assuming that
the price of gold, the operating cost, and the interest rate remain constant over the
10-year period, what is the present value of the lease?

This is fairly straigiitforward. We ignore the lease expense and just find the
present value of the operating profits 1t is clear that the mine should be operated at
full capacity every year, giving a profit of 10,000 x ($400 — $200) = $2 million per
year We assume that these cash flows occur at the end of each year

The cash flow stream therefore consists of 10 indjvidual flows of $2M (that is,
$2 million} at the end of each year The present value is accordingly

10 .
$2M
PV =
;Z;, iy

“Sections marked by stars may be skipped af first reading
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This can be evaluated either by direct summation or by using the formula for the sum
of a geometric series The result is

10
PV = $2M |:1 - <—) } x 10 = $12 20M

and this is the value of the lease

Cycle Problems

When using interest rate theory to evaluate ongoing (repeatable) activities, it is essential
that alternatives be compared over the same time horizon The difficulties that can arise
from not doing this are Hlustrated in the tree cutting example The two altematives in
that example have different cycle lengths, but the nature of the possible repetition of
the cycles was not clearly spelled out originally

We iljustrate here two ways to account properly for different cycle lengths The
first is to repeat each alternative until both terminate at the same time For cxample,
il a fizst alternative lasts 2 years and a second lasts 4 years, then two cycles of the
first alternative are comparable to one of the second The other method tor comparing
altermatives with different cycle lengths is to assume that an alternative will be repeated
indefinitely Then a simple equation can be written for the value of the entire infinite-
length stieam

Example 2.7 (Automobile purchase} You are contemplating the purchase of an
automobile and have narrowed the field down to two choices Car A costs $20,000, is
expected to have a low maintenance cost of $1,000 pe1 year (payable at the beginning
ot each year after the first year), but has a useful mileage lile that for you tanslates
into 4 years Car B costs $30,000 and has an expected maintenance cost of $2,000 pet
year (after the fist year) and a useful life of 6 years Neither car has a salvage value
The interest rate is 10% Which cat should you buy?

We analyze this choice by assuming that simitar alteynatives will be available
in the future—we are ignoring inflation—so this purchase is one of a sequence of car
purchases To equalize the time horizon, we assume a planning period of 12 years,
corresponding to three cycles of car A and two of car B

We analyze simple cycles and combined cycles as follows.

Car A:

3
One cycle PV, = 20,000+ 1,000 3" ZTIW
fo]
$22,487
i
a1+ o+ |

i

it

Thiee cycles PV
y m anTans
= $48,336
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Ca1 B:
5
One cycle PVp = 30,000+ 2,000 )" (TIW
=1
= $37,582
1
Two cycles PVpy = PVp |:1 + W:|
= $58,795

Hence car A should be selected because its cost has the lower present value over the
common time horizon

Example 2.8 (Machine replacement) A specialized machine essential for a com-
pany’s operations costs $10,000 and has operating costs ol $2,000 the first year. The
operating cost increases by $1,000 each year thereafter We assume that these oper-
ating costs occur at the end of each year The interest rate is 10% How long should
the machine be kept until it is replaced by a new identical machine? Assume that due
to its specialized nature the machine has no salvage value

This is an example where the cash flow stream is not fixed in advance because
of the unknown replacement time We must also account for the cash flows of the
replacement machines This can be done by writing an equation having PV on botlt
sides For example, suppose that the machine is ieplaced every year Then the cash
flow (in thousands) is (—10, —2) lollowed by (0, —10, —2) and then (0, 0, ~10, —2),
and so torth However, we can write the total PV of the costs compactly as

PV =10+2/11+PV/l1

because after the first machine is replaced, the stream from that point looks identical
to the original one, except that this continuing stream starts 1 year later and hence
must be discounted by the effect of 1 year’s interest The solution to this equation is
PV = 130 o, in our original units, $130,000

We may do the same thing assuming 2-year replacement, then 3 years, and so
torth The general approach is based on the equation

11
whete k is the length of the basic cycle This leads easily to Table 23
From the table we see that the smallest present value of cost occurs when the
machine is replaced after 5 years Hence that is the best replacement policy

k
1
PVygut = PV, cycte + (‘“) PV

Taxes

Taxes can complicate a cash flow value analysis No new conceptual issues arise;
it is just that taxes can obscure the true definition of cash flow If a uniform tax
rate were applied to all revenues and expenses as taxes and credits, respectively,
then recommendations from betore-tax and after-tax analyses would be identical The
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TABLE 2.3
Machine Replacement

Replacement year Present value

130,000
82,381
69,577
65,358
64,481 —
65,196

[= T SRR

The total present vahe is found for var-
ious veplacement frequencies The best
policy cartespouds to the frequency hav-
ing the smallest toral presemt vaiue

present value figures from the latter analysis would merely all be scaled by the same
{actor; that is, all would be multiplied by 1 minus the tax rate The intemal rate of
return figures would be identical Hence rankings using either net present value o1
internal 1ate of return would remain the same as those without taxes For this season
taxes are ignored in many of our examples Sometimes, however, the cash flows
required to be reported to the government on tax forms are not true cash flows This
is why firms often must keep two sets of accounts—one for tax purposes and one for
decision-making purposes There is nothing illegal about this practice; it is a reality
introduced by the tax code

A tax-induced distortion of cash flows frequently accompanies the treatment of
property depreciation Depreciation is treated as a negative cash flow by the govern-
ment, but the timing of these flows, as 1eported for tax purposes, rarely coincides with
actual cash outlays The tollowing is a simple example illustrating this disciepancy

Example 2.9 (Depreciation) Suppose a firm purchases a machine for $10,000 This
machine has a useful life of 4 years and its use generates a cash flow of $3,000 each
year The machine has a salvage value of $2,000 at the end of 4 years

The govermnment does not altow the full cost of the machine to be 1eported
as an expense the first year, but instead 1equites that the cost of the machine be
depieciated over its useful life Theie are several depreciation methods, each appli-
cable under various circumstances, but for simplicity we shall assume the stuaight-
line method In this method a fixed pottion of the cost is 1eported as depreciation
each year Hence corresponding to a 4-year life, one-fourth of the cost (minus the
estimated salvage value) is reported as an expense deductible from revenue each
yea

It we assume a combined fedesal and state tax 1ate of 43%, we obtain the cash
flows, before and alter tax, shown in Table 24 The salvage value is not taxed (since
it was not depreciated) The present values for the two cash flows (at 10%) are also
shown Note that in this example tax rules convert an otherwise profitable operation
into an unprofitable one
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TABLE 2.4
Cash Flows Before and After Tax

Year Before-tax cash flow Depreciation Taxable income Tax After-tax cash flow

0 ~10,000 —10,000
I 3,000 2,000 1,000 430 2,570
2 3.000 2,000 1,000 430 2,570
3 3,000 2,000 1,000 430 2,570
4 5,000 2,000 1,000 430 4,570
PV 876 —487

From a preseut value viewpoint. Jax rukes for treatment of depreciation can convert a potentially profitable
venture o an wiprofitable one

Inflation

Inflation is another factor that often causes confusion, arising from the choice between
using actual doliar values to desctibe cash flows and using values expressed in purchas-
ing power, determined by reducing inflated [uture dollar values back to a nominal level

Inflation is characterized by an increase in general prices with time Inflation can
be desciibed quantitatively in terms of an inflation rate f Prices | year [rom now
will on average be equal to today’s prices multiplied by (I + f) Inflation compounds
much like interest does, so after k yeats of inflation at rate £, prices will be (I + f)*
times their original values Of course, inflation rates do not remain constant, but in
planning studies future rates are usually estimated as constant

Another way to look at inflation is that it erodes the purchasing power of money
A dollar today does not purchase as much bread or milk, for example, as a dollar did
10 years ago In other words, we can think of prices increasing or, alternatively, of
the value of money decreasing I the inflation rate is f, then the value of a dollar
next year in terms of the purchasing power of today’s dolar is 1/(1 + £)

It is sometimes useful to think explicitly in terms of the same kind ot dol-
lars, eliminating the influence of inflation Thus we consider constant dollars o1,
alternatively, real dollars, defined relative to a given reference year These are the
(hypothetical) dollars that continue to have the same purchasing power as dollars did
in the reference year. These dollars are defined in conlrast to the actual or nominal
dollars that we really use in tiansactions

This leads us to define a new interest rate, termed the real interest rate, which
is the rate at which real dollars increase it left in a bank that pays the nominal rate
To undeistand the meaning of the real intetest rate, imagine depositing money in the
bank at time zero, then withdrawing it | year later The purchasing powet of the bank
balance huas probably increased in spite of inflation, and this increase measures the
real rate of interest

Il onc goes thiough that thinking, when s is the nominal interest rate and f is
the inflation rate, it is easy to sce that

I+

|+'()=T+—
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where 14 denotes the real rate of interest This equation expresses the fact that money
in the bank increases (nominally) by 1 + , but its purchasing power is deflated by
I/(} + f) We can solve for 1 as

=/
T+ @9

Note that for small levels of inflation the real rate of interest is approximately equal
to the nominal 1ate of interest minus the inflation rate

A cash flow analysis can be cariied out using either actual (nominal) dollats or
real dollars, but the danger is that a mixture of the two might be used inadvertently
Such a mixture sometimes occuts in the planning studies in large corporations The
operating divisions, which are primatily concerned with physical inputs and outputs,
may extrapolate real cash flows into the future But corpotate headquarters, being
primarily concemed with the financial market and tax rules, may find the use of
nominal (that is, actual) cash flows more convenient and hence may discount at the
nominal rate The result can be an undervaluation by headquarters of project proposals
submitted by the divisions relative to valuations that would be obtained il inflation
were treated consistently

We illustrate now how an analysis can be carried out consistently by using either
real or nominal cash flows

o =

Example 2,10 (Inflation) Suppose that inflation is 4%, the nominal interest rate is
10%, and we have a cash flow of real (or constant) dollars as shown in the second
column of Table 25 (It is common to estimate cash flows in constant dolluss, rel-
ative to the present, because “ordinary” price increases can then be neglected in a
simple estimation of cash flows ) To determine the present value in real terms we
must use the real rate of intetest, which from (25) is 1o = (10—~ 04)/1 04 =
5.77%

TABLE 2.5
inflation

Year Real cash flow PV @5.77% Nominal cash flow PV @10%

0 —10,000 —10,000 —10,000 —10,000
1 5,000 4,727 5,200 4,727
2 5,000 4,469 5.408 4,469
3 5,000 4,226 5,624 4,226
4 3,000 2,397 3,510 2,397
Totl 5,819 5819

The projecied real cash flows of the second columm have the present values ar the
real rate of interesi. shows in the third colunme The fonsth cohonn Jisis 1he cash flows
thar wouldd occnr ander dSo inflation and their present values a1 the 10% nominal
1ate of interest are given in the fifth cohma
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Alternatively, we may conveit the cash flow to actual (nominal) tetms by inflating
the figures using the appropriate inflation {actors Then we determine the present value
using the nominal interest 1ate of 10% Both methods produce the same result

2.7 SUMMARY

The time value of money is expressed concretely as an inletest rate The 1-year in-
terest rate is the price paid (expressed as a percentage of principal) for boriowing
money for | year In simple interest, the interest payment when bortowing money in
subsequent years is identical in magnitude to that of the first year Hence, for example,
the bank balance resulting from a single deposit would grow linearly year by year In
compound interest, the interest payment in subsequent years is based on the balance
at the beginning of that yewr Hence the bank balance resulting {rom a single deposit
would giow geometrically year by year

A useful approximation is that the number of years required {or a deposit to
double in value when compounded yearly is 72/, where i is the interest rate expiessed
as a percentage For example, at 10%, money doubles in about 7 years

Interest can be compounded at any frequency, not just yearly It is cven possible
to compound continuously, which leads to bank balances that grow exponentially with
time When interest is compounded mote frequently than yearly, it is useful to define
both a norinal rate and an effective annual rate of interest The nominal rate is the rate
used for a single period divided by the length (in years) of a petiod The effective rate
is the rate that, if applied without compounding, would give the same total balance for
money deposited for one full year The effective rate is larger than the nominal rate
For example, an 8% nominal annual 1ate cotresponds to an 8 24% effective annual
rate under quaiterly compounding

Money teccived in the future is worth less than the same amount of money
received in the present because money teceived in the present can be loaned out to
earn interest Money to be received at a future date must be discounted by dividing
its magnitude by the factor by which present money would grow if loaned out to that
futute date There is, accordingly, a discount lactor lor each future date

The present value ol a cash flow stieam is the sum of the discounted magnitudes
of the individual cash flows of the stream An ideal bank can transform a cash flow
stieam into any other with the same piesent vatue

The internal 1ate of return of a cash flow stieam is an interest rate that, if used to
evaluate the present value of the stieam, would cause that present value to be zero In
general, this rate is not well defined However, when the cash flow stieam has an initial
negative flow lollowed by positive flows, the intermal rate of return is well defined

Present value and internal rate of return are the two main methods used to
evaluate proposed investment projects that genetate deterministic cash flow streams
Under the present value framework, if there are several competing alternatives, then the
one with the highest present value should be selected Under the internal 1ate of return
criterion, the alternative with the largest internal rate of retutn should be selected

Analyses using these methods are not always suaight{orward In particular, con-
sideration of various cycle lengths, taxes, and inflation each tequite careful attention
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EXERCISES 35

(A nice inheritance) Suppose %1 were invested in 1776 at 3 3% interest compounded

yearly

(a) Approximately how much would that investment be worth woday: $1,000, $10,000,
$100,000, or $1,000,0007

(b) What if the interest rate were 6 6%?

(The 72 rule)  The nuinber of years n required for an investment at inieresi rate s to double
in value must satisty (1 4+7)" =2 Using In 2= 69 and the approximation In(i +1) =
valid for small 7, show that # =~ 69/i, where i is the interest rate percemage (that is,
i = 1007} Using the better approximation In{147) &1 — -i-l 2, show that for ) &~ 08 there

holds n & 72/i

(Effective rates) Find the corresponding effective rates for:

(1) 3% compounded monthly
(b) 18% compounded monthty
(¢) 18% compounded quarterly

(Newton’s methado)  The IRR is generaily calculated using an fterative procedure Sup-
pose that we define f(A) = —ag+ayh+aA* +  +a,X", where all a,"s are positive and
i > 1 Hese is an iterative technique that generates a sequence Ap, A, Aa, L Ay, of
estimates that converges 1o the root A > 0, solving /(%) =0 Strt with any Ay > 0 close
to the solution Assuming A; has been calcnlated, evaluate

') =a 2@k + 3+ a0t

and define
S
Mt =M — o
141 + P
This is Newton's method It is based on approximating the function f by a line tangent to
its graph at A;, as shown in Figure 24 Try the procedure on f(A) = —f + A + A% Start

with Ay = 1 and comptte four additional estimates

FIGURE 2.4 Newton’s method

°Exercises followed by o are mathematicaily more difficult thant average
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5.

a

(A prize) A major lottery advertises that it pays the winner $10 million However, this
prize money is paid at the rate of $500,000 cach year (with the first payment being imme-
diate) fot a total of 20 payments What is the present value of this prize at 10% interest?

. (Sunk eosts) A young couple has tmade a nonrefundable deposit of the first month's

rent (equal to $1,000) on a 6-month apartment iease The next day they find a different
apariment that they ltke just as well, but its monthly rent is only $900 They plan to be in
the apartment only 6 months Should they switch to the new apartnent? What if they plan
to stay 1 year? Assume an interest rate of 12%

. (Shortcut) Gavin Jones is inquisitive and determined to learn both the theory and the

application of investnent theory He pressed the tree farmer for additional information and
learned that it was possible to delay cutting the trees of Example 2 4 fot another year The
farmer said that, from a present value perspective, it was not worthwhile to do so Gavin
instantly deduced that the revenue obtained must be less than x What is x7

. (Copy muchines®) Two copy machines are available Both have useful iives of 5 years

One muachine can be either leased or purchased outright; the other must be purchased
Hence there are a total of three options: A, B, and C The details are shown in Tabie 2 6
(The first year's maintenance is inciuded in the initial cost There are then four additional
mainienance paymenis, occurring at the beginning of each yeur, lollowed by revenues from
resaie ) The present values of the expenses of these three options using a 10% interest rate
are also indicated in the table According to a present value analysis, the machine of least
cost, as measured by the present value, should be selected; that is, option B

TABLE 2.6
Copy Macliine Options

Option
A B C
Initial outlay 6,000 30,000 35,000
Yearly expense 8,000 2,000 1,600
Resale value 0 10,000 12,000
Present value (@10%) | 31,359 30,131 32,621

Optiont A 15 a lease, options B ard C are purchases of
two alternative jachines All lave S-year lives

it is not possibie to compute the IRR for any of these alternatives, because ail casit
flows are negative (except for tlie resale vaiues) However, it is possible to calculate the
IRR on an incremental basis Find the IRR corresponding to a change from Ato B isa
change irom A to B justified on the basis of the IRR?

. (Anappraisal) You are considering the purchase of a nice home [t is in every way perfect

for you and in excellent condition, except jor the roof The roof has only 5 years of life

@ Exercises Tolfowed by ® require mimerical computation
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remaining A new roof would last 20 years, but would cost $20,000 The house is expected
10 last forever Assuining that costs will remain constant and that tlre interest rate is 5%,
what value would you assign to the existing roof?

(Oil depletion allowance ®) A wealtlty investor spends $1 million to drill and develop an
oil well that has estintated reserves of 200,000 barrels The well is to be operated over
3 years, producing tlie estimated quantities shown in the second column of Table 27 It is
estimated that the ofl will be sold for $20 per barrel The net income is also shown

Barrels Gross Net Depletion Taxable After-tax
Year | produced revenue income Option 1 Option 2 allowance income  Tax income
1 80,000 1,600,000 1,200,000 352,000 400,000 400,000 800,000 360,000 840,000
2 70,000 1,400,000 1,000,000
3 50,000 1,000,000 500,000
4 30,000 600,000 200,000
5 10,000 200,000 50,000

11

A depletion allowance, for tax purposes, can be computed in either of two ways eaclt
year: 22% of gross revenue up to 50% of net income before such deduction (option 1),
or the investment cost of the product, equal in this case to the unit cost of the reserves,
$5 per barrel {option 2) The allowance is deducted irom the net income to determine the
taxable income The investor is in the 45% tax bracket

(a) Complete Table 27 und show that the total depletion allowance exceeds the original
investment
(b} Calculate the PV and the IRR for this invesiment Assume an interest rate of 20%

(Conflicting recommendations ®) Consider the two projects whose cash flows are shown

in Table 28 Find the IRRs of the two projects and the NPVs at 5% Show that the IRR
and NPV figures yield different recommendations Can you explain this?

TABLE 2 8

Project 1 —100 30 30 30 30 30
Project 2 —150 42 42 42 42 42

(Domination) Suppose two competing projects have cash flows of the torm (—4,, By,
By, . By) and (—A; By, By, |, Bj), both with the same length and A,, Ay, By, By
all positive Suppose B,/A; > Ba/A, Show that project 1 wiil have a higher IRR than
project 2
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13.

REFERENCES

(Crossing o)  In general, we say that two projects with cash flows x, and v,, i =0, 1,2,
mocrossifxp < yoand Yy v > Y ooy Let P(d) and Py} denote the present values
of these two projects when the discount factor is d

(a) Show that there is a crossover value ¢ > 0 such that P {¢c) = Py(c)

(b) For Exercise 11, calculate the crossover value ¢

. (Depreciation choice) In the United States the accelerated cost recovery system (ACRS)

must be used for depreciation of assets placed into service after December 1980 In this
system, assets are classified into categories specifying the effective tax life The classifica-
tion of “3-year propeity,” for example, includes automobiles, tractors for hauling highway
railers, light trucks, and certain manufacturing tools The percentages of the cost for 3-year
propety that can be deducted for each of the first 3 years after purchase (including the year
of purchase} are 25%, 38%, and 37%, respectively The tax code also allows the alternate
ACRS method, which for 3-year propeity means that the stiaight-line percentage of 33-13-%
can be used for 3 years

Which of these methods is preferred by an individual who wishes to maximize the
present value of depreciation? How does the choice depend on the assumed rate of interest?

(An erroncous analysis) A division of ABBOX Coiporation has developed the concept
of a new product Production of the product would require $10 million in initial capital
expenditure It is anticipated that | million units would be sold each year for 5 years, and
then the product would be obsolete and production would cease Each year’s production
would require 10,000 hours of fabor and 100 tons of raw material Currently the average
wage rate is $30 per hour and the cost of the raw mateiial is $100 per ton The product
would selt for $3 30 per unit, and this price is expected to be maintained (in real terms)
ABBOX management likes to use a 12% discount rate for projects of this type and faces
a 34% tax rate on profit The initial capital expenditure can be depreciated in a straight-
tine fashion over 5 years In its first anatysis of this project, management did not apply
inflation factors to the extrapolated 1evenues and operating costs What present vatue did
they obtain? How would the answer change if an infation ate of 4% were applied?

The theory of interest, compounding, present vatue, and internal rate of return is covered ex-
tensively in many excellent textbooks A few investment-oriented texts which discuss general
notions of inierest are [1~5] The use of the concepts of NPV and IRR for ranking investment
alternatives is developed in detail in the field of enginecring economy Excelient texts in that
field include [6-9] A more advanced study of interest is [1{}], which contains a continuous-time
version of the “when to cut a tree” example, wihich inspired the example given in Section 2 5
Exercise 10 is a modification of an example in [6)

t
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FIXED-INCOME SECURITIES

n interest rate is a price, or rent, for the most popular ot all traded commod-
ities—money The one-year interest rate, lor example, is just the price that
.must be paid for borrowing money for one year. Markets for money are
well developed, and the corresponding basic market price-—interest-—is monitored by
everyone who has a serious concern about financial activity
As shown in the previous chapter, the market interest rate provides a ready
comparison [or investment alternatives that produce cash flows This comparison can
be used to evaluate any cash flow strean: whether arising from tiansactions between
individuals, associated with business projects, or generated by investments in securities
However, the overall market associated with interest iates is more complex
than the simple bank accounts discussed in the last chupter Vast assortments ot bills,
notes, bonds, annuities, futures contracts, and morigages are purt of the well-developed
markets for money These murket items are not real goods (or hard assets) in the sense
of having intrinsic value—such as potatoes or gold—but instead are traded only as
pieces of paper, or as entries in a computer database These ftems, in general, are
referred to as financial instruments. Their values are derived {rom the pioinises they
represent If there is a well-developed masket for an instrument, so that it can be traded
freely and easily, then that instruiment is termed a security. There are many financial
instruments and securities thut are directly telated to interest rates and, therefore,
provide access to income—at a price defined by the appropiiate interest rate ot rates.
Fixed-income securities are financial instruments that are traded in well-develop-
ed matkets and promise 4 fixed (that is, definite) incomie to the holder over a span of
time In our terminology, they represent the ownership of a definite cash flow stream
Fixed-income securitics are important to an investot because they define the
market for money, and most investors participate in this market These securities are
also important as additional compatison points when conducting analyses ol invest-
ment opportunities that are not traded in markets, such as a firm’s research projects,
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oil leases, and royaity iights A compiehensive study of finuncial instiuments most
natutally starts with a study of fixed-incomie securities

3.1 THE MARKET FOR FUTURE CASH

The classification ot a security us being a fixed-income security is actually a bit vague,
Originally this classification meant, us previously stated, that the security pays a fixed,
well-defined cash flow stream to the owner The only uncertainties about the promised
stream were associated with whether the fssuer of the security might default (by,
say, going bankrupt), in which case the income would be discontinued or delayed
Now, however, some “fixed-income” secutities promise cash flows whose magnitudes
ate tied to vatious contingencies or fluctuating indices For example, payment levels
on an adjustabic-rate mortgage may be tied to an interest rate index, or corporate
bond payments may in pait be goveined by a stock price But in common patlance,
such variations ate allowed within 4 broade: definition of fixed-income securities The
general idea is that a fixed-income security has a cash flow stream that is fixed except
for variations due to well-defined contingent circumstances

There are many different kinds of fixed-income securities, and we cannot provide
a comprehensive survey of them here However, we shall inention some of the principal
types of fixed-income securities in order to indicate the general scope ot such securities

Savings Deposits

Probably the most tamilizi fixed-income ingtrument is an interest-beasing bank de-
posit These are offered by commercial banks, savings and foan institutions, and credit
unions In the United States most such deposits are guaranteed by agencies of the fed-
eral government The simplest demand deposit pays a iate of interest that varies with
market conditions Over an extended period of time, such a deposit is not strictly of a
fixed-income type; nevertheless, we place it in the fixed-income category The interest
is guaranteed in a time deposit account, where the deposit must be maintained for
a given length of time (such as 6 months), or else a penalty {or carly withdrawal is
assessed A similar instrument is a certificate of deposit (CD), which is issued in
standard denominations such as $10,000 Large-denonination CDs can be sold in a
market, and hence they qualify as securities

Money Market Instruments

The term money market refers to the market for short-term (1 year or less) loans
by corporations and financial intermediaries, including, tor example, banks It is a
well-organized market designed for large amounts of money, but it is not ot great
impottance to long-term investors because of its short-term and specialized nature
Within this maket commercial paper is the tetm used to describe unsecured loans
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(that is, loans without collateral) to corporations The large: denominations of CDs
mentioned earler are also pait of this matket

A banker’s acceptance is a more involved money market instrument If com-
pany A sells goods to company B, company B might send a written promise to
company A that it will pay for the goods within a fixed time, such as 3 months Some
bank accepts the promise by promising to pay the bill on behaif of company B Com-
pany A can then sell the banker’s acceptance to someone else at a discount before the
time has expired.

Eurodollar deposits are deposits denominated in dollars but held in a bank
outside the United States Likewise Eurodollar CDs are CDs denominated in dolfars
and issued by banks outside the United States A distinction between these Eurodollars
and regular dollars is due to differences in banking regulations and insurance

U.S. Government Securities

The US Government obtains loans by issuing varfous types of fixed-income securities
These securities are considered to be of the highest credit quality since they are backed
by the government itsell The most important government securities are sketched here

U.S. Treasury bills are issued in denominations of $10,000 or more with fixed
terms to maturity of 13, 26, and 52 weeks They are sold on a discount basis Thus
a bill with a face value of $10,000 may sell fo1 $9,500, the difference between the
price and the tace value providing the interest A bill can be redeemed for the tull [ace
value at the maturity date New bills are offered each week and are sold at auction
They are highly liquid (that is, there is 4 ready market {or them); hence they can be
easily sold prior to the maturity date

U.S. Treasury notes have maturities of 1 to 10 yeats and ae sold in denom-
inations as small as $1,000 The owner of such a note receives a coupon payment
every 6 months until maturity This coupon payment represents an interest payment
and its magnitude is fixed throughout the life of the note At maturity the note holder
receives the last coupon payment and the [ace value of the note Like Treasury bills,
these notes are sold at auction

U.S. Treasury bonds are issued with maturities of more than 10 years They
are similar to Trieasury notes in that they make coupon payments However, some
Treasury bonds are callable, meaning that at some scheduled coupon payment date
the Treasury can force the bond holder to redeem the bond at that time for its [ace
(par) value

U.S. Treasury strips are bonds that the U S Treasury fssues in stripped form
Hese euach of the coupons is issued separately, s is the principal. So a 10-year bond
when stripped will consist of 20 semiunnual coupon securities (each with a sepa-
1ate CUSIP') and an additional principal security Each of these securities generates a

! The Committee on Uniform Securities Identification Procedures (CUSIP) assigns identifying CUSIP aum-
bers and codes 1o all securities
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single cash flow, with no intermediate coupon payments Such a security is termed a
zero-coupon bond.

Other Bonds

Bonds are issued by agencies of the tederal government, by state and local govein-
ments, and by corporations

Municipal bonds are issued by agencies of state and local governments There
are two main types: general obligation bonds, which are backed by 4 governing body
such us the state; and revenue bonds, which are backed either by the revenue to be
generated by the project that will initially be tunded by the bond issue or by the agency
responsible for the project

The intetest income associated with municipal bonds is exempt fiom federal
income tax and from state and local taxes in the issuing state This feature means that
investors ute willing to accept lower interest 1ates on these bonds compared to other
securities of similar quality

Corporate bonds are issued by corporations for the purpose of raising capital
for operations and new ventures They vary in quality depending on the strength of
the issuing corporation and on certain features of the bond itself

Some corporate bonds are traded on an exchange, but most are traded over-the-
counter in a network of bond dealers These over-the-countet bonds are less liquid in
the sense that there may be only 4 few trades per day of « particular issue.

A bond canies with it an indenture, which is a contract of terms Some features
that might be included are:

Callable bonds A bond is callable if the issuer has the right to repurchase the
bond ut a specified price Usually this call price falls with time, and often therc is an
initial call protection period wherein the bond cannot be called

Sinking funds Rather than incur the obligation to pay the entire face value ot a
bond issue at maturity, the issuer may establish a sinking fund to spread this obligation
out over time Under such an arrangement the fssuer may repurchase a certain fraction
ot the outstanding bonds cach yew at a specified price

Debt Subordination  To protect bond holders, limits may be set on the amount
of additionu} boitowing by the issuer Also the bondholders may be guaranteed that
in the event of bunkruptcy, payment to them takes priority over payments of other
debt-—the other debt being subordinated

Mortgages

To a typical homeowner, a mortgage looks like the opposite of a bond A future
homeowner usually will se/l 4 home mortguge to generate immediate cash to pay
for a hoie, obligating him- o1 herself to make periodic payments to the mortgage
holder The standard morgage is structured so thut equal monthly payments are made
throughout its term, which contiasts to most bonds, which have a final payment equal
to the face value at maturity Most standard mortgages allow for early repayment of the
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balance Hence trom the mortgage holder’s viewpoint the income sueam generated
is not completely fixed, since it may be terminated with an appropriate lump-suin
payment at the discretion of the homeowner

There are many variations on the standard moitgage There may be modest-
sized periodic payments for several years followed by a final balloon payment that
completes the contract Adjustable-rate mortgages adjust the effective interest rate
periodically according to an intercst rate index, and hence these mortgages do not
really generate fixed income in the strict sense

Moitgages are not usually thought of as securities, since they are wiitten as con-
tracts between two parties, for example, a homecownes and a bank However, mortgages
we typically “bundled” into large packages and taded among financial institutions
These mortgage-backed securities are quite liquid

Annuities

An annuity is a contract that pays the holder (the annuitant) money periodically,
according to a predetermined schedule or formula, over a period of time Pension
benefits often take the form of annuities Sometimes annuities are stiuctured to provide
a fixed payment every year tor as long as the annuitant is alive, in which case the
price of the annuity is based on the age of the annuitant when the annuity is purchased
and on the numbes of years until payments are initiated

Thete are numerous variations Sometimes the fevel of the annuity payments is
tied to the earnings of a large pool of funds from which the annuity is paid, sometimes
the payments vary with time, and so forth

Annuities are not really securities, since they are not traded (The issuer certainly
would not allow a change in annuitant if payments are tied to the life of the owner;
likewise, an annuitant would not allow the annuity company to transter their obligation
to another company which might be less solvent.) Annuities are, howevei, consideyed
to be investment opportunities that aje available at standardized 1ates Hence {rom an
investor’s viewpoint, they serve the same 1ole as othet fixed-income instiuments

3.2 VALUE FORMULAS

Many fixed-income instruments include an obligation to pay a streaun of equal periodic
cash flows This is characteristic of stundard coupon bonds that pay the holder a fixed
sum on a regular basis; it also is characteristic of stundard mortgages, of many annu-
ities, of standaid automobile loans, and of other consumer loans It is therefore useful
to recognize that the present value ot such a constant stiewin can be determined by a
compact formula This formula is difficult to evaluate by hand, and hence professionals
wortking each day with such financial instruments typically have available appropriate
tables, handheld calculators, o1 computer programs that iclate present value to the
magnitude and term of periodic payments Theie arc, for example, extensive sets of
mortgage tables, bond tables, annuity rate tables, and so forth We shall develop the
basic tormula heie and illustrate its use
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Perpetual Annuities

As a step toward the development of the formula we consider an interesting and con-
ceptually useful fixed-income instrument termed a perpetual annuity, or perpetuity,
which pays a fixed sum periodically forever For example, it might pay $1,000 every
January 1 forever Such annuities are quite rare (although such instruments actually
do exist in Great Britain, where they are called consols)

The present value of a perpetual annuity can be easily derived Suppose an
amount A is paid at the end of each period, starting at the end of the first petiod, and
suppose the per-period interest rate is» Then the present value is

o A
F_§(1+1)"

The terms in the summand represent a geometric series, and this series can be summed
easily using a standard formula Afternatively, if you have forgotten the standard
formula, we can derive it by noting that

= A A = A A P
p= = — =y T
;(H:)k 1+1+§(|+z)k +1 +1
We can solve this equation to find P = A/» Hence we have the {ollowing basic
result:

Perpetual annuity formula  The present value P of a perpetual annuity that pavs an
amount A every period, beginning one period from the present, is

A
rP==
]

where 1 is the one-period interest 1ate

Example 3.1 (Perpetual annuity) Consider a perpetual annuity of $1,000 each year
At 10% interest its present value is

1,000
P = —— =510,000
10 $

Finite-Life Streams

Of more practical importance is the case where the payment stream has a finite lifetime
Suppose that the stream consists of 1 periodic payments of amount A, starting at the
end of the current period and ending at period n The pattern of periodic cash flows
together with the time indexing system is shown in Figure 3 |

The present value of the finite stream relative to the interest rate » per period is

i
p=Y" A
Z{(I‘I’I)k
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A FIGURE 3.1 Time indexing. Time is indexed from 0
10 1. A period is a span between time points, with
the first peried being the time from 0 to 1 A standard
annuily has a constant cash flow al the end of each

\ AN AN / \ / ¢ period

v
n  Periods

=<

This is the sum of a finite geometric series If you do not recall the formula for this
sum, we can derive it easily by a simple triek. The value can be found by considering
two perpetual annuities Both pay an amount A each year, but one starts at time 1 and
the other starts at time n + 1 We subnact the second from the first The result is the
same as the original stieam of finite life This combination is illustrated in Figure 3 2
for the case of a stream of length 3.

The value of the delayed annuity is found by discounting that annuity by the
factor (1 +41)~" because it is delayed n periods Hence we may write

A A A 1
pP=—- =[] -
) (L) ) T+

We now highlight this important result:

Annuity formulas Consider an annuity that begins payment one period fiom the
present, paying an amount A each period for a total of n periods The present value
P, the one-perjod annuity amount A, the one-period interest 1ate r, and the number of
periods i of the annuity ore 1elated by

A 1
”=7["m]

P
T4y -1

o1, equivalently,

A

FIGURE 3.2 Finite stream from Iwo perpelual annuilies. The top line shows a perpetuity slarting
al time 1, the second a negative parpetuity starting at lime 4 The sum of lhese two is a finile-life
annuity with paymenls slarting al time 1 and ending at time 3
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Although these formulas are simple in concept and quite easy to derive, they are
sufficiently complex that they cannot be evaluated eastly by hand It is for this reason
that financial tables and financial calculators are commonly available, Professional
tables of this type occupy several pages and typically give P/A as a function of »
and # For some purposes A/P (just the reciprocal) is more convenient, and there are
tables written both ways

It is important to note that in the formulas of this section, 1 is expressed as a
per-period interest rate If the period length is not equal to | year, this » will not be
equal to the yearly rate; so care must be exercised

The annuity formula is frequently used in the reverse direction; that is, A as
a function of P This determines the periodic payment that is equivalent (under the
assumed interest tate) to an initial payment of P This process of substituting periodic
payments for a current obligation is referred to as amortization. Hence one may
amortize the cost of an automobile over 5 years by taking out a 5-year loan

Example 3.2 (Loan calculation) Suppose you have borrowed $1,000 from a credit
union The terms of the loan are that the yearly interest is 12% compounded monthly
You are to make equal monthly payments of such magnitude as to repay (amortize)
this loan over 5 years How much are the monthly payments?

Five years is 60 months, and 12% a year compounded monthly is 1% per month
Hence we use the formula for # = 60, 1 = 1%, and P = $1,000 We find that the
payments A are $22.20 per month

Example 3.3 (APR) A typical advertisement from a mortgage broker is shown in
Table 3 1 In addition to the interest rate, term of the loan, and maximum amount,
there are listed points and the annual percentage rate {APR), which describe fees and
expenses Points is the percentage of the loan amount that is charged for providing
the mortgage Typically, there are additional expenses as well All of these fees and

TABLE 3.1
Mortgage Broker Advertisement

Rate Pts Term Max amt APR

7625 100 30 yr $203,150 7883
7875 50 30 yr $203,150 8083
8125 225 30 yr $600,000 8399
7 000 100 15yt $203,150 7429
7500 100 15 yr $600,000 7859

Call 555-1213
Real Estaie Broker, CA Dept of Reat Estate,
Mortgage Masters, Inc
Current Fixed Rates

APR is the rate of interest that implicitly inchides the fees
associated with a mortgage
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expenses are added to the loan balance, and the sum is amortized at the stated rate
over the stated period This results in a fixed monthly payment amount A

The APR is the rate of interest that, if applied to the loan amount without fees
and expenses, would result in a monthly payment of A, exactly as before

As a concrete example, suppose you took out a mortgage corresponding to the
first listing in Table 3.1 Let us calculate the total fees and expenses Using the APR of
7 883%, a loan amount of $203,150, and a 30-year term, we find a monthly payment
of A = $1,474,

Now using an interest rate of 7625% and the monthly payment calculated, we
find a total initial balance of $208,267 The total of fees and expenses is therefore
$208,267 — $203,150 = $5,117 The loan fee itself is | point, or $2,032 Hence other
expenses are $5,117 — $2,032 = $3,085

Running Amortization™

The formulas for amortization can be looked at in another way, linked directly to
common accounting practice Consider the loan of $1,000 discussed in Example 3 2,
which you will repay over 5 years at 12% interest (compounded onthly) Suppose you
took out the loan on January I, and the fiist payment is due February | The repayment
process can be viewed as credits to a running monthly account The account has an
initial balance equal to the value of the loan—the original principal Each month this
balance is increased by an interest charge of 1% and then reduced by the payment
amount Assuming that you make payments as scheduled, the balance will decrease
each month, reaching zero after 60 months On July | you might receive a 6-nmonth
accounting statement such as that shown in Table 3 2, which illustrates how the balance
decreases as payments ae made

It is common to regard each payment as consisting of two parts The first part
is the current intetest; the second is a partial repayment of the principal The run-
ning balance account procedure is consistent with reamortizing the loan each month.
Specifically, assuming all payments to date were made on schedule and of the proper
amount, the payment level predicted by the formula to amortize the current balance
over the months remaining in the original contract will always be $22 20 For exam-

TABLE 3 2
Statement of Account Transactions

Previous balance Current interest Payment received New balance

January 1,000 00
February t 1.00 00 10 00 2220 987 80
March t 987 80 988 2220 975 48
April | 97548 975 2220 96303
May t 963 13 963 2220 950 46
June t 950 46 950 2220 93776

Eacl mouth the preveons balance acanmdates merest and is reduced by the current pavirent The
batance will be zero ar the end of the loan crm
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ple, based on the July statement, one can amortize the balance of $937 76 at 12% on
June | (after making the June | payment) over a period of 55 months The monthly
payment required by this ainortization would be $22 20

Annual Worth*

The annuity fiamework provides an alternative method for expressing a net present
value analysis This annual worth method has the advantage that it expresses its
results in terms of a constant level of cash flow and thus is easily understood

Suppose a project has an associated cash flow stream (xo, x;, ,x,) over n
years A present value analysis uses a (fictitious) constant ideal bank with interest
rate ¢ to tansform this stream hypothetically into an equivalent one of the form
(v,0,0, ,0), where v is the net present value of the stream

An annual worth analysis uses the same ideal bank to hypothetically transtorm
the sequence to one of the form (0, A, A, A, , A) The value A is the annual worth
(over n years) of the project It is the equivalent nct amount that is generated by the
project if all amounts are converted to a fixed n-year annuity starting the first year

Clearly A > 0 exactly when v > 0, 5o the condition for acceptance of the project
based on whether A > 0 coincides with the net present value criterion

Example 3.4 (A capital cost} The purchase of a new machine for $100,000 (at time
zero) is expected to generate additional revenues of $25,000 for the next 10 years
starting at year | If the discount rate is 16%, is this a profitable investment?

We simply need to determine how to amortize the initial cost uniformly over
10 years; that is, we need to find the annual payments at 16% that are cquivalent to
the original cost Using the annuity formula, we find that this corresponds to $20,690
per year Hence the annual worth of the project is $25,000 — $20,690 = $4,310,
which is positive; thus the investment is profitable Note that if the purchase of the
machine were financed at 16% over 10 years, the actual yealy net cash flows would
correspond exactly to the annual worth

3.3 BOND DETAILS

Bonds 1epresent by far the greatest monetaly value of fixed-income securities and
ate, as a class, the most liquid of these securities. We devote special attention to
bonds, both because of their practical importance as investinent vehicles and because
of their theoretical value, which will be exploited heavily in Chapter 4 We describe the
general structure and trading mechanics of bonds in this section and then discuss in the
following few sections some 1nethods by which bonds are analyzed Our description
is intended to be an overview Specific details aie quite involved, and one must refer
to specialized literature o1 to a brokerage firm for the exact features of any particula
bond issue
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A bond is an obligation by the bond issuer to pay money to the bond holder
according to rules specified at the time the bond is issued Generally, a bond pays a spe-
cific amount, its face value or, equivalently, its par value at the date of maturity Bonds
generally have par values of even amounts, such as $1,000 or $10,000 In addition,
most bonds pay periodic coupon payments. The term coupon is due to the fact that
in the past actual coupons were attached to bond certificates The bond holder would
mail these to the agent of the issuer (usually a bank) one at a time, at specified dates,
and the appiopriate coupon payment would then be sent by return mail These physical
coupons are rare today, but the name remains The last coupon date corresponds to
the matwity date, so the last payment is equal to the face value plus the coupon value

The coupon amount is described as a percentage of the face value For example,
2 9% coupon bond with a face value of $1,000 will have a coupon of $90 per year
However, the period between coupons may be less than a year. In the United States,
coupon payments are genetally made every 6 months, paying one-half of the coupon
amount This would be $45 in our example

The issuer of a bond initiatly sells the bonds to raise capital immediately, and
then is obligated to make the prescribed payments Usually bonds are issued with
coupon rates close to the prevailing general rate of interest so thut they will sell at
close to their face value However, as time passes, bonds frequently trade at prices
different from their face values While any two parties can agree on a price and execute
a trade, the vast majority of bonds are sold cither at auction (when originally issued)
or through an exchange organization The price is therefore determined by a mdrket
and thus may vary minute by minute

An example of publicly available bond quotes (for US Treasury bonds and
notes) is shown in Table 3 3 Hete the indicated coupon rate is the annual rate (one-

TABLE 3.3
U.S. Treasury Bills, Notes, and Bonds
GOVT BONDS & NOTES Maturity Ask
Matunly Ask Rate MorYs B8l Asked Chg Yig
Moi B Asked COg YR | oy poain grop g720 48 628
Feb O7n 9931 10000 468 | 7% May O W52 10522 11 626

Fob O7n 10000 10002 ~t 495 | 122 May 04 13503 13508 +18 624
Feb S7n  100:00 mm)z -t 50D | 7 Aug O 1052t 10525 413 627
Mar 97n 487 D43 Aug 04 J4AD8 14490 42D 626
Mar 97n 4B7 ' 7% Nov Odn 10820 109:22 416 G27
= Apt 97 -1 510 11T NevDd 13208 13214 418 627
Apr 970 10007 10D 09 503 77 FebDsn 10709 072 1t 63
Apt 970 1D0D3 100 11 510 &% May0Sn 10108 0L 417 629
May 97n 10008 10010 514 | @™ May 00-p5 10524 10526 <6 G624
May 670 100:24 10026 508 | 12 May 05 136:00 13606 +20 630
May 670 10DDS 10008 <t 519 | G'% AugOSn 10008 10LI0 1B 630
May 97n 10011 10013 526 | 103 Aug 05 12030 12826 <20 632
Jun G970 10003 10005 516 | 5 NovOSn  G70f 6703 +18 G631
lun §7n 10012 10014 515 | 5% Feb OBn 9508 910 +18 632
Jul 97n 10109 10141 517 | 9™ Fob 06 2025 12001 <23 529
Jul O7n 10002 100D4 +1 52t L 6 May OBn 1032t 10823 19 634

Price
Coupon rale  Malurity date Denoles nole  Change in Yield 1o
asked price malufily

Prices ate quoted as a percentage of face value. with the fractional part
expressed in 32nd’s Accried interest annt be added 1o the quoted price
Source: The Wall Street Jowrugl Febrary 14, 1997
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half being paid evety 6 months in this case) The matuiity month is given; the ptecise
matutity date vaties with the issue, but it is often the fifteenth of the month of maturity
for US Treasuty bonds and notes Prices ate quoted as a petcentage of face value,
so if the face value is 1,000, a ptice of 100 is equivalent to $1,000 The bid price
is the price dealcts ate wifling to pay fot the bond, and hence the price at which the
bond can be sofd immediately; wheteas the ask price is the price at which dealets ate
wilfing to sell the bond, and hence the ptice at which it can be bought immediately
A speciaf and cumbetsome feature is that prices ate quoted in 32nd’s of a point The
bid ptice tot the last bond shown in Table 3 3 is 103 21/32, which fot a ${,000 face
value ttanslates into $1,036 56 The yield shown is based on the ask ptice in a mannet
desctibed in the following section

Bond quotations ignore accrued interest, which must be added to the ptice
quoted in otder to obtdin the actual amount that must be paid for the bond Suppose
that a bond makes coupon payments every 6 months If you purchase the bond midway
through the coupon petiod, you wili teceive your fitst coupon payment aftet only
3 months You ate getting extta intetest—intevest that was, in theory, eatned by the
ptevious ownet So you must pay the fitst 3 months’ interest to the previous ownet
This interest payment is made at the time of the safe, not when the next coupon payment
is made, so this extra payment acts fike an addition to the ptice The accrued interest
that must be paid to the ptevious owner is detetmined by a straight-line interpofation
based on days Specificafly, the acctued intetest (Al) is

number of days since last coupon

Al = - —— X coupon amount
number of days in cuttent coupon petiod

Example 3.5 (Acerued interest caleulation) Suppose we putchase on May 8 a U.S
Tteasury bond that matures on August 15 in some distant yeat The coupon rate is 9%
Coupon payments are made every Febtuary 15 and August |5 The acctued interest
is computed by noting that there have been 83 days since the fast coupon (in a leap
yeat) and 99 days until the next coupon payment Hence,

fom oo x4 50 =205
B3 +99

This 2 05 would be added to the quoted ptice, expiessed as a petcentage of the face
value. Fot example, $20 50 would be #dded to the bond if its face value wete $1,000

Quality Ratings

Although bonds offet a supposedfy fixed-income stream, they ate subject to default
it the issuet has financial difficulties or falls into bankruptcy To characterize the
natute of this risk, bonds ate rated by tating organizations The two ptimary rating
classifications ate issued and published by Moody’s and Standard & Poor's Their
classificatton schemes ate shown in Table 34 US Treaswy securities are not rated,
since they are considered to be essentiaily ftee of defauft risk
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TABLE 3.4
Rating Classifications

Moody’s Standard & Poor’s

High grade Ada AAA
Al AA
Medium grade A A
Baa BBB
Speculative gtade Ba BB
B B
Detault danger Caa CCC
Cu cc
C C
D

Rarings teflect o judgment of the likeliood that bond pay-
ments will e made ay scheduled Bonds with lew rarings
usually sell ot lower prices than comparable bonds with
high rutings

Bonds that are either high or medium grade are considered to be investment
grade. Bonds that are tn or below the speculative category are often termed junk
bonds. Historically, the frequency of default has correfated welf with the assigned
ratings.

The assignment of a rating class by a rating otganization is largely based on the
tssuer’s financial status as measured by various financiaf 1atios For example, the ratio
of debt to equity, the ratio of curtent assets to current liabilities, the 1atio of cash flow
to outstanding debt, as well as several others ate used The trend in these ratios is also
considered important

A bond with a low rating wilf have a lower price than a comparable bond with
a high rating Hence some people have argued that junk bonds may occasionaily offet
good vafue it the defauft risk can be diversified A careful analysis of this approach
requires expficit considetation of uncertainty, howeve:

A bond’s yiefd is the interest rate impfied by the payment stricture Specificatly, it is
the interest rutc at which the present vaufue of the stream of payments (consisting of
the coupon payments and the finaf face-vafue redemption payment) is exactly equal
to the current price This value is termed more propeily the yield to maturity (YTM)
to distinguish it from other yield numbers that are sometimes used Yields are always
quoted on an annuaf basis

It shoufd be cfear that the yield to maturity is just the internal rate of retutn of
the bond at the curient price But when discussing bonds, the term vield is geneiaffy
used instead

Suppose that a bond with face value F makes nr coupon payments of C/m each
year and there are n periods remaining The coupon payments sum to C within a year
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Suppose also that the current price of the bond is £ Then the yield to maturity is the
value of A such that

F L, C/m
P = oy 2 T T G
This vaiue of A, the yield to maturity, is the interest rate impfied by the bond when
interest is compounded nr times per year Note that the first term in (3 1) is the present
vafue of the face-vaiue payment The kth term in the summation is the present value
of the kth coupon payment C/m The sum of the present vafues, based on a nominal
interest 1ate of A, is set equal to the bond’s price
The summation in (3 1) can be colfapsed by use of the genetal value formufa
for annuities in the previous section, since this sum represents the present value of the
equal coupon payments of C/m The coffapsed form is highfighted here:

Bond price formula  The price of a bond, having exactly i coupon periods 1emaining
to matuiity and a vield to maturity of X, satisfies
p F n C | i
[+ G/l x 4+ m))r
where F is the face value of the bond, C is die vearlv coupon pavient, and m iy the
nmmber of coupon pavinents per year

32)

Equation (3 2) must be sofved for A to determine the yield This cannot be done
by hand except for very simpie cases It should be cfear that the terms in (3 2) are the
famifiar terms giving the present valuc of a single future payment and of an annuity
However, to determine A one must do more than jnst evaluate these expressions One
must adjust A so that (3 2) is satisfied As in any cafcufation of internal rate of return,
this generally requires an iterative procedure, easify carried out by a computer There
are, howevet, specialized calculators and bond tables devised for this purpose, which
atc used by bond dealers and other professionals Spreadsheet packages also typicalty
have built-in bond formutas

The formulas discussed here assume that there is an exact number of coupon
petiods temaining to the maturity date The piice-yield fornuia requires adjustment
for dates between coupon payment dates

Qualitative Nature of Price~Yield Curves

Although the bond equation is complex, it is easy to obtain a qualitative understanding
of the relationship between piice, yield, coupon, and time to maturity This qualitative
undei standing helps motivate the ideas undeilying bond portfolio construction and,
specifically, feads to an undetstanding of the intciest 1ate risk propertics of bonds
The folfowing examples should be studied with an eye toward obtaining this kind of
understanding

As a general 1ule, the yields of various bonds track one another and the prevailing
intcrest rates of other fixed-income securities quite closely After all, most people
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would not buy a bond with a yield of 6% when bank CDs arc offering 10% The general
interest rate environment exerts a force on every bond, urging its yield to conjorm
to that of othet bonds However, the only way that the yield ot a bond can change
is for the bond’s piice to change So as yields move, prices move correspondingly
But the price change required to match a yield change varies with the structure of the
bond (its coupon rate and its maturity). So as the yiefds of various bonds move more
or less in harmony, their prices move by different amounts To understand bonds, it
is important to understand this relation between the price and the yield For a given
bond, this relationship is shown pictoriaily by the price-yield curve,

Examples of price~yield curves are shown in Figure 3 3 Here the piice, as a
percentage of pat, is shown as a function of YTM expressed in percentage tetms Let
us focus on the bond labeled 10% This bond has a 10% coupon (which means 10%
of the face value is paid each year, or 5% every 6 months), and it has 30 years to
maturity The price~yield curve shows how yield and price are related

The first obvious feature of the curve is that it has negative slope; that is, price
and yield have an inverse relation If yield goes up, price goes down If I am to obtain
a higher yield on a fixed stream of 1eceived payments, the price I pay for this stream
must be fower. This is a fundamentaf feature of bond markets When peopfe say “the
bond market went down,” they mean that interest rates went up

Some points on the curve can be cafcufated by inspection First, suppose that
YTM == 0 This means that the bond fs priced as if it offered no interest Within the
{ramework of this bond, money in the future ts not discounted In that case, the present
vafue of the bond is just equaf to the sum of afl payments: here coupon payments of
10 points each year for 30 years, giving 300, plus the {00% of par vafue received at
maturity, for a totaf of 400 This is the vafue of the bond at zero yield. Second, suppose
that YTM == 10% Then the value of the bond is equaf to the par value The reason for
this is that each year the coupon payment just equais the 10% yield expected on the

Price

500

400

300 15% bond

200

100
“ Yield to
ol v 1 s 1T bbb Lol TRALUTY

0 5 10 15 20

FIGURE 3.3 Price-yield curves and coupon rate All bonds shown have a malarily of 30 years and
the coupon rates indicaled on the respective cutves Prices are expressed as a percentage of par
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investment The value remains at 100 every year The bond is like a loan where the
interest on the piincipal is paid each year and hence the principal remains constant In
this situation, where the yield is exactly equal to the coupon rate, the bond is termed
a par bond. In addition to these two specific points on the price-yield curve, we can
deduce that the price of the bond must tend toward zero as the yield increases—Ilai ge
yields imply heavy discounting, so even the nearest coupon payment has little present
value Overall, the shape of the curve is convex since it bends toward the origin and
out toward the horizontal axis Just given the two points and this 1ough knowledge of
shape, it is possible 1o sketch a 1easonable approximation to the true curve

Let us briefly examine another one of the curves, say, the 15% bond The price
at YIM =0 is {5 x 30 4 100 == 550, and the par point of 100 is at 5% We see that
with a fixed maturity date, the price-yield curve rises as the coupon rate increases

Now let us consider the influence of the time to maturity Figure 3 4 shows the
price—yield curves for three different bonds Each of these bonds has a 10% coupon
tute, but they have different maturities: 30 years, 10 years, and 3 years All of these
bonds are at par when the yield is 10%; hence the threc curves all pass through the
common par point However, the curves pivot upward around that point by various
amounts, depending on the matuiity The values at YTM == 0 can be found easily, as
befoie, by simply summing the total payments The main feature is that as the maturity
is increased, the price~yield curve becomes steepet, essentially pivoting about the par
point This increased steepness is an indication that longer maturities imply greater
sensitivi’ty of price to yield

The price~yield curve is important because it desciibes the interest rate risk
associated with a bond For example, suppose that you purchased the 10% bond
illustrated in Figure 3 3 at par (when the yield was 10%) It is likely that all bonds
of maturity approximately equal to 30 years would have yields of 10%, even though
some might not be at par Then 10% would represent the market rate for such bonds

Price

Yield to

) J A T T T S Y B kb1 Talurity

0 5 10 15 20

FIGURE 3.4 Price—yleld cusves and maturity. The price-yield curve is shown for three maiurities
Al bonds have a 10% coupon

fo ]
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TABLE 3 5
Prices of 9% Coupon Bonds

Yield

Time to maturity 5% 8% 9% 10% 15%

1 year 10385 10094 10000 9907 946]
5 years 11750 10406 10000 9614 794)
10 years 13118 0680 j0000 9377 6942
20 years 1502] 10990 J0000 9142 6222
30 years 16182 §113] j0000 9054 6052

The prices of long-matnriry bonds are more sensitive 1o vield changes
than are the prices of bonds of short manurity

Now suppose that market conditions change and the yieid on your bond increases to
[1% The price of your bond will diop to 91 28 This represents an 8 72% change in
the value of your bond It is good to consider the possibility of such a change when
purchasing this bond. For example, with a 3-year 10% par bond, i the yield 10se to
11%, the price would drop only to 97 50, and hence the interest 1ate risk is lower with
this bond Of cousse i yields decreased, you would profit by similar amounts

Bond holdeis are subject to yield risk in the sense desciibed: if yields change,
bond prices also change This is an immediate risk, affecting the near-term value of
the bond You may, of course, continue to hold the bond and thereby continue to
1eceive the promised coupon paymenis and the face value ap maturity This cash flow
stream is not affected by interest rates (That is after all why the bond is classified as
a fixed-income security ) But if you plan to sell the bond before maturity, the piice
will be governed by the price~yield curve

Table 35 displays the price~yield relation in tabular form for bonds with a
9% coupon 1ate It is easy to sec that the bond with 30-year maturity is much more
sensitive to yield changes than the bond with {-year maturity

It is the quantification of this risk that underlies the importance of the price~yield
relation Our rough qualitative understanding is important The next sections develop
additional tools for studying this 1isk

Other Yield Measures

Other measwes of yield, aside from yield to maturity, are used to gain addiional
insight into a bond’s properties For example, one important yield measure is current
yield (CY), which is defined as

annual coupon payment
ettt Sl et Al

CY = 100

bond price
The cuirent yield gives a measuie of the annual return of the bond For instance,
consider a [0%, 30-ycar bond Il it is seiling at par (that is, at 100), then the cunent
yield is 10, which is identical to the coupon rate and to the yield to maturity If the
same bond were selling for 90, then CY = 10/90 = I 1| while YTM = 11 16
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Another measure, used if the bond is callable after some number of years, is the
yield to eall (YTC), which is defined as the internal rate of return calculated assunting
that the bond is in fact calied at the emliest possible date

There are several otlier yield measures that account for sinking funds, principal
payments, and other leatures

3.5 DURATION

Everything else being equal, bonds with long maturities have steeper price~yield curves
than bonds with short maturities Hence the prices of long bonds are more sensitive
to interest rate changes than those of short bonds. This is shown clearly in Table 3.5
However, this is only a rough rule of thumb Maturity itself does not give a complete
quantitative measure of interest rate sensitivity

Another measure of time length termed duration does give a ditect measute of
interest rate sensitivity This section describes this measure

The duration of a fixed-income instrument is a weighted average of the times
that payments (cash flows) are made The weighting coefficients are the present values
of the individual cash flows

We can write out this definition more explicitly Suppose that cash flows are
received at times /g, 1y, /2, , 4, Then the duration of this sweam is
_ PV{o)to + PV + PV()a +  + PV
h PV
In this formula the expression PV(#) denotes the present value of the cash flow that
oceurs at time # The term PV i the denominator is the total present value, whicli is
the sum of the individual PV (1) values

The expression for D is indeed a weighted average of the cash flow times Hence
D iself las units of time When the cash flows are all nonnegative, as they are for a
bond already owried (so that the purchase is not included in the cash flow), then it is
clear that 19 < D <1, Duration is a time intermediate between the first and last cash
flows

D

Clearly, a zero-coupon bond, which makes only a final payment at maturity, has
a duration equal to its maturity date Nonzero-coupon bonds have durations strictly
Iess than their maturity dates This shows that duration can be viewed as a generalized
maturity measure It is an average of the maturities of all the individual payments

Macaulay Duration

The preceding definition is (intentionally) a bit vague about how the present value
is calculated; that is, what interest rate to use For a bond it is natural to base those
calculations on the bond’s yield If indeed the yield is used, the gencral duration
formula becomes the Macaulay duration

Specifically, suppose a financial instrument mukes payments /m times per year,
with the payment in period & being ¢, and there are # periods remaining The
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Year

B

Discount Present value

Payment

FIGURE 3.5 Llayout for calculating duration.
Present vajues of payments are calculated in col-
umn D Dividing these by the total present value
factor of payment  Weight gives the weights shown in column £ The du-

C D E F

{@ 8%) (B x C) (D/Price} A x E ralion is obtained using this weighted average of

5
]
5
2
25
3

the payment times
962 3365 035 017
925 3236 033 033
889 3 032 048
855 2992 031 061
822 2877 030 074
790 81 798 840 2520

Sum

97 379 1 000 2753
Price Duration

B

Macaulay duration D is defined as

I
3 (kfmyer/l1 + /)]
k=1
D=t
|aY%
where A is the yield to maturity and

-~ i Ck
PV=3, 1+ (/myJr

k=1

Note that the lactor & /i in the numerator of the formula {for D is time, measured
in years In this chapter we always use the Macaulay duration (or a slight modification
of it), and hence we do not give it a special symbol, but denote it by D, the same as
in the general definition of duration

Example 3.6 (A short bond) Consider a 7% bond with 3 years to maturity Assume
that the bond is selting at 8% yield We can find the value and the Macaulay duration
by the simple spreadsheet layout shown in Figure 3 5 The dutation is 2 753 years

Explicit Formula*

In the case where all coupon payments are identical (which is the noimal case tor
bonds) there is an explicit formula for the sum of the seiies that appears in the
numetator of the expiession for the Macaulay duration We skip the algebia here and
just give the result

Macaulay duration formula  The Macaulay dwarion for a bond with a conpon rate
¢ pet petiod, vield v per period, m periods per vear, and exactly n periods 1emaining,
is

b4y T4+ y+n(—y)

= LT G L £ A 33
ny me[(t + vyt — L]+ my 63
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Exampie 3.7 (Duration of a 30-year par bond) Consider the 10%, 30-year bond
represented in Figure 33 Let us assume that it is at par; that is, the yield is 10%. At
par, ¢ = v, and (3 3) reduces 1o

p=ltt¥[i o1
my (14 vy

1,05 1
e e e | = 99
D=— [ “05)6(& 9938

Hence,

Qualitative Properties of Duration*

The duration of a coupon-paying bond is always less than its maturity, but often it is
surprisingly short An appreciation foi the 1elation between a bond’s duration and othel
paramelers of the bond can be obtained by examination of Table 3 6 1u this table the
yield is held fixed at 5%, but various matuiities and coupon rates are considered This
procedure approximates the situation of looking through a list of available bonds at a
time wlen all yields hover nem 5% Within a given class (say, government sccutities)
the available bonds then differ mainly by these two paameteis

One striking feature of this tuble is that as the time lo maturily increases to
infinity, the dwations do nor also increase to infinity, but instead tend to a finite limit
that is independent of the coupon rate (See Exeicise 14 ) Another {eature of the table
is that the durations do not vary 1apidly with respect to the coupon rate. The fact that
the yield is held constant tends to cancel out the influence of the coupons

A general conclusion is that very long durations (of, say, 20 years o1 more) ae
achieved only by bonds that have both very long matwities and very low coupon 1ates

TABLE 3.6
Duration of a Bond Yiclding 5%
as Function of Malurity and Coupon Rate

Coupon rate

Years to maturity 1% 2% 5% 10%

I 997 995 988 977

2 1984 1969 1928 1868
5 4875 4763 4485 4150
10 9416 8950 7989 7107
25 20164 17715 14536 12754
50 26666 22284 18765 17384
100 22572 21200 20363 20067
=5} 20500 203500 20500 20300

Duration does noy increase appreciobly with maturite tn fact,
witlh fixed vield, duration increases only 1o a funite Jinit ay
mamreite iy incieased
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Duration and Sensitivity

Duration is useful because it measures directly the sensitivity of price to changes in
yield This follows from a simple expression for the derivative of the present value
expression

In the case where payments are made m times per year and yield is based on
those same peiiods, we have
<k
Ve = o mr

The derivative with respect to A is

dPVy —(k/mye k/m

dA T (AT T )

We now apply this 1o the expression for price,

P o= i’: PV,
kel

Here we have used the fact that the price is equal to the total present value at the yield
(by definition of yicld) We find that
2, dPVy 2 (k/m)PVy 1
= — = — DP = —DyP 34
da Z; 14+ (A/m) I+ (A/m) M G
The value Dy is called the modified duration. 1t is the usual duration modified
by the extra term in the denominator Note that Dy ~ D for large values of m or
small values of A We highlight this important sensitivity relation:

k

de
da ka1

Price sensitivity formula  The derivative of price P with respect 1o yield A of a fixed-
income security is
dp
ax
where Dy = D /[1 + (A/m)] is the modified duration

= —DyP 35)

1t is perhaps most revealing to write (3 5) as
1dpP
P da
The left side is then the 1elative change in price (or the fractional change) Hence Dy,
measures the relative change in a bond’s price directly as A changes
By using the approximation dP /dA ~ A P/AA, Equation (3.5) can be used to
estimate the change in price due to a small change in yield (or vice versa) Specifically,
we would wiite

= —Dy

AP~ —DyP AL

This gives explicit values for the impact of yield variations
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FIGURE 3 6 Price~yleld curve and slope The slope of the line tangent to the curve at P is ~ Dy P

Example 3.8 (A 10% bond) The price~yield curve for a 30-yea, 109% coupon bond
is shown in Figure 3 6 As computed earlier, the duration of this bond at the pm point
(where price = 100) is D = 9 94 Hence Dy = 994/1 05 == 9.47 The slope of
the price—yield curve at that point is, according to (3 3), equal to dP/dA = —947 A
line with this slope can be placed tangent to the price~yield curve at the point where
the duration was calculated, as shown in Figure 3 6 This line provides a straight-line
approximation to the curve for neaby points For example, it the yield changes to
[1%, we can estimate the change in price as

AP = —Dy100 AL = —947 x Ol = -9 47
Hence P ~ 90 53

Example 3.9 (A zero-coupon bond) Consider a 30-year zero-coupon bond Suppose
its curtent yield is 109% Then we have D == 30 and Dy &~ 27 Suppose that yields
increase to 11% According to (3 5), the relative price change is approxiinately equal
to 27% This is a very large loss in value Because of their long durations, ze10-coupon
bonds have very high interest rate risk

Duration of a Portfolio

Suppose that a poitfolio of several bonds ol different maturities is assembled This
portfolio acts like a maste: fixed-income security: it receives peiiodic payments, but
due to the different matuiities, the payments may not be of equal magnitude What
can we say about the duration of this portfolio?

First, suppose that all the bonds have the same yield. (This is usually approxi-
mately true, since yields tend to track each other closely, if not exactly ) The dwation
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of the portfolio is then just a weighted sum of the durations of the individual bonds—
with weighting coefficients proportional to individual bond prices We can easily verify
this for a portiolio that is the sum of two bonds A and B The durations are

A

DA = 2:0 nPV{
pA

DP = k=g KPP
PB

Hence,
n
PADA 4 PEDB = 3" 1 (PVE +PV)
k=0
which gives, upon division by P = P4 4 PB,
pADA pPBpDB
D= D + -
P P
as the duration of the portiolio Therefoire D is a weighted average of the durations ol
the individual bonds, with the weight of a bond’s duration being proportional to that
bond’s price The result easily extends to a portfolio containing several bonds

Duration of a portfolio  Suppose there are m fived-income securities with prices and
dwrations of Py and D,, respectively, i = 1,2, ,m, all computed ar a conmmon yield.
The porifolio consisting of the aggiegate of these secuities has price P and duration
D, given by

P=P+P+ +P
D o= wiDr+wiDy+ + wyDy

where w, = P /P, i =12, Ht

The duration of a portiolio measures the interest 1ate sensitivity of that portfolio,
just as normal duration measutes it for a single bond That is, if the yield changes
by a small amount, the total value of the poitfolio will change approximately by the
amount piedicted by the equation relating prices to (modified) duiation

1f the bonds composing a portfolio have different yields, the composite duration
as defined can still be used as an approximation In this case a single yield must
be chosen—perhaps the average Then present values can be calculated with 1espect
to this single yield value, although these present values will not be exactly equal to
the prices of the bonds The weighted average duration, calculated as shown, will
give the sensitivity of the oveiall piesent value 10 a change in the yield figure that is
used

3.6 IMMUNIZATION

We now have the concepts and tools necessary to solve a pioblem of major practical
value, namely, the stucturing ol a bond porttolio to protect against interest rate risk
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This procedure is termed immunization because it “immunizes” the portiolio value
against interest 1ate changes The procedure, as well as its refinements, is in fact one
of the most (il not the most) widely used analytical techniques of investment science,
shuping portfolios consisting of billions of dollws of fixed-income secwities held by
pension funds, insurance companies, and othe; financial institutions.

Before describing the procedure, let us more {ully consider its purpose A port-
folio cannot be structured meaningfuily without a statement of its purpose The pui-
pose helps define the character of risk one is wiiling to assume For example, sup-
pose that you wish to invest money now that will be used next year for a major
household expense If you invest in 1-year Treasury bills, you know exactly how
much money these bills will be worth in a yea, and hence there is little risk rela-
tive to you purpose 1f, on the other hand, you invested in a [0-year zero-coupon
bond, the value of this bond a year f{rom now would be quite variable, depending
on what happens to interest rales during the year This investment has high risk
relative to your puipose. The situation would be reversed if you were saving the
money to pay off an obligation that was due in 10 years Then the 10-year zero-
coupon bond would provide completely predictable results, but the l-year Treasury
bill would impose reinvestment risk since the proceeds would have to be reinvested
after 1 year at the then prevailing 1ate (which could be considerably lower than the
current rate)

Suppose now that you face a seiies of cash obligations and you wish to acquire
a poitfolio that you will use to pay these obligations as they arise (This is the sort
of problem faced by life insurance companies ) One way to do this is to purchase a
set ol zero-coupon bonds that have maturities and face values exactly matching the
sepaiate obligations Howeve, this simple technique may not be feasible if corporate
bonds me used, since there are few coipoiate zero-coupon bonds (You may wish to
use corpoiate bonds because they ofler higher yields than US Tieasury bonds ) I
peifect matching is not possible, you may instead acquite a poitiolio having a value
equal to the present value of the stream of obligations You can sell some of you
portfolio whenever cash is needed to meet a paiticular obligation; o1 if your porifolio
deliveis moie cash than needed at a given time (from coupon o1 face value payments),
you can buy moie bonds Ii the yield does not change, the value of your poitfolio
will, throughout this process, continue to maich the present value of the remaining
obligations Hence you will meet the obligations exactly

A problem with this present-value-matching technique arises if the yields change
The value of yow poitiolio and the piesent value of the obligation stream will both
change in 1esponse, but probably by amounts that differ {rom one another Your
portfolio will no longer be maiched

Immunization solves this problem—at least approximately—by matching dua-
tions as well as present values Il the duration of the poitlolio matches thai of the
obligation sticam, then the cash value ol the poitfolio and the piesent value of the
obligation stream will 1espond identically (to fisst orde1) to a change in yield Specil-
ically, if yields increase, the present value ol the asset poitfolio will decicase, but the
present value of the obligation will deciease by approximately the same amount; so
the value ol the poitiolio will still be adequatce to cover the obligation The process is
best explained through an example
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Exampie 3.10 (The X Corporation) The X Coiporation has an obligation to pay
$1 million in 10 yeais It wishes to invest money now that will be sufficient to meet
this obligation

The purchase of a single zero-coupon bond would provide one solution; but such
ze10s are not always available in the required matmities We assume thai none are
available for this example Instead the X Corporation is planning to select fiom the
three corporate bonds shown in Table 3 7 (Note that in this table, and throughont this
example, prices a1e expressed in ordinary decimal foum, not in 32nd’s )

These bonds all have the same yield of 9%, and this rate is used in all calcula-
tions The X Coiporation Hist considers using bonds 2 and 3 to constiuct its portfolio
As a first step it calculates the durations and finds D; = 6 54 and D3 = 9 61, respec-
tively This is a serious problem! The dwation of the obligation is obviously 10 years,
and thete is no way to attain that with a weighted aveiage of D> and D; using posi-
tive weights A bond with a longer duration is required Therefore the X Corporation
decides to use bonds I and 2 It is found that Dy = 11 44 (Note that, consistent with
the discussion on the qualitative nature of durations, it is quite difficult to obtain a
long duration when the yield is 9%—a long maturity and a low coupon are 1equired.)
Fortunately Dy > 10, and hence bonds I and 2 will work

Next the present value of the obligation is computed at 9% interest This is PV =
$414,643 The immunized portfolio is found by solving the two equations

Vi + V, = PV
DYy + D3Vy = 0PV

for the amounts of money Vy and V; to be invested in the two bonds The first equa-
tion states that the total value ol the portfolio must equal the total present value of
the obligation The sccond states that the duration of the portfolio must equal the
duration (10 yems) of the obligation (This 1elation is best seen by dividing through
by PV ) The solution to these equations is Vy = $292,788 73 and V; = $121,854 27
The number of bonds to be purchased is then found by dividing each value by the
respective bond price (We assume a lace value of $100) These numbeis are then
rounded to integeis to define the portiolio

The tesults are shown in Table 38 Note that, except lor rounding error, the
present value of the portlolio does indeed equal that of the obligation Furthermore,
at different yields (8% and 10% wme shown) the value of the portlolio is still approxi-
mately equal to that of the obligation In lact, due to the structure of the price-yield

TABLE 3.7
Bond Choices

Rate Maturity Price  Yield

Bond 1| 6% 30 yr 6904 9 00%
Bond 2 | 11% 10 yr 11301 900%
Bond 3| 9% 20 yr 10000 9 00%

Threc bonds are considered for the X Compora-
ron’y immunized porolio
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TABLE 3.3
Immunization Results

Percent yield

9.0 8.0 10.0

Bond |

Price 69 04 7738 62 14

Shares 4,241 00 4,241 00 4,241 00

Value 292,798 64 | 328,168 58 | 263,535 74
Bond 2

Price 130l 120 39 106 23

Shares 1,078 00 1,078 00 1,078 00

Value 121,824 78 | 129,78042 [ 11451594
QObligation

Value 414,642 86 | 456,386 93 | 376,889 48
Surplus —19 44 1,562 05 1,162 20

The net surplies of portfolio value mime obligation value
remains approximasely equal 1o zero even if vields change

curve, the portfolio value will always exceed the value of the obligation in both cases
(See Exercise 16 )

Immunization provides protection against changes in yield If the yield changes
immediately after purchase of the portfolio, the new value of the portfolio will, in
theory, still appioximately match the new value of the future obligation However,
once the yield does change, tlie new portfolio will not be immunized at the new rate
It is therelore desirable to rebalance, or retmmunize, the portfolio from time to time
Also, in practice more than two bonds would be used, paitly to diversify default risk
if the bonds included are not U S Treasury bonds

Immunization is a clever idea, but it suflets some shortcomings, at least in this
simple form The method assumes that all yields are equal, wheieas in fact they usually
are not Indeed it is quite unrealistic to assume that both long- and short-duration bonds
can be found with identical yields Usually long bonds have somewhat higher yields
than short bonds Furthermore, when yields change, it is unlikely that the yields on
all bonds will change by the same amount; hence iebalancing would be difficult We
shall consider some important extensions of immunization in the next chapter, and in
Chaupter 5 we shall consider other approaches to bond portfolio construction Overall,
however, the technique given hete is surprisingly practical

3.7 CONVEXITY*

Modified duration measures the relative slope of the price—yield curve at a given point
As we have seen, this leads to a stinight-line approximation to the price-yield curve
that is useful both as a means of assessing tisk and as a procedure for contiolling it
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An even better approximation can be obtained by including a second-order (ot
quadratic) term This second-order term is based on convexity, which is the relative
curvature at a given point on the price—yield curve. Specifically, convexity is the value
of C defined as

| &P
TP

which can be expressed in terms of the cash flow stream as

I <L d?PY,
C=—
P ; da?
Assuming m coupons (and m compounding periods) per year, we have
_ 1 i’: k41 c
PGP ot T+ G/

Note that convexity has units of time squared Convexity is the weighted average
of txtyyy where, like for duration, the weights are proportional to the present values
of the corresponding cash flows Then the result is modified by the factor 1/[1 +
(A/m)1?  An explicit formula can be derived for the case of equal-valued coupon
payments

Suppose that at a price P and a cortesponding yield A, the modified duration
Dy and the convexity C are calculated Then il AA is a small change in A and AP
is the corresponding change in P, we have

PC
AP~ =DyP AL+ — (A1)

This is the second-order appioximation to the price-yield curve Convexity can be
used to improve immunization in the sense that, compared to ordinary immunization,
a closer match of asset poitfolio value and obligation value is maintained as yields
vary To account for convexity in immunization, one structures a portfolio of bonds
such that its present value, its duration, and its convexity match those of the obligation
Generally, at least thiee bonds are requited for this purpose

3.8 SUMMARY

Fixed-income securities are fundamental investment instruments, which are part of
essentially every investment portfolio, and which teflect the market conditions for
interest rates directly

There ate numetous kinds of (ixed-inicome securities, designed fot various in-
vestment and business purposes However, the vast bulk of money in fixed-income
securities is committed to moitgages and bonds

Many fixed-income securities make periodic payments to the owner of the secu-
rity This is true, in particular, for moitgages, loans, annuities, and bonds In the case
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of bonds, these payments are usually made every 6 months and e tetmed coupon
payments

Usually the petiodic payments assoctated with a fixed-income security are of
equal magnitude, and there is an impoitant lotmula relating the payment amount A,
the piincipal value of the security P, the single-petiod interest rate 7, and the numbe:

of payment periods n:
P= 4 1 !
. (b

This single formula can be used to evaluate most annuities, mortgages, and bonds,
and it can be used to amortize capital expenses over time

Bonds are the most important type of fixed-income security for general invest-
ment purposes Important teference bonds are U.S Tieasury securities—bills, notes,
and bonds—of various maturities and coupon values These bonds are considered to
be default free and thus carty prices that are somewhat highet than corporate securities
with similar coupon rates and maturities

There are many vatiations to the generic coupon bond—call features, sinking
fund bonds, bonds whose coupon rates ate tied to economic indices, and so forth In
addition, municipal bonds teceive special tax treatmet

A special feature of bonds is that the buyer must usuafly pay acciued interest
in addition to the quoted price This acciued interest is compensation to the previ-
ous ownei for the coupon intetest that has been eamed since the last coupon pay-
ment

Bonds are frequently anatyzed by computing the yield to matutity This is the
annual interest rate that is implied by the curvent price 1t is the interest rate that makes
the present value of the promised bond payments equal to the cunent bond price This
calculation of yield can be turned around: the price of a bond can be found as a
function of the yield This is the price-yiefd telation which, when plotted, produces
the price-yield curve

The slope of the price-yield curve is a measure of the sensitivity of the price to
changes in yield Since yields tend to track the prevailing interest rate, the slope of
the price—yield curve is therefore a measure of the interest rate tisk associated with a
particutar bond As a general rule, long bonds have greater slope than short bonds, and
thus long bonds have greater interest 1ate risk A normalized version of the slope—the
slope divided by the current bond price—is given by the (modified) dutation of the
bond Hence duration (or, more exactly, modified duration) is a convenient measure
of interest rate risk

Immunization is the process of constructing a portfolio that has, to first order, no
interest rate 1isk The process is frequently applied by institutions, such as insurance
companies and pension funds, that have large future payment obligations They wish
to prepare for these obligations by making appropriate investments in fixed-income
securities A portfolio is immunized if its present value is equal to that of the stream
of obligations and if its duration matches that of the obligation In other words, the
net portfolio, consisting of the obligation stream and the fixed-income assets, has zero
present value and zero duration
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EXERCISES

SESEEEE

. (Cycles and annual wottho) Given a cash fow siream X = (¥g,%7, %2, , ¥,), a new

w

S

(Amortization) A debt of $253,000 is 10 be amortized over 7 years at 7% interest What
value of monthly payments will achieve this?

stream X, of infinite length is made by successively repeating the cotresponding finite
stream The interest raie is 7 Let P and A be the present value and the annual worth,
1espectively, ol siream X Finally. let Py, be the present value of stream X, Find 4 in
terms ol P, and conchide that A can be used as well as Py, for evaluation purposes

. (Unceriain annuity o) Gavin's grandfather, M1 Jones, has just tumned 90 years old and is

applying for & lifetime annuity that will pay $10,000 per year, starting | year from now, until
he dies He asks Gavin 1o analyze it for him Gavin finds that according 1o statistical sum-
maties, the chiance (probability) that Mr Jones will die at any particular age is as follows:

ngel90 91 92 93 94 95 96 97 9% 99 100 101

pr()bability107 08 09 10 10 10 10 10 10 07 05 04

Then Gavin (and you) answer the fullowing questiuns:

(a) What is the life expectancy of Mr Jones?

(b) What is the present value of an annuity at 8% interest that has a lifetime equal to
Mr Jones’s lifc expectancy? (For an annuity of a nonintegral number of years, use an
averaging methud )

(¢} What is the expected present vilue of the annuity?

. (APR) For the morigage listed second in Table 3 { what ate the total fees?

. (Callable bund) The Z Curporatium issues a 10%, 20-year bond at a time when yields

are 10% The bond has a call pruvision that alfows the corporation o force a bond holder
to redeem his o1 her bond at face value plus 5% After 5 years the curporation finds that
exercise of this call provision is advantageous What can yuu deduce about the yield at
that time? (Assume one coupon payment per year )

. (The biweekly morigage®) Here is a proposal that has been advanced as a way for

homeuwners 1o save thousands of dollars on mortgage payments: pay biweekly instead
of monthly Specifically, if monthly payments are x, it is suggested that one instead pay
x/2 every two weeks (for a total of 26 payments per year) This will pay down the mort-
gage faster, saving interest The savings are surprisingly dramatic for this seemingly minot
mudification—often cutting the tawl interest payment by over one-third Assume a fuan
amuunt of $100,000 for 30 years at 10% interest, compounded monthly

(@) Under & munthly payment prugram, what are the monthly payments and the total
interest paid over the course of the 30 years?

(b) Using the biweekly program, when will the loant be completely repaid, and what are the
savings in total interest paid over the monthly program? (Yor may assume biweekly
compounding for this part )
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(Annual worth)  One advantage of the annual worth method is that it simplifies the com-
parison of jnvestment projects that are repetitive bur have ditferent cycle times Cunsider
the automobile purchase prablem of Example 27 Find the annual worths of the wo
(single-cyclc) options, and determine directly which is preferable

. (Varigble-rate mortgage®) The Smith family just took out u variable-rate mortgage un

their new home The morigage vialuc is $100,000, the term is 30 years, and initially

the interest rate is 8% Ihe interest rate is guaranteed fur 5 years, after which time the

rate will be adjusted according to prevailing rates The new rate can be applied 1o their

loun either by changing the paymenr amount or by chauging the length uf the mort-

gage

(a) What is the original yearly morigage paymenr? (Assume payments arc yearly )

(b) What will be the mortgage balance afler 5 years?

(c) If the interest rate on the mortgage changes to 9% afrer 3 yewms, what will be the new
yearly payment that keeps the terminatiun time the same?

(d) Under the interest change in (¢), what will be the new term if the payments remain
the same?

(Bond price) An 8% bond with 18 years to maturity has a yield of 9% Wiat is the price
of this bond?

. (Duration) Find the price and duration of a [0-year, 8% bond that is trading at a yieid

of 10%

(Annuity dwationo) Find the duration D and the modified duration Dy of a perpetual
annuity that pays an amount A at the beginning of each year, with the first sueh payment
being | year from now Assume a constant interest rate 7 compounded yearly {Hinr It is
not necessary to evuluate any new summations }

(Bond sejection) Consider the four bonds having annual payments as shown in Table 3 9
They are traded to produce a 15% yieid

(a) Determine the price of each bond

(») Determine the duration of each bond (nor the modified duratiosn)

(¢) Which bond is most sensitive to a change in yield?

(d) Suppose you owe $2,000 at the end of 2 years Concern about interest rate risk sug-
gests that a portjolio consisting of the bonds and the obfigation should be immunized
i Vi, Vi, Vo, and Vp are the total values of bonds purchased of types A, B, C, and
D, respectively, what are the necessary constraints to implement the immunization?
{Hint There are two equations (Do not solve )}

TABLE 3.9

End of year payments | Bond A Bond B | Bond C | Bond D

Year | 100 30 0 0 + 1000
Year 2 100 50 0 0
Year 3 100 + 1000 | 50 + 1000 [0 4 1000 | O
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(e) In order to immunize the portfolio, you decide to use bond C and one other bond
Which other bond shoutd you choose? Find the amounts (in total vaiue) of each of
these to purchase

(f) You decided in {e) to use bond C in the immunization Would other choices, inciuding
perhaps a combination of bonds, lead to jower totai cost?

13, (Continuous compounding o) Under continuous compounding the Macaufay durition be-
comes

Y
ofe ey

whese A is the yield and

Find dP/dX in terms of D and P

14, (Duration fimit) Show that the fimiting value of duration as maturity is increased to
infinity is
14 (A/m)
A
For the bonds in Table 3 6 (where A = 03 and m = 2) we obtain D — 20 5 Nole that for
jarge A this fimiting vilue approaches i/m, and hence the duration for farge yieids tends
to be refatjvely short

D —

15, (Convexity vaiue) Find the convexity of a zero-coupon bond maturing at time 7 under

continuous compounding (that is, when m — o)

16. (Convexity theoremo) Suppose that an obligation occurring at a single time period is
immunized against interest rate changes with bonds that have only nonnegative cash
fows (as in the X Corporation example) Let P(X) be the value of the resulting port-
folio, including the obligation, when the interest rate is 7 + A and 7 is the current in-

i terest rate By consiruction P(0) = 0 and P'(0) = 0 In this exercise we show that

| P(0) is a local minimum; that is, P"(0) > O (This property is exhibited by Exam-

ple 310)

Assume a yearly compounding convention The discount factor for time 1 is d,(A) =

(1+r+ 1~ Letd, = d,(0) For convenience assume that the obligation has magnitude

I and is due at time 7 The conditions for immunization are then

PO = cd —di=0

[

PO(E+1) = Y tcd, — Uy =0
1

(a) Show that for all values of « and 8 there holds

P'OU + 1)t = Z(xl T+ at + B)eydy ~ (P +of + B)d;
i

(&) Show that e and 8 can be selecied so that the function 1* 4 at + § hus a minimum
at ¥ and has a value of I there Use these values to conclude that P"(0) = 0
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THE TERM STRUCTURE
OF INTEREST RATES

richer theory of interest rates is explored in this chapter, as compared to

that in previous chapters The enriched theory allows for a whole family

-of inlerest rates at any one time-—a different rate for each maturity time—
providing a clearer understanding of the interest rate market and a foundation for
more sophisticated investment analysis techniques

4.1 THE YIELD CURVE

72

The yield to maturity of any bond is strongly tied to general conditions in the fixed-
income securities market All yields lend to move together in this market However,
all bond yields are not exactly the same.

The vartation in yields across bonds is explained in part by the fact that bonds
have various quality tatings A strong AAA-rated bond is likely to cost mote (and hence
have lower yield) than a bond with an identical promised income stream but having a
B-quality 1ating It is only natural that high quality is more expenstve than low quality.
However, quality alone does not fully explain the observed variations in bond yields

Another factor that pattially explains the differences in the yields of various
bonds is the titne to maturity As a general rule, “long” bonds (bonds with very
distant maturity dates) tend to offer higher ytelds than “short” bonds of the same
quality The situatiot is depicted in Figuie 4 1 The curve featuied in this figure is
an example of a yield curve. It displays yield as a function of time to maturity The
curve is constructed by plotting the yields of various available bonds of a given quality
class Figwe 4 | shows the yields for various governiment securities as a function of
the maturity date Note that the yields trace out an essentially smooth curve, which
iises gradually as the time to maturity increases A rising curve is a “normally shaped”
yield curve; this shape occurs most often However, the yield curve undulates around
in time, somewhat like a branch in the wind, and can assume various other shapes
If long bonds happen to have lower yields than shoit bonds, the result is said to be
an inverted yield curve, The inverted shape tends to occur when short-term rates
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FIGURE4.1 Yield curve. Yields are plotted as a {unciion
of maturity date The cutve shown hete is typical and has
a normal upwaid slope  Source: Treasury Bulletin, June
1995
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increase rapidly, and investors believe that the yise is tempoiaty, so that long-tertn
rates temain neai their previous levels

When studying a patticular bond, it is useful to detexmisne its yield and maturity
date and place it a3 a point on the yield curve for bonds in its risk class This will give a
general indication of how it is priced telative to the overall market If it is far from the
curve, there is probably a 1eason, related to special situations or special features (such
as call features of the bond or news affecting the potential solvency of the issuer)

The yield cuive is helpful, but because {t is a bit arbitrary, it does not provide
a completely satisfactory explanation of yield differences Why, for example, should
the maturity date be used as the horizontal axis of the curve rather than, say, duration?
A mote basic theoty is required, and such a theory is introduced in the next section

4.2 THE TERM STRUCTURE

Term structure theory puts astde the notion of yield and instead focuses on pure interest
rates The theory is based on the observation that, in genetal, the interest rate chaiged
(or paid) for money depends on the length of tinie that the money is held Your local
bank, for example, is likely to offer you a higher rate of intetest for deposits conumitted
for 3 years than for demand deposits (which can be withdrawn at any tinie) This basic
fact, that the interest 1ate charged depends on the length of time that the funds are
held, is the basis of term structure theory This chapter works out the details und
implications of that fact

Spot Rates

Spot rates are the basic interest rates defining the term structuie The spot rate s, is
the rate of interest, expressed in yearly terms, chaiged for money held from the present
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time (+ = 0) until time 7 Both the interest and the original principal are paid at time 7.
Hence, in particular, s; is the 1-year interest rate; that is, it is the rate paid for money
held 1 year Similarly, the rate s» represents the rate that is paid for money held
2 years; however, it is expressed on an annualized basis Thus if your bank proniises
to pay a rate of 5o for a 2-year deposit of an amtount A compounded yearly, it will
actually repay (1 + 52)°4 at the end of 2 years; your money grows by a factor of
(1 +2)*

The definition of spot rates implicitly assumes a compounding convention, and
this convention might vary with the purpose at hand The preceding discussion as-
sumed a ]-year compounding convention It is common to use m periods per year,
or continuous compounding, as well In all cases the rates are usually still quoted as
yemly rates. For completeness, we list the vaiious possibilities:

(a) Yearly Under the yearly compounding convention, the spot rate s, is defined
such that
a4

is the factor by which a deposit held 1 years will grow (Here 7 must be an integer,
or an adjustment must be made )

(b

-

m periods per year Under a convention of compounding m periods per year,
the spot rate 5, is defined so that

(A + s /m)™

is the cotresponding factor (Here s»t must be an integer, so + must be an integral
niultiple of 1/m)

~

(¢) Continuous Under a continuous compounding convention, the spot rate 4, is
defined so that " is the corresponding growth factor This formula applies directly

to all values of ¢

For theoretical purposes, continuous compounding is “neatei” since the formulas
apply without change to all values of + The other methods require an adjustment for
values of ¢ between compounding dates However, the yearly conipounding convention
is the most convenient, and it is the convention mainly used in this chapter

Spot rates can, in theory, be measured by recording the yields of zero-coupon
bonds (In order to eliminate the influence of default risk, it would be best to consider
only Treasury secutities for this purpose ) Since a zero-coupon bond proniises to pay a
fixed amount at a fixed date in the future, the ratio of the paymient amount to the current
price defines the spot rate for the maturity date of the bond By this measurement
process we can develop a spot rate curve, which is analogous to the yield curve
Such a curve and a chart of the corresponding data are shown in Figure 4 2

Discount Factors and Present Value

Once the spot rates have been determined, it is natural to define the corresponding dis-
count factors d, for each time point These ave the factors by which future cash flows
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Spot

Years Rate
| 5571
2 6088
3 63555
4 6978
5 7361
6 7707
7 8020
8 8304
9 8 561
10 8793
1 9003
12 9193
13 9365
14 9520
15 9661
16 9789
17 9904
18 10008
19 10103
20 10188

e, Years
FIGURE 4.2 Spot rate curve The yearly rate of interest depends on the length of time funds are
held

must be multiplied to obtain an equivalent present value, For the various compounding
conventions, they are defined as follows:

(a) Yearly For yearly compounding,
1
T OEsF
(b) m periods per year For compounding i periods per year,
1
T Uy

di

i

(¢) Continuous For continuous compounding,
dy = e
The discount factors transform future cash flows directly into an equivalent
present value Heunce given any cash flow stream (xg, .x¢, X2,  , Xy), tlie present value,
relative to the prevailing spot rates, is

PV =vxg+divy+daxa+ +dyx,

The discount factor dy acts like a price for casli received at time k& We determine the
value of a stream by adding up “price times quantity” for all the cash components of the
stream



76  Chapter 4 THE TERM STRUCTURE OF INTEREST RATES

TABLE 4.1
Bond Evaluation

Year 1 2 3 4 5 6 7 8 9 10 | Total PV

Discount | 947 889 827 764 701 641 583 528 477 431
Cash flow 8 8 8 8 8 8 8 8 8 108
4% 758 711 661 611 3561 512 466 422 382 46501 9734

Each cash flow iy disconmed by Whe disconn facior for ity tine

Examplie 4.1 (Price of a 10-year bond) Using the spot 1ate curve of Figure 4 2, let
us find the value of an 8% bond maturing in 10 years

Normally, for bonds we would use the rates and formulas for 6-month com-
pounding; but {or this example let us assume that coupons are paid only at the end of
each year, starting a year from now, and that 1-year compounding is consistent with
our genctal evaluation method We write the cashi flows together with the discount
tactors, take their products, and then sum, as shown in Table 4 | The value of the
bond is found to be 97 34

Examplie 4.2 (Simplico gold mine) Consider the lease of the Simplico gold mine
discussed in Chapter 2, Example 2 6, but now let us assume that interest rates {ollow
the term structuse pattern of Figure 4 2 We shall find the present value of the lease

The cash flow stream is identical to that of the earlier example; namely, $2M each
year for 10 years The piesent value is therefore just the sum of the first 10 discount
figures multiplied by $2M, for a total of $13 58M

Determining the Spot Rate

The obvious way to detetmine a spot rate curve is to find the prices of a series of
zeio-coupon bonds with various maturity dates Unfortunately the set of available
zelo-coupon bonds ig typically rather sparse, and, indeed, until recently there were
essentially no “zeros” available with tong maturities Thus it is not always practical to
determine a complete set of spot rates this way However, the existence of zero-coupon
bonds is not necessaty for the concept of spot rates to be useful, nor are they needed
as data to determine the spot rate value

The spot 1ate curve can be determined from the prices of coupon-bearing bonds
by beginning with short matusities and wotking forward toward longer maturities We
illustrate the process for the -year compounding convention (and assuming coupons
are paid only once a year) First determine s; by direct observation of the 1-year intet-
est rate—as determined, for example, by the I-year Treasury bill rate Next consider
a 2-year bond Suppose that bond has ptice P, makes coupon payments of amount C at
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the end of both years, and has a face value F The price should equal the discounted
value of the cash flow stream, so we can write
po €, CHF
T+se (I+)?
Since s, is already known, we can solve this equation for s; Working forward this way,
by next considering 3-year bonds, then 4-year bonds, and so forth, we can determine
53, 89, , step by step
Spot rates can also be determined by a subtraction process Two bonds of differ-
ent coupon rates but identical maturity dates can be used to construct the equivalent
of a zero-coupon bond The following example illustrates the method

Example 4.3 (Construction of a zero) Bond A is a 10-yeat bond with a 10%
coupon ls price is Py = 98 72 Bond B is a 0-year bond with an 8% coupon ks
price is Pg = 85 89 Both bonds have the same face value, notmalized to 100

Consider a portfolio with — 8 unit of bond A and | unit of bond B This portfolio
will have a face value of 20 and a price of P = Py — 8P, = 6914 The coupon
payments cancel, so this is a zero-coupon portfolio The [0-year spot tate sy must
satisly (1 + 510)'°P =20 Thus s;p= 11 2%

In practice, since spot rates are an idealization, and the spot rates irtiplied by
difterent bonds may differ slightly from one another, it is advisable to modity these
procedures to incorporate an averaging method when estimating the spot rates (See
Exercise 4 )

4.3 FORWARD RATES

An elegant and useful concept emerges directly from the definition of spot rates;
namely, the concept of fotward rates Forward rates are interest rates for money o
be borrowed between two dates in the future, but under terms agreed upon today

It is easiest to explain the concept for a 2-year situation Suppose that s; and s
are known If we leave $1 in a 2-year account it will, by definition, grow to $(1 + v2)”
at the end of the 2 years Alternatively, we might place the §1 in a l-year account and
simultancously make arrangements that the proceeds, which will be $(1 + s;), will be
lent for | yea: starting a year from now That loan will accrue interest at a prearranged
rate (agreed upon now) of say f The rate 7 is the forward rate for money to be lent
in this way The final amount of money we receive at the end of 2 years unde: this
compound plan is $(1 + s, )(1+ f)

We now invoke the comparison principle. We have two alternative methods for
investing $1 for 2 years The fisst returns (14s2)* and the second returns U+so+ 5
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These two should be equal, since both me available ! Thus we have
(I =+ + /)

o

[ = (14 52)~ -1
1+

Hence the forwaid 1ate is determined by the two spot 1ates

We can juslify the use of the compaiison principle hete thiough an arbitrage
argument. If these two methods of investing money did not retuin the same amount,
then there would be an oppostunily to make aibitiage profits—defined to be eithe:
instantaneous piofit or swe future profit with zeto net investment In the preceding
example, if (1 +51)(1 + f) > (1 + 52)% meaning that the second method of invest-
ment returned more than the first, then an arbitageur could reverse the fiist plan (by
borrowing for 2 years) and then casrry out the second plan by investing the money
that was borrowed This arbitageur would have zero net investment because he o1 she
used only borrowed capital, but alter iepaying the loan the arbitrageur would have a
profit factor of (1 4 5)(1 + )= (1 +52)* > 0 This arbitiage scheme could be carijed
out at any magnitude, and hence, in theoiy, the arbitrageur could make very large
sums of money from no initial capital. We assume that it is not possible to implement
this scheme in the market because potential arbitrageurs are always on the lookout for
such discrepancies 1f a slight disciepancy does arise, they take advantage of it, and
this action tends to close the gap in rates i the inequality weie in the other direction,
the aibitageur could just 1everse the procedure Thus equality must hold

The arbitrage mgument assumes that there are no transaction costs—either real
costs such as biokerage {ees or opportunity costs related 1o the time and effoit of
finding the discrepancy and airanging {or the trades The argument also assumes that
the borrowing and lending rates are identical H there weie transaction costs or unequal
1ates, there could be a slight “wedge” between the 2-year rates associated with the two
alternative strategies However, in practice the transaction cost associated with a highly
liquid security such as a U S Treasury is a very small {raction of the security’s total
cost, especially if large amounts are involved; and borrowing and lending rates are
quite close, again if large amounts of capital aie involved So although the arbitrage
argument represents an idealization, it is in practice a reasonable approximation

The compatison prinCiple can be used 1o argue that the two overall rates must
be equal even in the absence of arbitrageurs. If there were a ditference in rates, then
investors seeking o loan money for 2 years would choose the best alternative—and
so would borrowers Marke! forces would tend to equalize the rates

Example 4.4  Suppose that the spol rates for | and 2 yeais are, respectively, s = 7%
and sy = 8% We then find that the forward 1ate is f == (1 08)*/1 07 — 1 = 0901 =
9 01% Hence the 2-year 8% rate can be obtained either as a direct 2-year investment,
or by investing for 1 year at 7% followed by a second year at 9 01%

YForward comtracts o Hhis type are actually implemented by the use of futures contracis on Treasury
securities. as explained in Chapier 10 They are highly liquid. so Jorwards of this type are obtained casily
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This discussion can be generalized (o define other forward rates between ditferent
time periods The rate f used earlier is more completely labeled as f| 2 because it is
the forward rate between years | and 2. In general we use the following:

Forward rate definition The forward rate between times t and t; with t| < 1y is
denoted by f,, ., 1tis the rate of interest char ged for borrowing money at time t| whicl
is to be 1epaid (witl interest) at time 12

In general, forwaid rates are expressed on an annualized basis, like other interest
rates, unless another basis is explicitly specified

In the market there could be more than one rate for any particular forward
period For example, the forward rate for borrowing may differ from that for lending
Thus when discussing market rates one must be specific However, in theoretical
discussions the definition of {orward rates is based on an underlying set of spot rates
(which themselves geuerally 1epresent idealizations or averages of market conditions)
These calculated forward rates are often termed implied forward rates to distinguish
them from market forward rates.

The implied forward rates are found by extending the logic given eailier for
assigning the value f(2 If we use l-year compounding, the basic forward rates are
defined between various yearly periods They are defined to satisfy the following
equation (for 7 < j)

(U5 = (14 s (L4 i P!

The left side of this equation is the {actor by which money grows if it is directly
invested for j years This amount is determined by the spot rate 5;. The right side of
the equation is the factor by which money grows if it is invested first for / years and
then in a forward contract (arranged now) between years ¢ and j The term (1 + f; ;)
is raised to the (j - /)th power because the forward rate is expressed in yearly terms

The extension to other compounding conventions is straightforward For com-
pleteness, the foimulas for forward rates {expressed as yeaily rates) under various
compounding conventions are listed here:

Forward rate formulas The implied forward 1ate benveen times t and ty > 1 is
the rate of interest benween those times that is consistent witl a given spot rate curve
Under various compounding conventions the forward rates are specified as follows
(a) Yearly For vearly compounding, the forward rates satisfy, for j > i,

U5l = +s) A+ i ™

Hence,

771G=h
hi= [M} -
1+ )
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(b) mi periods per yeaxr For m period-per-vear compounding, the forward rates sat-
isfy, for | > i, expressed in periods,

A4 s/md = Qs ) (4 i iy

Henee,

i
(145, /m)) 1=n
Jij = M| i - .
(Vs fm)t
(c) Continuous For contimions compounding, the forward rates [y, 4, are defined for
all 1| and 1y, with 1, > 1|, and satisfy

PR W PR S

Hence,
Sl — Syl
fo o= Thon

Note again that continuous compounding produces the simplest formula As
a further convention, it is useful to define spot rates, discount factors, and forward
rates when one of the time points is zero, representing current time Hence we define
s, = 0 and correspondingly oy, = 1, where fy is the current time (Alternatively we
write sp = 0 and dy = 1 when denoting time by period integers ) For forward rates,
we write similarly f,, ,, = 5, The forward rates {rom time zero are the corresponding
spot rates

There are a large number of forward rates associated with a spot rate curve.
In fact, it there are n periods, thete are # spot rates (excluding $p); and there are
n(n + 1)/2 forward rates (including the basic spot rates ) However, all these forward
rates are derived from the n underlying spot rates

The forward rates are introduced partly because they represent rates of actual
transactions Forward contracts do in fact serve a very important hedging role, and
their use in this manner is discussed further in Chapter 10 They are introduced here,
however, mainly because they are important for the full development of the term
structure theory They are used briefly in the next section and then extensively in the
section following that

4.4 TERM STRUCTURE EXPLANATIONS

The yield curve can be observcd, at least roughly, by looking at a series of bond
quotes in the financial press The curve is almost never flat but, rather, it usually slopes
gradually upward as matuiity increases The spot rate cuive has similar characteristics
Typically it, too, slopes rapidly upward at shoit maturities and continues to slope
upwaid, but more gradually as maturities lengthen It is natural to ask if there is a
sinple explanation for this typical shape Why is the cuive not just flat at a common
interest rate?

There are three standard cxplanations (or “theories”™) for the term structure, each
of which provides some important insight We outline them briefly in this section
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Expectations Theory

The first explanation is that spot rates are detcrmined by expectations of what rates will
be in the future To visualize this piocess, suppose that, as is usually the case, the spot
rate curve slopes upwaid, with rates increasing foi longer maturities The 2-yeas rate is
greater than the 1-year rate It is argued that this is so because the masket (that is, the
collective of all pecople who trade in the interest raie market) believes that the 1-yea
rate will most likely go up next year (This belief may, {or example, be because most
people believe inflation will 1ise, and thus to maintain the same real rate of interest,
the nominal rate must incrcase ) This majority beliet that the interest rate will rise
translates into a market expectation An expectation is only an average guess; it is
not definite information—{or no one knows for sure what will happen next year—but
people on average assume, accoiding to this explanation, that the rate will increase

This argument is made moie concrete by expressing the expectations in terms
of forward rates This more precise formulation is the expectations hypothesis. To
outline this hypothesis, consider the forward rate /|2, which iy the implied 1ate for
money loaned for I year, a year from now According to the expectations hypothesis,
this forwad rate is exactly equal to the market expectation of what the I-year spot
rate will be next year Thus the expectation can be inferred from existing rates

Ealier we consideled a situation where 5 = 7% and s> = 8% We found that
the implied forward 1ate was f; 2 = 9.01% Accoirding to the unbiased expectations
hypothesis, this value of 901% is the maket’s expected value of next yea's l-yem
spot 1ate 5|

The same aigument applies to the other rates as well As additional spot rates
are consideted, they define coiresponding forward iates for next year Specifically,
51, S3, and s3 together determine the forwaid rates fy 5 and f; 3 The second of these
is the forwaid jate fo1 borrowing money for 2 years, staiting next year This 1ate is
assumed to be equal to the cunent expectation of what the 2~year spot 1ate s5 will be
next year In geneial, then, the cuirent spot 1ate cwve leads to a set of forward 1ates
fias 3. 4 fin, which define the expected spol 1ate curve s, 35, s, for next
year The expectations are inherent in the current spot 1ate structure

There aie two ways of looking at this construction One way is that the current
spol rate curve implies an expectation about what the spot rate curve will be next
year The other way is to tuin this first view atound and say that the expectation of
next year's curve determines what the curient spot 1ate cwrve must be Both views ate
intertwined; expectations about future 1ates are part of today’s maiket and influence
today's 1ates

This theory o1 hypothesis is a nice explanation of the spot rate cuive, even
though it has some impoitant weaknesses The primary weakness is that, according
to this explanation, the market expects 1ates to inctease whenevei the spot 1ate curve
slopes upwad; and this is piactically all the time Thus the expectations cannot be
right even on average, since 1ates do not go up as often as expectations would imply
Neveitheless, the expectations explanation is plausible, although the expectations nay
themselves be skewed

The expectations explanation of the term stiuctwie can be regaided as being
(loosely) based on the compaiison piinciple To see this, consider again the 2-year
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situation. An investol can invest either in a 2-yeas instrument or in a 1-year instrument
followed by another }~year investment. The follow-on investment can also be carried
out two ways It can be arranged cuniently thiough a forward contract at rate f, 5, or
it can simply be “10lled over” by reinvesting the following yea: at the then prevailing
-yem rate A wise investor would compare the two altematives. If the investor expects
that next year’s 1-year rate will equal the current value of f| 5, then he or she will be
indifferent between these two alternatives Indeed, the fact that both are viable implies
that they must seem (approximately) equal

Liquidity Preference

The liquidity prefeience explanation asserts that investors usually piefer short-term
fixed income secuiities ovei Jong-term secuiities. The simplest justification for this
asseition is that investors do not like to tie up capital in long-term secprities, since
those funds may be needed befoie the maturity date Investois prefer their funds to be
liquid rathes than tied up. However, the term liguidity is used in a slightly nonstandard
way in this mgument Theie aie large active markets for bonds of majoi corporations
and of the Tieasury, so it is easy to sell any such bonds one might hold Short-term
and Jong-term bonds of this type aie equally liquid

Liquidity is used in this explanation of the term structuie shape instead to express
the fact that most investors prefer shoti-term bonds to Jong-term bonds The reason for
this preference is that investors anticipate that they may need to sell theit bonds soon,
and they recognize that long-tesm bonds are moie sensitive to interest rate changes
than are shoit-ierm bonds Hence an investor who may need funds in a year or so will
be be 1eluctant to place these funds in long-term bonds because of the relatively high
near-term risk associated with such bonds To lessen risk, such an investor prefers
shott-term investments Hence to induce investors into long-term instiuments, better
rates must be offered for long bonds For this reason, according to the theory, the spot
tate cusve tises

Market Segmentation

The matke! segmentation explanation of the term structure argues that the market
for fixed-income securities is segmented by matusity dates This argument assumes
that investors have a good idea of the matuiity date that they desite, based on thei:
projected need {o: futute funds ot their 1isk pieference The aigument concludes that
the group of investors competing fo: long-term bonds is different from the gioup
competing {or shost-tetm bonds Hence there need be no relation between the prices
(defined by interest 1ates) of these two types of instruments; shoit and long rates can
move mound 1ather independently Taken to an extieme, this viewpoint suggests that
all points on the spot rate cusve are musually independent Each is determined by the
forces of supply and demand in its own maiket

A moderated version of this explanation is that, although the market is basically
segmented, individual investors are willing to shift segments if the rates in an adja-
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cent segment are substantially more attzactive than those of the main target segment
Adjacent rates cannot become grossly out of line with each other Hence the spot rate
curve must indeed be a curve rather than a jumble of disjointed numbers, but this
cuive can bend in varjous ways, depending on market forces

Discussion

Certainly each of the foregoing explanations embodies an element of tuth The wiole
truth is probably some combination of them all

The expectations theory is the most anafytical of the three, in the sense that it
offers conciete numerical values for expectations, and hence it can be tested These
tests show that it works reasonably well with a deviation that seems to be explained
by liquidity preference Hence expectations lempered by the tisk considerations of
liquidity preference seem to offer a good straightforward explanation

4.5 EXPECTATIONS DYNAMICS

The concept of market expectations introduced in the previous section as an explana-
tion for the shape of the spot 1ate curve can be developed into a useful tool in its own
right This tool can be used to form a plausible forecast of {uture interest 1ates

Spot Rate Forecasts

The basis of this method is to assume that the expectations implied by the current spot
rate curve will actually be fulfilled Under this assumption we can then predict next
yeat's spot 1ate curve {1om the cuirent one This new curve implies yet another set
of expectations for the following yea: If we assume that these, too, are {ulfilied, we
can predict ahead once again Going forwaid in this way, an entitre {uture of spot rate
curves can be predicted Of cousse, it is undeistood that these predicted spot 1ate curves
are based on the assumption that expectations will be {ulfilled (and we recognize that
this may not happen), but once made, the assumption does provide a logical forecast.

Let us work out some of the details We begin with the current spot rate curve
$1,52, + S and we wish to estimate next yem's spot 1ate cuive si,s3, .5,
The cuirent forward 1ate f|; can be 1egarded as the expectation of what the interest
1ate will be next yeai-—mneasuted {rom next year's cunient time to a time j — | yeas
ahead—in other woids, 1 ; is next year's spot 1ate s, Explicitly,?

RUAED]
1 Y

s’_l = fll = u_ji)_. — 1

1 45

*Recali that this lormula for Ji; was pgiven in Section 43 Wt is derived frons the relation (1 4+ ;) =
(b fi (050

@n
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for 1 < j < n. This is the basic formula for updating a spot rate curve under the
assumption that expectations are fulfilled Starting with the current curve, we obtain
an estimate of next year's curve

We term this transformation expectations dynamics, since it gives an explicit
characterization of the dynamics of the spol rate curve based on the expectations
assumption Other assumptions are certainly possible For instance, we could assume
that the spot rate curve will remain unchanged, or that it will shift upward by a fixed
amount, and so forth; however, expectations dynamics has a nice logical appeal

The expectations process can be carried out for another step to obtain the spot
rate curve for the third year, and so forth Note, however, (hat if the original curve
has finite length, each succeeding curve is shorter by one tetm—and hence the curves
eventually become quite short This problem can be rectified by initially assuming a
very long (or infinite) spot tate cutve, or by adding a new s, term each year This
latter approach would require an additional hypothesis

Example 4.5 (A simple forecast) Let us take as given the spot rate curve shown in
the first row of the table The second row is then the forecast of next year's spot raie
curve under expectations dynamics This row is found using (4 1)

| s; S S3 S S5 S S
Current | 600 645 680 710 736 756 777
Forecast | 690 720 747 770 788 806

The first two entries in the second row were computed as follows:

(1 0645)*
= i — | = (6
1.06 o
1068)* 7"
/|3=[——( 106)} -1=072

All tuture spot rate curves implied by an initial spot rate curve can be displayed
by listing all of the forward rates associaled with the initial spot rate curve Such a
list is shown in a wiangular array:

for foz fos fon-z fou-t  fou
fi2 fis fie o fra=t fiw

f23 fra fas f2.n

Jrm2.11 Ji2 0

fuetn

The first tow of the array lists the forward rates from the initial time These are
identical to the spot rates themselves; that is, v; = fo; for all f with0 < j s n
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The next row lists the forward rates from time | These wiil be next year’s spot rates
according to expectations dynamics The third row will be tiie spot rates for the third
yeat, and so forth

Discount Factors

Another important concept is that of a discount factor between two times The dis-
count factors ate, of course, fundamental quantities used in present value calcujations

It is useful to apply a double indexing system to the discount factors paralleling
the system used for forward rates Accoidingly, the symbol d; 1 denotes the discount
factor used to discount cash received at time % back to an equivalent amount of cash at
time j The normal, time zero, discount tactors are dy = do |, dr = dp2, ,dy, =don
The discount factors can be expressed in terms of the forward rates as

[ L
T .
G [Hf;k]

The discount factors are related by a compounding rule: to discount from time
k back to time i, one can first discount {rom time & back to an intermediate time j
and then discount from j back to i In other woids, d; = d; yd;; fori < j < k

Discount factor relation  The discount factor benwveen periods i and j is defined as

I I
‘Iij=[ml+ﬁj]
These factors satisfy the compounding rule
dyyo=d; jd; g

fori<j<k

Short Rates

Short 1ates ate the forward rates spanning a single time period The shoit rate at time
k is accordingly 74 == f; r4q; that is, it is the foiward 1ate from & 1o k + 1 The short
rates can be considered fundamental just as spot rates, for a complete set of short rates
fully specifies a term stiucture

The spot rate s; is lound from the short rates from the tact that interest eained
from time zero to time k is identical to the interest that wouid be earned by rolling
over an investment each year Specifically,

(Fs)b = (L)l +10) I+
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The relation genesalizes because all forward rates can be found from the short
rates in a similar way Specifically,

A+ AT =+ +r40 - ()

Hence the short rates form a convenient basis for generating all other rates

The short rates are especially appealing in the context of expectations dynamics,
because they do not change from year to year, whereas spot rates do. Given the initial
short 1ates ro, 71,72,  ,7n-1, NEXt year (under expectations dynamics) the short rates
wilt be 11,72, 1,1 The short rate for a specific year does not change; however,
that year is | year closer to the sliding current ime For example, if we are at the
beginning of year 2020, the short rate s is the rate for the year beginning January
2024 A yea later, in 2021, the new 13 will be the rate for the year 2024 and this
short rate will be identical (under expectations dynamics) to the previous 74

An example of a complete set of forwaid rates, discount factors, and shoit rates
is shown in Table 4 2 Here the rows represent the rates or factors for a given year:
the top row of each array contains the initial 1ates o1 factors for 7 years forwaird. The
forward rate array is, as discussed, identicai to the spot rate array Hence the basic
spot rate curve is defined by the top line of the forward rate amay Everything else
is derived from that single row The discount factors fo1 the current time are those
listed in the top row of the discount factor array These are the values used to find the
present values of future cash flows Note that successive 1ows of the shoit rate table
are just shifted versions of the rows above Shoit rates remain fixed in absolute time

TABLE 4.2
Forward Rates, Discoun! Faclors, and Short Rates

Forward rates Short rates

600 645 680 710 736 736 777 600 690 750 800 840 860 900

690 720 747 770 788 806 690 750 800 B840 860 900
750 775 797 812 830 750 800 840 860 900
800 820 833 850 800 840 860 900

840 850 867 840 860 900

860 880 860 900

900 900

Discount factors

943 883 821 760 701 646 592
935 870 806 743 684 628
930 861 795 732 671

926 854 787 722

923 849 779
921 845
917

The original spor rote ciive is defined by the 1op row of the forward rate ariay Al other tenms are derived
Srom this row
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Invariance Theorem

Suppose that you have a sum of money to invest in fixed-income securities, and you
will not draw from these funds for 1 periods (say, n years) You will invest only in
Treasury instiuments, and there is a current known spot rate curve for these securities
You have a multitude of choices {or structuring a portfolio using your available money
You may select some bonds with long maturities, some zero-coupon bonds, and some
bonds with short matmities If you select a mix of these securities, then, as time passes,
you will obtuin income from coupons and from the redemption of the short maturity
bonds You may also elect to sell some bonds early, before maturity As income is
generated in these ways, you will reinvest this inconie in other bonds; again you have
a multitude of choices Finally you wiil cash out everything at time period 1 How
should you invest in oider to obtain the maximum amount of money at the terminal
time?

To address this question, you must have a model of how interest rates will
change in the intervening years, since future rates will determine the prices for bonds
that you selt early and those that you buy when reinvesting income Theze are a variety
of models you could select (some of which might involve randomness, as discussed in
Chapter 14), but a straightforward choice is to assume expectations dynamics—so let
us make that assumption Let us assume that the initia} spot ate curve is transformed,
after | yeas, to a new curve in accordance with the updating formula presented eartier
This updating is repeated each year Now, how should you invest?

The answer is revealed by the title of this subsection It makes absolutely no
difference how you invest (as long as you remain fully invested) All choices will
produce exactly the same result In particular, investing in a single zero-coupon bond
will produce this invariant amount, which is, accordingly, (1 -+s,)" times your original
sum of money This result is spelled out in the following theorem:

Invariance theorem  Suppose that interest 1ates evolve according 1o expectations dy-
namics Then (assuming a vearly compounding convention) a sim of money invested
in the imerest rate market for n vears will grow by a factor of (1 + s,)" independent
of the investment and 1emvestmenr stiategy (so long as all funds are fully invested)

Proof: The conclusion is easiest to see from the example used earlier Sup-
pose that # =2 You have two basic choices for investment You can invest
in a 2-year zeio-coupon bond, or you can invest in a l-year bond and then
reinvest the proceeds at the end ol the year Under expectations dynamics, the
reinvestment rate after [ yem will be equal to the current forward rate f o
Both of these choices lead to a growth of (I 4 352)*> Any other investment,
such as a 2-year bond that makes a coupon payment after [ year that must
be reinvested, will be a combination of these two basic stiategies 1t should
be clear that a simila argument applies {o1 any n

The simplest way to internatize this result is to think in terms of the shoit rates
Every investment eans the velevant short rates over its duration A JO-year zeto-
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coupon bond earns the 10 shoit rates that are defined initially An investment roiled
over year by year for 10 years emrns the 10 short 1ates that happen to occur Under
expectations dynamics, the shoit rates do not change; that is, the 1ate initially implied
for a specified period in the future will be realized when that period arrives Tence
no matter ltow an initial sum is invested, it wili progress step by step through each of
the short rates

This theotem is very hielpful in discussing how to structure an actual portfolio Tt
shows that the motivation for selecting a mixture of bonds must be due to anticipated
deviations from expectations dynamics—deviations of the realized short 1ates from
their originaily implied values Expectations dynamics is, therefore, in a sense the
sinplest assumption about the future because it implies invariance of portfolio growth
with respect to strategy

4.6 RUNNING PRESENT VALUE

The present vajue of a cash flow stieam is easily calculated in the term structure
framework One simply multiplies each cash flow by the discount factor associated
with the period of tiie flow and then sums these discounted values; that is, present
value is obtained by appropriately discounting all future cash flows

There is a special, alternative way to arrange the calculations of present value,
which is sometimes quite convenient and which has a useful interpretation This dil-
terent way is termed running present value. It calculates present value in a recursive
manner starting with the final cash flow and working backward to the present This
method uses the concepts of expectations dynamics froni the previous section, although
it is not necessary to assume that interest rates actuaily follow the expectations dynam-
ics pattern to use the method Althougl this method is presented, at this point, as just
an alternative to the standard method of calculation, it wili be the preferred—indeed
standard—method of calculation in later chapters

To work out the process, suppose (xg, X1, X2, ,.xy) is a cash flow strteam. We
denote the piesent value of this stream PV(0), meaning the present value at time zeto
Now imagine that  time periods have passed and we are anticipating the 1emainder of
the cash flow sweam, whicli is (14, v 41, , ¥,) We could calculate the present value
(as viewed at time k) using the discount factors that would be applicable then We
denote this present value by PV(%) In general, then, we can imagine the present value
running along in time—each period’s value being the piesent value of the remaining
stream, but calculated using that period’s discount factors These running values are
related to each other in a simple way, which is the basis for he method we desciibe

The original present value can be expressed explicitly as

PV(0) = ag +d\x) +cbxar+  +dyy,

where the d;’s are Lhe discount factors at time zeio This formula can be written in
the alternative form

PV(0) = x¢ +d fx| + (dafd)xs + + (dy fd ) xy ] “42)
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The values di/d;, k= 2,3, , n, are the discount factors [ year from now under an
assumption of expectations dynamics (as shown later) Hence,

PV(0) = xo +diPV(])

To show how this works in general, for arbitrary time points, we employ the
double-indexing system for discount factors introduced in the previous section The
present values at time 4 is

PV (k) = xp + di gyt Xigr +di kgaiga -+ A+ diopXy

Using the discount compounding formula, it follows that di gy; = di gg1dist kgy
Hence we may wiite this equation as

PVE) = ¢+ di ki (gt + digt kg2¥haz + o+ digpr nvy)
We can therefore write
PV(k) = x +d 1PV + D)

This equation states that the present value at time & is the sum of the current cash flow
and a one-period discount of the next present value. Note that di g1 = F(} + fi kat)s
where fi 141 is the short rate at time & Hence in this method discounting always uses
short rates to determine the discount factors

Present value updating  The running present values saiisfy the recursion
PV = xx +di 1PV + )

where di i1 = 1/} + fi xy1) is the discount factor for the shory rate ar k

To carry out the computation in a recursive manner, the process is initiated
by starting at the fina/ time One first calculates PV(i) us PV(i) = x, and then
PV (1~ 1) == xyy +dy—t PV (1), and so forth until PV(0) is found

You can visualize the process in terms of » people standing strung out, on a
time line You are at the head of the line, at time zero Each person can observe only
the cash flow that occurs at that person’s time point Hence you can observe only
the current, time zero, cash flow How can you compute the present value? Use the
running method

The last person, person n, computes the present value seen then and passes
that vatue to the first person behind That peison, using the short rate at that time,
discounts the value announced by person n, then adds the observed cash flow at
n— | and passes this new present value back to person » ~2 This process continues,
each person digcounting accoiding to their short rate, until the running present value is
passed to you Once you hear what the person in front of you announces, you discount
it using the initial short rate and add the current cash flow That is the overall present
vaiue.

The running present value PV (k) is, of course, somewhat of a fiction Tt will be
the actual present value of the remaining stream at time 4 only if interest 1ates follow
expectations dynamics Otherwise, entirely difierent discount iates will apply at that
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TABLE 4.3
Example of Running Present Value
Year k
0 1 2 3 4 5 6 7
Cash flow 20 25 30 35 40 30 20 10
Discount 943 935 93 926 923 921 917

PV(k) 16895 15796 14220 12064 9249 5687 2917 1000

The present value i found by stareing at the final tinte and working backward. discountng
one period at a thie

time However, when computing a present value at time zero, that is, when computing
PV(0), the running present vaiue method can be used since it is a mathematical identity

Exampie 4.6 (Constant running rate) Suppose that the spot rate curve is flat, with
sp =1 forall k= 1,2, ,n Let(x,x1,32, ,x,) be a cash flow stream In the
flat case, all forward rates are also equal to 1 (See Exercise 9) Hence the present
value can be calculated as

PV(n) = 1,

I
Vik) = x e PV (o
PV(k) u+l+,P *k+D

This recuision is run from the terminal time backwaid 10 k = 0

Example 4.7 (General running) A sample present value calculation is shown in
Table 4 3 The basic cash flow stweam is the first row of the table We assume that
the current tem structuie is that of Table 4 2, and the appiopriate one-period discount
1ates (found in the first column of the discount factor table in Table 4 2) are listed in
the second row of Table 4 3

The present value at any year k is computed by multiplying the discount factor
listed under that year times the present value of the next year, and then adding the cash
flow for year & This is done by beginning with the final year and working backward to
time zeto Thug we first find PV(7) = 10 00 Then PV(6) = 20+ 917 x 1000 = 29.17,
PV(5) = 30+ 92} x 29.17 = 56 87, and so forth The present value of the entire
stream is PV(0) = 168 95

4.7 FLOATING RATE BONDS

A floating rate note or bond has a fixed face value and fixed maturity, but its coupon
payments are tied to current (short) rates of interest Consider, for example, a floating
rate bond that makes coupon payments every 6 months When the bond is issued, the
coupon rate for the first 6 months is set equal to the cunient 6-month interest rate At



48 DURATION 91

the end of 6 months a coupon payment at that rate is paid; specifically, the coupon is
the rate times the face value divided by 2 (because of the 6-month schedule) Then,
after that payment, the rate is reset: the rate for the next 6 months is set equal to the
then current 6-month (shott) rate The process continues until maturity

Clearly, the exact values of (uture coupon payments are uncertain until 6 months
before they are due Tt seems, therefore, that it may be difficult to assess the value of
such a bond In fact at the reset times, the value is easy to deduce—it is equal to pai
We highlight this important result

Theorem 4.1 (Floating rate value) The value of a floating 1are boud is equal to par
ar auy 1esel point

Proof: Tt ig simplest to prove this by working backwad using a running
present value argument Look fiist at the last reset point, 6 months before
maturity We know that the final payment, in 6 months, will be the face
value plus the 6-month rate of interest on this amount The present value
at the last reset point is obtained by discounting the total final payment at
the 6-month rate—leading to the face value—so the present value is par at
that point Now move back another 6 months to the previous reset point
The present value there is found by discounting the sum of the next present
value and the next coupon payment, again leading to a value of pur We can
continue this argument back to time zeio

4.8 DURATION

The concept of duration presented in Chapter 3, Section 3 5, can be extended to a term
structure framewotk We recall that duration is a measute of interest rate sensitivity,
which in the eariier development was expressed as sensitivity with respect to yield In
the term structure {ramework, yield is not a fundamental quantity, but a different, yet
similar, measwe of risk can be constructed

The alternative is to consider parallet shifts in the spot rate curve Spécifically,
given the spot rates sg, $2,  , 3, we imagine that these rates all change logeémx by an
additive amount A Hence the new spot rates are s;+A, sa+A, , s,-+A This is a hypo-
thetical insranianeons change, {or the new spot rates are for the same periods as before
This parallel shift of the spot rate curve generalizes a change in the yicld because if the
spot rate curve wete flat, all spot vates would be equal to the comimon value of yield
Figure 4 3 shows the shifted spot rate curve in the case of 2 continuous spot rate cuive

Given this notion of a potential change in spot rates, we then can measure the
sensitivity of price with respect to the change

Fisher—Weil Duration

The details wotk out most wnicely for the case of continuous compounding, and we
shall present that case first Given a cash flow sequence (v, v,, v, . ,x,) and the
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Spot rate

FIGURE 4.3 Shifted spot rate curves. The
Spot + A original spot rate curve is the middie curve,
Spot This curve is shifled upward and downward
Spot — A by an amount A to oblain the other curves It is

possible to immunize a portiolio against such
shifts for small values of A

X

Years

spot rate curve s, fg < 1 < 1, the present value is

"
PV =3y el
i==(}

The Fisher~Weil duration is then defined as

l n
o= 32
PV i=0

Note that this conesponds exactly to the geneial definition of duration as a present-
value-weighted average of the cash flow times Clearly Dgw has the units of time and
satisfies 1y < D < 1, when ali x; 20

We now consider the sensitivity ol price (present value) to a paralilel shift of the
yield curve and show that it is determined by the Fisher-Weil duration For arbitrary
A the price is

n
PO) =Y xe e
i=0
We then difterentiate to find

n

so immediately we find that the relative price sensitivity is

i dP(O)

PO “ar

This essentially duplicates the formula that holds for yield sensitivity presented in
Chapter 3

= —Dpw

Fisher-Weil formulas Under continuous compounding, ihe Fisher-Weil duration of

m a cash flow steam (x,, X, LX) i

l L
- o g™
Dew = PV g’v»‘:,f
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where PV denotes the present value of the stream If all spot rates change 10 3, + A,
i=0,1,2, ,n, the corresponding present value funcrion P (L) satisfies
I dr)

— L e D
P dx w

Discrete-Time Compounding®

Now we work out the details under the convention of compounding s times per year
The spot rate in period % is 3; (expressed as a yealy 1ate) Again, we have a cash
flow stream (g, vi, ¥a, , ¥y (whete the indexing is by period) The price is
- s+ A\
PY=) % (1 + ‘—)
m
k=0

We then find that

dP(0) _ dP())

dr da

" .
k spy—krh

= —| =) (1 + —)

o f= \m n

We can relate this to a duiation measure by dividing by —P(0) Thus we define

Do = 1 dP0) Yo (e /mxg (1 s fmy~ 4D
CTTPO) Td T S gults/myE

We term the quantity D the quasi-modified duration. It does have the units ol time;
however, it is not exactly an average of the cash flow times because (1 +)k/ul)_‘“’”
appears in the numerator instead of (i-s;/m)™*, which is the discount tactor There is
an extra factor of (H—,sk/m)_‘ in each numerator term In the earlier case, whete §; was
constant for ail &, it was possible to pull this extia term outside the summation sign
That led to modified duration Here such a step is not possible, since the extra factor
depends on k, so we call this rather cumbersome expression by an equally cumbersome
name—the quasi-modified duration It does give the relative price sensitivity to a
parailel shift in the spot rate curve An example is given in the next section

43)

Quasi-modified duration Under compounding w times pet vear, the quasi-modified
duration of a cash flow stieaun (vo, vy, R R

[ sp\—+D

oS (£)n(+2)
7 py ; u w
whete PV denotes the pieseut value of the streawr If all spot 1ates chauge to s + A,
k=172 u the correspouding preseut valne fimetion P()) sotisfies
I dP)
PO da ¢

Duration is used extensively by investors and professional bond portfotio man-
ageis It serves as a convenient and accurate proxy for intetest rate risk Frequently
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an institution specifies a guideline that duration should not exceed a certain level, or
sometimes a target duration figure is prescribed

4.9 IMMUNIZATION

The term structure of interest rates leads ditectly to a new, more robust method foi
portfolio immunization This new method does not depend on selecting bonds with
a conumnon yield, as in Chapter 3; indeed, yield does not even enter the calculations
The process is best explained through an example

Example 4.8 (A million dollar obligation) Suppose that we have a $1 milifon
obligation payable at the end of 5 years, and we wish to invest enough money today
to meet this futuie obligation We wish to do this in a way that provides a measure
of protection against interest rate risk To solve this problem, we first determine the
current spot rate curve A hypothetical spot iate curve s; is shown as the column
tabeled spot in Table 4 4

We use a yearly compounding convention in this example in order to save space
in the table We decide to invest in two bonds described as follows: By is a 12-year
6% bond with price 65 95 (in decimal form), and B> is a 5-year 10% bond with price
101.66. The prices of these bonds ate consistent with the spot rates; and the details
of the price calculation e given in Table 4 4 The cash flows are multiplied by the
discount factots (column ), and the resulits are listed and sumimed in columns headed
PV, and PV, [or the two bonds

TABLE 4.4
Worksheet for Immunization Problem
Year Spot d B PV, —PV) By, PV, PV,
1 767 929 6 557 518 10 929 863
2 827 833 6 512 945 10 853 1576
3 881 776 6 466 1284 10 776 2140
4 93t 700 6 420 1538 10 700 2563
5 975 628 6 377 1717 110 6908 31473
6 1016 560 6 336 1829
7 1052 496 6 298 1887
8 1085 439 6 263 1899
9 1115 386 6 232 1876
10 1142 339 [ 203 1826
toler 297 6 178 1735
12 1189 260 106 27353 29526
Toual 6595 46600 10166 38615
Duration 707 380

The present values and durntions of two bonds are faind oy nowsformations of
cash flows
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We decide to immunize against a paraliel shift in the spot rate curve We calculate
dP/dx, denoted by —PV’ in Table 4 4, by multiplying each cash flow by ¢ and by
(143,)"*" and then summing these The quasi-modified duration is then the quotient
of these two numbers; that is, it equals —(1/P) dP/dx The quasi-modified duration
of bond 1 is, accordingly, 466/65 95 =7 (7

We also find the present value of the obligation to be $627,903 01 and the
correspouding quasi-modified dutation is 5/(1 + s5) = 4 56

To determine the appropriate portfolio we let x; and xa denote the number of
units of bonds 1 and 2, respectively, in the poitfolio (assuming, for simplicity, face
values of $100) We tiien solve the two equations’

Pixi + Prxa = PV
PiDixy+ PsDyx; = PV D

where the D’s aie tiie quasi-modified durations, This leads to xy = 2,208 17 and x; =
4,744 03 We round the solutions to determine thie portfolio The results are shown
in the first column of Table 4 5, where it is clear that, to within rounding eiror, the
present value condition is met

To check thie immunization properties of this portfolio we change the spot rate
curve by adding 1% to eacii of the spot 1ate numbers in the first column of Table 4 4
Using these new spot rates, we can again calculate all present values Likewise, we
subtract 1% from the spot rates and caiculate present values. The resuits are shown in
the final two columus of Tabie 4 5 These resuits show that the immunization property
does hold: tie change iu net present value is only a second-order effect

TABLE 4.5
immunization Resulis
Lambda
[1] 1% 1%

Bond 1

Shares 2,208 00 2,208 00 2,208 00

Price 6594 5100 70 84

Vaiue 145,602 14 | 135,805 94 156,420 00
Bond 2

Shares 4,744 00 4,744 00 4,744 00

Price 101 65 97 89 105 62

Value 482,248 51 | 464,392 47 501,042 18
Obligation value 627,903 01 | 600,063 63 657,306 77
Bonds minus obligation —$5237 513478 $15540

The overall portfalio of bonds and obligations is imaumized against parailel
shifts in the spol rase curve

3 Alrernatively, but cquivaleutly onc could sojve the equations V; + Va = PV and Dy Vi + DaVa =PV x D
Then tet xy = Vi /Py and xa = Vo/ Py
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Of course, the portfolio is immunized only against parallel shifts in the spot
rate curve It is easy to develop other immunization procedures, which protect against
other kinds of shifts as well Such procedures are discussed in the exercises

4.10 SUMMARY

If obseived yield is plotted as a function of time to maturity for a variety of bonds
within a fixed risk class, the result is a scatter of points that can be approximated by a
curve-—the yield curve This curve typically rises gradually with incieasing maturity,
teflecting the fact that long maturity bonds typicaily offer higher yieids than short
matuiity bonds The shape of the yield curve varies continually, and occasionally
it may take on an inverted shaped, wheie yields decrease as the time to matuiity
increases

Fixed-income secutities are best undeistood thiough the concept of the term
structure of interest rates In this structure there is, at any time, a specified interest
rate for every maturity date This is the 1ate, expressed on an annual basis, that would
apply to a zero-coupon bond of thie specified maturity These underlying interest rates
are termed spot rates, and if they aie plotted as a function of time to maturity, they
determine a spot rate curve, similar in character to the yield curve However, spot
rates are fundamental to the whole interest rate market—unlike yields, which depend
on the payout pattern of the particular bonds used to calculate them Once spot rates
are determined, it is straightforward to define discount factors for every time, and the
present value of a future cash flow is found by discounting that cash flow by the
appropriate discount factor Likewise, the present value of a cash flow stieam is found
by summing the present values of the individual flow elements

A series of {forward rates can be inferred from a spot rate cuive The forward rate
between future times 1, and 12 is the interest rate that would be charged for borrowing
money at time 1, and repaying it at time -, but at terms artanged today These forward
rates are impottant components of term structure theory

There are three main explanations of the characteristic upward sloping spot rate
curve The first is expectations theory It asserts that the current implied forward
rates for | year ahead—that is, the forward rates from year 1 to future dates—are
good estimates of next year’s spot rates 1f these estimates are higher than today’s
values, the current spot 1ate cuive must slope upwad The second explanation is
liquidity preference thcory. It asserts that people prefer short-teim maturities to long-
term maturities because the interest rate tisk is lower with short-term maturities This
preference drives up the prices of short-tetm maturities The third explanation is the
market segmentation theory Accoiding to this theoty, there me separate supply and
demand forces in every range of maturities, and prices aic determined in each range
by these forces Hence the interest 1ate within any maturity range is more or less
independent of that in other ranges Overall it is believed that the factors in all three
of these explanations play a role in the determination of the observed spot rate cuive

Expectations theory forms the basis of the concept of expectations dynamics,
which is a particular model of how spot 1ates might change with time According
to expectations dynamics, next yeai's spot rates will be equal to the cuirent implied
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forward rates for { year ahead—the rates between year { and future years In other
wotds, the forward rates for 1 year ahead actually will be realized in | year This
prediction can be repeated for the next year, and so on This means that all future
spot rates are determined by the set of current forward rates Expectations dynamics is
onty a moded, and futuie rates will most likely deviate front the values it delivers; but
it provides a logical simple prediction of futuie rates As a special case, if the current
spot rate curve is flat—say, at 12%—then according to expectations dynamics, the
spot 1ate curve next year will also be flat at 12%. The invariance theorem states that
if spot 1ates evolve according to expectations dynamics, the interest earned on funds
committed to the interest rate market for several years is independent of how those
funds are invested

Present value can be calculated by the running method, which staits from the
final cash flow and works backward toward the first cash flow At any stage k of the
process, the present value is calculated by discounting the next period’s present value
using the short rate at time & that is implied by the term structure This backward
moving method of evaluation is fundamentai to advanced methods of calculation in
various areas of investment science

Duration can be extended to the term structure framework The key idea is to
consider parallel shifts ol the spot 1ate cuive, shilts defined by adding a constant A
to every spot tate Dutation is then defined as (—1/P) dP/dA evaluated at A = 0
Fisher-Weil duration is based on continuous-time compounding, which leads to a
simple lormula In discrete time, the appropriate, somewhat complicated formula is
termed quasi-modified duration

Once duration is defined, it is possible to extend the process of immunization
1o the tern structure framework. A portfolio of assets designed to fund a stream of
obligations can be immunized against a parallel shift in the spot rate curve by matching
both the preseut values and the durations of the assets and the obligations

-

(One forward rate)  1f the spot 1ates o1 | and 2 years are s = 6 3% and s, = 6 9%, what
is the forward rate f.?

i)

. (Spot update) Given the (ycaily) spot rate cutve s = (50, 53,56,58,60, 6 1), find the
spot rate curve lot nexi year

3. (Construction of a zero) Consider wo S-year bonds: one has 4 9% coupon and sells
tor (01 00; the other has a 7% coupon and sells for 9320 Find the piice of a S-year
zero-coupon bond

=

(Spot rate project®) ltis Novembe: 5 in the year 2011 The bond quotations of Tablc 46
are available Assume that all bonds make semiannual coupon payments on the 15th of the
month The tractional part of a bond’s price is quoted in £/32ad"s Estimate the (continuous-
time) teim structure {n the torn of a 4th-order potynomial,

1 =ap+at+ uzI: + a_;l" + a.;l"
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TABLE 4.6
Bond Quotes

Coupon Maturity  Ask price

63 | Feb-2012 | 100:0
9§ | Feb-2012 | 100:22
73 | Aug-2012 | 100:24
8% | Aug2012 | lol:l
8{ | Feb-2013 | 1017
8% | Feb-2013 | 10112
8 Aug-2013 100:26
83 | Aug-2013 | 021
67 | Feb-2014 | 985
81 | Feb-2014 | 1029
63 | Aug-20i4| 97:13
8% | Aug-2014 | 101:23
73 | Feb-2015 | 99:5
11} | Feb-2015 | 109:4
81 Aug-2015 | 101:13
104 | Aug-2015 | 107:27
7% | Feb-2016 | 99:13
8% | Feb-2016 | 103:0

where ¢ i time in units of years from today The discount rate for cash flows at time 1 is
accordingly d(r) = ™™ Recall that accrued interest must be added to the price quoted
to get the total price Estimate the coefficients of the potynomial by minimizing the sum
of squared errors between the total priee and the price predicted by the estimated term
structure curve Plot the curve and give the five polynomnial coefficients

. (Instantaneous rateso) Let s(t), 0 <t < oo, denote a spot rate curve; that is, the present

value of a dollar to be received at time 1 is e=*™ For f; < 2, let [ {1y, 1) be the forward
rate between 7y and f, implied by the given spot rate curve

{a} Find an expression for f(n, n)

(b) Let 1 (f) = limy,_, f(r,2) We can call 7 (¢) the instantaneous interest rate at time 7
Show that 7 (1) = s(1) + s'(t )

(¢) Suppose an amount ¥y is invested in a bank account at 7 = 0 which pays the instan-
taneous rate of interest 1 (f) at all ¢+ (compounded) Then the bunk balance x(r) will
satisfy de(r)/dr =1 (1)x(r) Find an expression for x(¢) [Hint Recall in general that
vdz + zdv == d(v2)

(Discount conversion) At time zero the one-period discount rates dy \,dy 2, dz 3, . dsg
are known to be 0950, 0940, 0932, 0925, 0919, 0913 Find the time zero discount
factors doy, dy2,  ,dys
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7. (Bond taxes) An investor is considering the purchase of 10-yea: US Treasuty bouds and
plans to hold them to matuiity Fedeial taxes on coupons must be paid duting the year they
are received, and tax inust also he paid on the capital gain tealized at mawity (defined as
the difference between face value and original price) Fedeial bonds are exempt from state
taxes This investoi's federal tax bracket rate is ¢ = 30%, as it is for most individuals
There are two bonds that meet the iuvestor’s tequirements Bond 1 is a 10-yeai, 10% bond
with a price (in decimal foim) of Py =92 21 Bond 2 is a 10-yeas, 7% bond with a price
of P, =75 84 Based on the price information contained in those two bonds, the investor
would like to compute the theoretical price of a hypothetical 10-yeai zero-coupou bond
that hact no coupon payineits and required tax payment only at matutity equal in amount to
30% of the reatized capital gain (the face value minus the origiual price) This theoretical
price should be such that the price of this bond and those of bonds | and 2 are mutually
consistent on an after-tax basis Find this theoretical price, and show that it does not depend
on the tax rate 1 (Assume all cash flows occus at the end of each year)

%

. (Read zeros)  Actual zero-coupou bonds are taxed as it implied coupon paymeints were
made each yea: (or really every 6 months), so tax payments are made cach year, even
though no coupon paymeuts are received The implied coupon iate for a bond with # years
to miaturity is (100 — Py)/n, where P, is the purchase price 1f the bond is held to maturity,
there is no realized capital gain, since all gains are accounted for in the implied coupou
paynients Compute the theoretical price of a real 10-year zero-coupon bond This price is
to be consistent on an aftei-tax basis with the prices ol bonds | and 2 of Exercise 7

9. (Flat forwards) Show explicitly that if the spot rate cutve is flat [with s(k) =7 for all £},
then all forward rates also equal 7

10. (O:ange County blues) Orange County managed an investment pool into which several
municipalitics made short-tein1 investments A total of $7 5 biltion was invested in this pool,
and this ntoney was used to purchase securities Using these sceurities as collateral, the pool
borrowed $12 5 billion from Wall Street brokeiages, and these funds were uscd to purchase
additional securitics The $20 billion total was invested primmarily in long-teim fixed-incoute
securities 1o obtain a highet yield than the short-teim alternatives Fuitheimtore, as iuterest
rates stowly declined, as they did in 1992-1994, an even greater return was obtained
Things fell apart in 1994, when interest 1ates rose sharply

Hypothetically, asswine that initially the duration of the invested porttolio was
10 years, the short-term rute was 6%, the average coupon terest on the portfolio was
8 5% of face value, the cost of Wall Street money was 7%, and shoit-term interest rates
were talling at é% pet yeai
(a) What was the tate of return that pool lnvestois obiained duing this ety period?
Does it compare favorably with the 6% that these investors would have obtained by
investing normally in shoit-teiin securities?
(b) When interest rates had fallen two percentuge points and begin increasing at 2% per
year, what rate of return was obtained by the pool?

11. (Running PV example) A (yearly} cash flow stream is X = (~40, 10, 10, 10, 10, 10, 10)
The spot 1ates are those of Exeicise 2

(a) Find the current discount factors dy; and use them to determine the (net) present value
of tire stream
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12.

13.

(b} Find the series of expectutions dynamics short-rate discount factors and use the running
present value method to evaluate the stream

(Pure duration o) 1t is sometimes useful 1o introduce variations of the spot rates that
are different from an additive variation Let s” = (5,59, 3, $2) be an nitial spot
rate sequence (based on m periods per year) Let s(A) = (5;,5, %) be spot rates

paranteterized by A, where
L sy /mo= e+ 50 pa)
for k= 1,2, .1 Suppose a bond price P(A), is determined by thesc spot rates Show
that
1dp
Pdx
is u pure duration; that is, ind D and describe it in words

(Stream immunization®) A company faces a stream of obligations over the next 8 yeurs
as shown: where the nuntbers denote thousands of dollars The spot rate curve is thut of

Yem112345678

1500 900 600 500 100 100 100 50

Example 4 8 Find a portfolio, consisting of thie two bonds described in that example, that
has the same present value as the obligation streum and is immunized ugainst an additive
shift in the spot rate curve

(Morigage division) ORfen a mortgage payment stream is divided into # principal payment
streanl and are interest payment stream, und the 1wo streams are sold sepurately We shait
examine the componest vatues Consider a standurd mortgage of initial value M = M(0)
with equal periodic payments of ymount B If the mterest rate used is r per period, then
the mortguge principal afier the kth payment sutisfies

Mgky=t+nMk-1 -8

for k=01, This equation hus the solution
1 L
MY = (1+ 1) M = [(—1"—’—*} B
'

Let us suppose that the moriguge has » periods and B is chosen so that M(#} = 0; namely,
(L +1)'M

(b+1) =1

The kih payment has un interest component of

Iky=1MKk - 1)

B =

and a principal compovent of
Pky =B —1 M{k ~ 1)

(a) Find the present value V (ut rate 7} of the principal payment sirean in terms of
Ban M
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by Find V iuterms of 7, #, M only

(¢) What is the present value W ol the interest paymeut stream?

(d} What is the value of V as n — o00?

(¢) Which stream do you think has the targer duration—principul or interest?

. (Shon rate sensitivity) Gavin Jones sometimes has flashes of britliance He asked his

instructor if duration would measure the sensitivity of price 10 a parallel shifi in the short
rate curve (That ks, 7 ~ 1 +A ) His instructor smited and told him 10 work it out He wus
unsuccessiul at frst because his formulus became very complicated Finally he discovered
a stmplc sotution buscd on the running present vatwe method Specifically, letting Py be
the present value us seen ut time & and S; = d P, /dA|=0. the 5¢'s can be found recursively
by un equation of the form §;_; = —~a; P, + b S;, whilc the P;'s are found by the numning
method Find ¢ and By

For general discussions of term structure theory, sec [1~3] Critical analyses of the expections
cxplunation are contgined in (4} and [5} The liquidity preterence cxplunation is explored in [6}
Immunization in a term structure environment was originated in [7}
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APPLIED INTEREST RATE
ANALYSIS

Itimately, the practical purpose of investment science is to improve the invest-
ment process This process includes identification, selection, combination, and
ongoing management In the ideal case, these process components are inte-
grated and handled as a craft—a craft rooted in scientific principles and meaningful ex-
perience, and executed through a combination of intuition and formal problem-solving
procedures This chapter highfights the formal procedures for structuring investments
The previous chapters provide the groundwork for the analysis of a surpris-
ingly broad set of investment problems Indeed, interest rate theory alone provides
the basis of the vast majority of actual investment studies Therefore mastery of the
previous chaptes is adequate preparation to addvess a wide assortment of investment
situations—and appropriate analyses can be conducted with simple practical tools, such
as spreadsheet programs, ot more complex tools, such as parallel processor comput-
ers To illustrate the range of problems that can be meaningfully treated by the theory
developed in earlier chapters, this chapter considers a few typical probleni areas Our
treatment of these subjects is only introductory, {or indeed there are textbooks devoted
to each of these topics Neveutheless, the solid grounding of the previous chapters al-
lows us to enter these pioblems at a relatively high level, and to convey quickly the
essence of the subject We consider capital budgeting, bond portfolio construction,
managenient of dynamic investments, and valuation of firms from accounting data.
These subjects all represent important investment issues
To resolve an investment issue with quantitative methods, the issue must first be
formulated as a specific problem Theie are usuatly a number of ways to do this, but
frequently the best formulation is a version of optimization. It is entirely consistent
with general investment objectives to try to devise the “ideal” portfolio, to select the
“best” combination of piojects, to manage an investment to attain the “most favorable”
outcome, or to hedge asscts to attain the “least” cxposure to risk All of these are, at
least loosely, statements of optimization Indeed, optimization and investment seem
like perfect partnets We begin to explore the possibilities of this happy relationship
in this chapter
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5.1 CAPITAL BUDGETING

The capital allocation pioblem consists of allocating a (usually fixed) budget among a
number of investments or projects We distinguish between capital budgeting treated
here and portfolio probiems treated in the next section, although the two are related
Capital budgeting typically refers to allocation among projects or investments for
which there are not well-established markets and where the projects are Aumpy in that
they each require discrete lumps of cash (as opposed to secuiities, where virtually any
numbe: of shares can be purchased)

Capital budgeting problems often arise in a firm wheie several proposed projects
compete for funding The projects may diffe: considerably in their scale, thek cash
requirements, and their benefits The critical point, however, is that even if all pro-
posed projects offer attractive benefits, they cannot all be funded because of a budget
timitation Our earlier study of investment choice, in Chapter 2, focused on situations
where the budget was not fixed, and the choice options weie mutually exclusive, such
as the choice between a ved and a green car In capital budgeting the alternatives may
or may not be mutually exclusive, and budget is a definite limitation

Independent Projects

The simplest, and classic, type of a capital budgeting problem is that of selecting
from a list of independent projects The projects are independent in the sense that it
is ressonuble to select any combination from the list It is not a question of selecting
between a red and a green car; we can choose both i we have the required budget
Likewise, the value of one project does not depend on another pioject also being
funded This standard capital budgeting problem is quite easy to {ormulate
Suppose that there are m potential projects Let b; be the total benefit (usually
the net present value) of the ith project, and let ¢; denote its initial cost Finally, let C
be the total capital available—the budget For eachif = 1,2, . m we introduce the
zero—one variable v;, which is zero if the pioject is rejected and one if it is accepted
The problem is then that of solving
i
maximize ZI);\‘,
=1
m
subject to Z g, <C
i=1

=001 fori=12, ,m

This is teimed a zero—one programming problem, since the variables are zero-one
variables It is a formal representation of the {act that projects can either be selected or
not, but for those that are selected, both the benefits and the costs are ditectly additive

Thete is an easy way to obtain an apptoximate solution to this problem, which
is quite accurate in many cases We shail describe this method under the assumption
(which can be weakened) that cach project requires an initial outlay of funds (a negative
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cash flow) that is followed by a stream of benefits (a stream of positive cash flows)
We define the benefit—cost ratio as the ratio of the present worth of the benefits to the
magnitude of the initial cost We then rank projects in terms of this benefit—cost ratio
Projects with the highest ratios offer the best return per dollar invested-—the biggest
“bang for the buck”—and hence are excellent candidates for inclusion in the finat list
of selected projects. Once the projects are ranked this way, they are selected one at
a time, by order of the ranking, until no additional pioject can be inctuded without
violating the given budget This method will produce the best value for the amount
spent However, despite this property, the solution found by this approximate method
fs not always optimal since it may not use the entire available budget Better solutions
may be found by skipping over some high-cost projects so that other projects, with
almost as high a benefit—cost ratio, can be inctuded To obtain true optimality, the
zero-one optimization problem can be solved exactly by readily available software
progiams However, the simpler method based on the benefit—cost ratio is helpful in
a preliminary study. (Some spreadsheet packages have integer programming routines
suitable for modest-sized problems )

Example 5.1 (A sefection problem) During its annual budget planning meeting,
a small computer company has identified several proposals for independent projects
that could be initiated in the forthcoming year These projects inctude the purchase
of equipment, the design of new products, the lease of new facilities, and so forth.
The projects all requite an initial capital outlay in the coming year The company
management believes that it can make available up to $500,000 for these projects
The financial aspects of the projects are shown in Table 5 1

For each project the required initial outlay, the present worth of the benefits
(the present value of the remainder of the stream after the initial outlay), and the
ratio of these two are shown The piojects are already listed in order of decreas-
ing benefit—cost ratio According to the approximate method the company would se-
lect projects 1, 2, 3, 4, and 5 for a total expenditure of $370,000 and a total net

TABLE 5.1
Project Choices

Outlay Present worth Benefit-cost

Project ($1,000) ($1,000) ratio
1 100 300 300
2 20 50 250
3 150 350 233
4 50 110 220
5 50 100 200
6 150 250 1 67
7 150 200 133

The ontlays are made jmmediately. and the present worth is
the present vale of the funire benefits Projects with a ligh
benefli-cost ratio are desirable
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) FIGURES5.1 Spreadsheet for project choices
Present Optimal The x-values are listed in one column. These

Project Outlay worth NetPV x-walue Cost Optimal PV values are multiplied by the corresponding ele-

B VRN SO N

Totals

100
20
150
50
50
150
150

ments of outlay and net present value to obtain

300 200 I 100 200 the components of cost and aptimal present
50 30 0 0 0 value in the total package of projects A zero-
350 200 1 150 200 ane program (within the spreadsheet} adjusts
110 60 1 50 60 these x-values to find the optimal set
100 50 1 50 50
25f) 100 i 150 100
200 50 0 0 0
500 6o

ptesent value of $910,000 — $370,000 = $540,000 However, this solution is not
optimal

The propet method of solution is to formulate the problem as a zero—one op-
timization problem Accoidingly, we define the vantables v,, i == 1,2, V7, with v,
equal to | if it is to be selected and 0 if not The ptoblem is then

maximize 200v; + 30x2 + 200x; + 60xy +50vs -+ 100y + 5027
subject to 100v) 4 20vy + 150x; + 50v; +50vs + 150vg + 150vy < 500
vy =00 | foreachi

Note that the terms of the objective for maximization are present worth minus outlay——
present value

The problem and its solution are displayed in spreadsheet form in Figute 51 It
is seen that the solution is to select ptojects 1, 3, 4, 5, and 6 for a total expenditute
of $500,000 and a total net piesent value of $610,000 The approximate method does
not account for the fact that using ptoject 2 pirecludes the use ol the more costly, but
more benefictal, ptoject 6 Specifically, by ieplacing 2 by 6 the full budget can be
used and, hence, a greate: total benefit achieved

Interdependent Projects*

Sometimes vartous piojects are interdependent, the feasibility ol one being dependent
on whether othets are undertaken We founulate a ptoblem of this type by assuming
that there ate several independent goals, but each goal has mote than one possi-
ble method of implementation It is these tmplementation alternatives that define the
projects This formulation generalizes the problems studied in Chapter 2, wheie there
was only one goal (such as buying a uew cai) but sevetal ways to achieve that goal
The more general problem can be treated as a zeio-one piogtamming prohlem

As an example of the lotmulation using goals and projects, suppose a ttansporta-
tion authority wishes to constiuct a road between two cities Corresponding projects
might detail whether the road weie conciete or asphalt, two lanes o1 four, and so forth
Anothet, independent, goal might be the improvement of a bridge
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In general, assume that there are m goals and that associated with the ith goal
there are 11, possible projects Only one project can be selected for any goal As before,
there is a fixed available budget

We formulate this pioblem by intioducing the zero-one variables x;; for i =
£,2,  ,mand j =12, ,n The variable x,; equals 1 if goal / is chosen and
impfemented by project j; otherwise it is 0 The pioblem is then

m_

maximize E E bijxi,

=1 j=1
m

subject to ZZC,-J-.VU- <C
el je=i

i3

Z.\,j <ft, fori=1F2,..,m
j=t

rj=0o0rt foralliand j

The exclusivity of the individual projects is captured by the second set of constiaints—
one constraint for each objective This constraint states that the sum of the x,; variables
over j (the sum of the variables corresponding to projects associated with objective
i) must not exceed t Since the variables are all either 0 o1 {, this means that at most
one x;; variable can be I for any i In other words, at most one project associated
with goal j can be chosen

In general this is a more difficult zero~one programming problem than that for
independent projects This new problem has more constraints, hence it is not easy
to obtain a sotution by inspection In particular, the approximate soltution based on
benefit—cost ratios is not applicable However, even large-scale problems of this type
can be readily solved with modemn computers

Example 5.2 (County transportation choices) Suppose that the goals and specific
projects shown in Tuble 52 are being considered by the County Transportation Au-
thority

There are three independent goals and o totat of 10 piojects. Table 5 2 shows the
cost and the net present value (after the cost has been deducted) for each of the projects
The total available budget is $5 mittion To formulate this problem we intioduce a
zero—one variable for euch project (However, for simplicity we index these variables
consecutively from I thiough {0, rather than using the double indexing proceduie of the
generat formutation presented eartier ) The probfem formulation can be expressed as

maximize 4x; +5x3 + 3v3+4 3¢+ vs+ t Svg + 2.5x7 + 3xg + x9 + 2xpp
subject to 2vi+3xa+1 Sx3+2 2vg+ Sxs+H1 Sve+2 Svr+ g+ Gxg+xp<5
ntutotyy <t
vy 4+ <
Yoty

Yy, X2, X3, U4, X5, Xg, X7, ¥g, o, vyp = 0 o1 [.



TABLE 5.2
Transportation Alternatives

51

Cost

($1,000) ($1,000)

NPV

Road between Augen and Burger
I Concrete, 2 lanes
2 Concrete, 4 lanes
3 Asphalt, 2 lanes
4 Asphalt, 4 lanes
Bridge at Cay Road
5 Repair existing
6 Add lane
7 New structure
Traffic Control in Dowasberg
8 Traffic lights
9 Turn lanes
10 Underpass

2,000
3,000
1,500
2,200

500
1,500
2,500

100
600
1,000

4,000
5,000
3,000
4,300

1,000
1,500
2,500

300
1,000
2,000

At most one project can be sclected for eacl magor objective
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This problem and its solution are cleaily displayed by a spreadsheet, us iltustrated
in Figure 52 The solution is that projects 2, 5, and 10 should be selected, for a cost

of $4,500,000 and a total present value of $8,000,000

This method for treating dependencies among projects can be extended to sit-
uations where precedence relations apply (that is, where one project cannot be cho-
sen unless another is also chosen) and to capital budgeting problems with additionat

Cost NPV Optimal
Project ($1,000) ($1,000) x-values Cost NPV Goals
{ Concrete, 2 fanes 2,000 4,000 0 0 0
2 Concrete, 4 fanes 3,000 5,000 { 3,000 5,000
3 Asphati, 2 fanes 1,500 3,000 0 0 0
4 Asphafi, 4 lanes 2,200 4,300 0 0 f
5 Repair existing 500 1,000 { 500 1,000
6 Add fane 1,500 1,500 0 0 0
7 New structure 2,500 2,000 0 0 0 {
8 Traffic fighis {00 300 0 0 0
9 Turn fanes 600 1,000 0 0 0
{0 Underpass 1,000 2,000 { {,000 2,000 {
Totals 4300 8,000

FIGURE 5.2 Transportation spreadsheet. The x-values are shown in one cofumn; the corresponding
elements of cost and net present value in the next columns Also, the number of projects included
for each goal are shown in the final column These numbers are constrained 1o be fess than or equal

1o 1 The optimal x-vafues ate found by a zero-ane programming package
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financial constraints Typically these moie general problems merely impose additional
constraints among the variables

Although capital budgeting is a useful concept, its basic formulation is somewhat
flawed The hard budget constraint is inconsistent with the underlying assumption that
it is possible for the investor (or organization) to borrow unlimited funds at a given
interest rate Indeed, in theory one should carry out alf projects that have positive net
piesent value In practice, however, the assumption that an unlimited suppty of capital
is available at a fixed interest ratc does not hold A bank may impose a limited credit
line, or in a large organization investment decisions may be decentralized by passing
down budgets to individual organizational units It is therefore often useful to in fact
solve the capital budgeting problem However, it is usually worth solving the problem
for various values of the budget to measure the sensitivity of the bencfit to the budget
level

5.2 OPTIMAL PORTFOLIOS

Poitlolio optimization is another capital allocation problem, similar to capital bud-
geting The term optimal portfolio usually refeis to the construction of a portfolio
ol financial securities However, the term is also used more generally to refer to the
construction of any poitfolio of financial assets, including a “portfolio” of projects
When the assets are freely traded in a market, certain pricing relations apply that may
not apply to more general, nontraded assets This feature is an important distinction
that is highlighted by using the term portfolio optimization for problems involving
securitics

This section considers only portfolios of fixed-income instruments As we know,
a fixed-income instrument that returns cash at known points in time can be described
by listing the stream of promised cash puyments (and future cash outflows, if any)
Such an instrument can be thought of as corresponding to a list o1 a vector, with the
payments as components, defining an associated cash flow stream A portiolio is just a
combination of such streams, and can be represented as a combination of the individual
lists or vectois 1epresenting the securities Spreadsheets offer onc convenient way to
handle such combinations

The Cash Matching Problem

A simple optimal portfolio problem is the cash matching problem. To describe this
problem, suppose that we face 4 known sequence of [utuie monetary obligations
(If we manuage 1 pension fund, thesc obligations might represeat required annuity
payments ) We wish to invest now so that these obligations can be met as they occur;
and accordingly, we plan to purchuase bonds of various maturities and use the coupon
payments and redemption values to meet the obligations The simplest approach is to
design a portfolio that will, without [uture alteration, provide the necessaiy cash as
required



52 OPTIMAL PORTFOLIOS 109

To formulate this problem mathematicalty, we first establish u basic time period
length, with cash flows occurring at the end of these periods For example, we might
use G-month periods Our obligation is then a stream y = (¥, w1, , ¥y), starting
one period from now (We use boldtace letters to denote an entire stream ) Likewise
each bond has an associated cash flow stream of receipts, starting one period from
now If there are m bonds, we denote the stream associated with one unit of bond j
by ¢; = (cyj, ¢2j, »caj) The price of bond j is denoted by p; We denote by x,
the amount of bond j to be held in the portfolio The cash matching probtem is to
find the x;’s of minimum total cost that guaraniee that the obligations can be met
Specificatly,

m
minimize Z[)J.\‘J
=t
"
subject to Zcij vi>y fori=1,2,. ,n
=l

20 for j=1,2, ,m

The objective function to be minimized is the total cost of the portfolio, which is
equal to the sum of the prices of the bonds times the amounts purchased The main
set of constraints are the cash matching constraints For a given i the corresponding
constraint states that the total amount of cash generated in period i from all m bonds
must be at feast equal to the obligation in period i The final constraint rules out the
possibility of selling bonds short

This problem can be clearty visualized in terms of an anay of numbers in a
spreadsheet, as in the following example

Example 53 (A 6-year match) We wish to match cash obligations over a 6-year
period. We select 10 bonds for this purpose (and for simplicity all accounting is done
on a yearly basis) The cash flow structure of each bond is shown in the corresponding
column in Table 53 Below this column is the bond’s current price For example, the
first column represents a 0% bond that matures in 6 years This bond is selting at
109 The second to last cotumn shows the yearly cash requirements (or obligations)
for cash to be generated by the portfolio We formulate the standard cash matching
problem as a linear progiamming problem and solve for the optimal portfolio. (The
solution can be found easily by use of a standard linear programming package such as
those uvailable on some spreadsheet programs ) The solution is given in the bottom
row of Table 53 The actual cash generated by the portfolio is shown in the right-hand
column This cotumn is computed by multiplying each bond column ; by its solution
value x; and then summing these results The minimum total cost of the portfolio is
also indicated in the table.

Note that in two of the years extra cash, beyond what is required, is generated
This is because there are high requirements in some yeass, and so a large number of
bonds must be purchased that mature at those dates However, these bonds generate
coupon payments in eartier years and only a portion of these payments is needed to
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TABLE 5.3
Cash Matching Exampie

Yr| 1 2 3 4 5 6 7 8 9 10 Reqd Actual

1 10 7 8 6 7 5 10 8 7 100 100 171 74
2 10 7 8 6 7 5 10 8 107 200 20000
3 10 7 8 6 7 S 110 108 800 80000
4 10 7 8 6 7 105 100 119 34
5 19 7 8 16 107 800 800 00
6 | 110 107 108 1,200 1,200 00

p | 109 948 995 931 972 929 110 [04 102 952238114

x 0 112 0 681 0 0 0 63 028 0 Cost

A spreadsheet layont dearly shows tie probleny aud us solution In thiy example. the cash flow sireans
of 10 different bouds are shown. year by year. av 10 columuy in the atray Tle current price of eaclt
bond iy listed below the siream, and the amennt to be mciuded in a poiifolio is listed below the price
Casit flows 1equired to be geucrated by the portfolio are shovn w the pennliimate colmnn. aud those
acwally generated we shown in thie lost colunmt

meet obligations in those early years. A smoothe) set of cuash requirements would not
lend to such surpluses

There is a fundamental flaw in the cash matching probtem as formulated here, as
evidenced by the surpluses generated in our example The surpluses amount to extra
cash, which is essentially thrown away since il is not used to meet obligations and is not
jeinvested In reality, such suipluses would be immediately ieinvested in instruments
that were avaitable at that time Such reinvestment can be accommodated by a stight
modification of the problem formulation, but some asswnptions about the nature of
luture investment opportunities must be introduced The simplest i$ to assume that
extra cash can be carried forward at zero interest; that it can, so to speak, be put under
the mattress to be recovered when needed This flexibility is introduced by adjoining
artificial “bonds” having cash flow streams of the foom (0, ,0,—1, 1,0, ,0)
Such a bond is “purchased” in the yca with the —1 (since it absorbs cash) and is
“redecemed” the next yea: An even better formulation would altow surplus cash to be
invested in actual bonds, but to incoiporate this feature an assumption about future
interest 1ates (o1, equivatently, about future bond prices) must be made One logicat
appioach is to assume that prices fottow expectations dynamics based on the current
spot rate curve Then if 47 is the estimate of what the l-year inicrest rate will be a
year from now, which under expectations dynamics is the current forwaid 1ate f).2, a
bond of the form (0, —1, I +27,0, ,0) would be introduced The addition of such
future bonds allows surpluses to be reinvested, and this addition will lead to a different
solution than the simple cash matching solution given earlier

Other modifications to the basic cash matching problem are possible For ex-
ample, it the sums involved arc not large, then account might be made of the integer



53 DYNAMIC CASH FLOW PROCESSES 111

nature of the required solution; that is, the x, variables might be restricted to be
integers Other modifications combine immunization with cash matching

5.3 DYNAMIC CASH FLOW PROCESSES

To produce excellent 1esults, many investments require deliberate ongoing manage-
ment For example, the course of a project within a irm imight be guided by a series of
operational decisions Likewise, a porttolio of financiat instruments might (and should
be) modified systematically over time The selection of an appropiiate sequence of
uctions that affect an investment’s cash flow stieam is the problem of dynamic man-
agement

Imagine, for example, that you have purchased an oit wetl This is an investment
project, and to obtain good results from it, it must be carefully managed, In this case
you must decide, each month, whether to pump oit from your welt or not If you do
pump oil, you will incur operational costs and reccive revenue from the sale of oil,
leading to a profit; but you will also reduce the oil reserves Your current pumping
decision clearty influences the future possibilities of production If you betlieve that
current oil prices are low, you may wiselty choose not to pump now, but rather to save
the oit for a time of higher prices

Discussion of this type of probtem within the context of deterministic cash flow
streatns is especially useful—both because it is an important class of problems, and be-
cause the method used to solve these problems, dynamic programming, is used also in
Part 3 of the book This simpler setting provides a good foundation for that later work

Representation of Dynamic Choice

A deterministic investment ts defined by its cash flow stream, say, x = (xg, x|, X2, s
), but the magnitudes of the cash flows tn this stieam often depend on management
choices in a complex fashion. In order to solve dynamic management problems, we
need a way to represent the possible choices at each period, and the effect that those
choices have on future cash flows In short, we neced a dynamic model. There are
several mathematical structures that can be used to construct such a model, but the
simplest is a graph. In this structure, the time points at which cash flows occur are
represented by points along the horizontal direction, as usual In the vertical direction
above each such time point is laid out a set of nodes, which represent the diflerent
possible states or conditions of the process at that time Nodes from one time to the
next are connected by branches or ares. A branch represents a possible path from a
node at one time to another node at the next time Different branches correspond to
different management actions, which guide the course of the process Simple examples
of such graphs are that of a binomial tree and a binomial lattice, illustrated in
Figure 5 3(a) and (b) In such a tree there are exactly two branches leaving each node
The leftmost node corresponds to the situation at the initial time, the next vertical pair
of nodes represent the two possibilities at time 1, and so forth (In the figure only four
time points are shown )
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FIGURE 5.3 Graph representations. A tree is a gen-
eral way o represent dynamic choice

{a) Binomial tree (b) Binomial lattice

The best way to describe the meaning of the tree is to walk through an example
Let us again consider the management of the oil well you recently purchased At
any time you can either pump oil or not A node in the tree represents the condition
of the well, defined by the size of its reserves, the state of repair, and so forth To
model your choices as a tree, you should start at the leftmost node of the tree, which
represents the initial condition of the well You have only two choices at that time:
pump or don’t pump Assign one of these choices to an upward movement and the
other to a downward movement; suppose that pumping cotresponds to moving upward
and nonpumping cotresponds to moving downward At the next time point your well
is at one of the two nodes for that time Again you make a choice and move cither
up ot down As you make your decisions, you move through the tree, from left to
right, from node to node, along a particular path of branches The path is uniquely
determined by your choices; that is, the condition of the well through time and the
magnitude of your overall profit are determined by your choices and represented by
this unique path through the tree

Suppose, specifically, that the well has initial reserves of 10 million barrels
of oil Each year it is possible to pump out 10% of the cunent reserves, but to
do so a crew must be hited and paid However, if a crew is already on hand,
because it was used in the pievious year, the hiring expenses are avoided There-
fore, to calculate the profit that can be obtained in any year, it is necessary to
know the level of oil reserves and whether a crew is already on hand Hence we
label cach node of the tiee showing the icseive level and the status of a crew
For example, the label (9, YES) means that the reserves are 9,000,000 barrels and
there is a ctew on hand A complete tree for the two periods is shown in Fig-
ue 5 3a)

If crews can be assembled with no hiring cost, it is not necessary to keep
track of the crew status We can therefore drop one component from the node la-
bels and keep only the 1eserve level If we do that, some nodes that had distinct
labels in the original tree will now have identical labels In the example illustrated
in Figute 54, two of the nodes at the final time both have a reserve level of 9
(meaning 9 million barrels) Since the labels are identical, we can combine these
nodes into a single node, as shown in Figure 54(b) Ii the tree were extended for
additional time petiods, this combining effect would happen {requently, and as a



53 DYNAMIC CASH FLOW PROCESSES 113

(81, YES) 81

(9, YES) 9
(10, NO) ©, NO) (10) 9
9, YES)
(10)
(10, NO) {10)
(a) Binomial tiee (b) Binomial lattice

FIGURE5.4 Trees showing oil well states Pumping corresponds 1o an upward movement; ho pump-
ing corresponds to a downward movement The tree in (a) accounts for both the level of reserves
and the status of a crew if only the reserve levels affect the profit, some nodes combine, forming a
binomial lattice, as shown in (b)

result the tree couid be collapsed to a binomial lattice A typical binomial lattice is
shown in Figure 5.3(b) In such a graph, moving up and then down leads to the same
node as moving down and then up There are [ewer nodes in a binomial lattice than
in a binomial tree

In terms of the oil well, il the only relevant factor for determining profit is
the reserve level, it is clear that starting at any node, an upward movement in the
tree (corresponding to pumping) followed by a downward movement (corresponding
to not pumping) is identical in its influence on reserves to a downward movement
followed by an upward movement Both combinations deplete the reserves by the
same amount Hence a binomial lattice can be used to represent the management
choices, as in Figure 5 4(b)

We used a binomial ree or a binomial lattice for the oil well example, which
is appropriate when theie are only two possible choices at each time If there were
three choices, we could form a trinomial tree or a trinomial lattice, having three
branches emanating from cach node Clearly, any finite number of choices can be
accommodated (It is only reasonable to draw small trees on paper, but a computer
can handle farger tiees quite effectively, up to a point )

Cash Flows in Graphs

The description of the nodes of a graph as states of a process is only an intermediate
step in the repiesentation of a dynamic investment situation The essential part of
the final representation is an assignment of cash flows to the various branches of the
graph These cash flows are used to evaluate management alteinatives

In the first oil well example, where crew hiring costs are not zeto, suppose that
the cost of hiring a crew is $100,000 (This 1epresents just the initial hiring cost, not
the wages paid ) Suppose the profit {rom oil production is $5 00 per barrel Finally,
suppose that at the beginning of a year the level of reserves in the well is x Then
the net profit for a year of production is $5 x 10 x x — $100,000 if a crtew must be
hired, and $5 x 10 x v if a crew is already on hand We can enter these values on the
branches of the tee, indicating that much profit is attained if that branch is selected
These values are shown in Figure 5 5 in units of millions of dollars
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(81,YES) FIGURE 5.5 Oil well cash flow tree. The
cash flow corresponding to a decision is
listed on the branch corresponding to that
decision These cash flow values are deter-

9, NO) mined by the node state and the decision

(10, NO)
(9, YES)

(10, NO)
(10, NO)

Since only the cash flow values on the branches are important for analysis, it
would be possible (conceptually) to bypass the step of describing the nodes as states
of the process However, in practice the node description is important because the
cash flow values are determined from these descriptions by an accounting formula. If
someone gave us the tree with cash flow values specified on all branches, that would
be sufficient; we would not need the node descriptions In practice, someone must first
characterize the nodes, as we did earlier, so that the cash flows can be determined

In representations of this kind it must also be stated whether the cash flow of
a branch occurs at the beginning or at the end ol the corresponding time period In
reality, a branch cash flow is often spread out over the entire period, but the model
assigns a lump value at one end or the other (or sometimes a part at the beginning and
another part at the end) The choice may vary with the situation being represented

In some cases there is cash flow associated with the teymination of the process,
whose value varies with the final node achieved This is a final reward or salvage
value. These values are placed on the graph at the corresponding final nodes In the
oil well example, the final value might be the value for which the well could be sold.

5.4 OPTIMAL MANAGEMENT

Once we have a graph representation of the cash flow process associated with an
investment, we can apply the principles of earlier chapters to determine the optimal
management plan Each path through the tree determines a specific cash flow stream;
hence it is only necessary to select the path that is best Usually this is the path
that has the largest present value So one way to solve the problem is to list all
the possible streams, corresponding to all the possible paths, compute their respective
present values, and select the largest one We then manage the investment by following
the path that corresponds to that maximal present value

Although this method will work well {or small problems, it is plagued by the
curse of dimensionality for laige problems The number of possible paths in a tice
grows exponentially with the number of periods For example, in an n-period binomial
tree the number of nodes is 2"*' -1 So il 1 = 12 (say, } year of monthly decisions),
there are 8,191 possible paths And if there were 10 possible choices each month,
this figure would rise to [0 — I, which is beyond the capability of straightforward
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computation We can use the computational procedure of dynamic programming to
search much more efficiently

Running Dynamic Programming

Dynarmic programming solves a problem step by step, starting at the termination time
and working back to the beginning For this reason, dynamic piogiamming is some-
times characterized by the phrase, “it solves the problem backward

A special version of dynamic programming, based on the running present value
method of Section 4 6, is especially convemient for investment problems We call this
method r ing dynamic progr ing. It is the method that we develop here and
that is used throughout the text

Suppose an investment with a dynamic cash flow is represented by a graph as
described earlier For simplicity, we assume periods are 1 year in length, and we
use yearly compounding A path through the graph generates a cash flow stream
€0y ¢, 4 Cn—1 (With each flow occurting at the beginning of the period), correspond-
ing to the arcs that it passes along, and the path also determines a termination flow
V. at the final node The present value of this complete stream is

c1 3! Cu-1 Vu
V=t Torar b YA T aeay

where the s5;’s are the spot rates A path is defined by a particular series of decisions—
one choice at each node We wish to determine those choices that maximize the
resulting present value

In the running method, we use the one-period discount factors dy == 1/(1 +1¢),
whete 14 is the short 1ate 7¢ == f; (41, and we evaluate the present value step by step
In particular, in running dynamic progiamming we assign to each node a value equal
to the best 1unning present value that can be obtained from that node, neglecting all
previous cash flows For the ith node at time &, denoted by (&, i), the best running
value is called Vi, We reler to these values as V-values

The V-values at the final nodes are just the terminal values of the investment
process These values are clealy the present values—as seen at tine n—that can be
attained neglecting the past Hence the V-values at the final nodes are already given
as part of the problem description

The dynantic programming procedure next addresses the nodes at time 1 —1 For
any node j at time »# — 1, we pretend that the underlying investment process has taken
us to that node The decisions for previous nodes have already been made, and the
corresponding previous cash flows ¢y, ¢1, , ¢y-2 have alieady occurred Only one
decision remaius: we must determine which arc to tollow from node (n— 1, i) to some
final node at time n Since we can do nothing about past decisions (in this pretending
viewpoint), it is clear that we should select the arc that maximizes the present value
as seen at time n - | (the running present value) Specifically, it we index the arcs by
the node number a they reach at time n, we should look at the values ¢j_; + du Vi 4

(Hete ¢§_; is the cash flow associated with arc ¢ and V), , is the V-value at the node
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(53-1 +d, .V, 1) FIGURE 5.6  First recursive step of dynamic programming.

oy Vi1 Assurning Thal the first n — 1 steps of the process have been
completed, we evaluale the bes thal can be done for the
tasl slep For any node at time n — 1 we find the maximum
running present value from that nocde

to which atc @ leads ) After calculating these sums for every arc ¢ emanating from
node (n — 1, 1), we select the largest of these values and denote that value by V,.y;
This is the best running present value that can be attained from node (n — 1,/); and
hence it is the corect V-value This procedure, illustrated in Figure 5 6, is repeated
for each of the wodes at time 11 — 1

Next the same procedure is carried out at time n — 2 We agsume that the
investment process is at a particular node {n — 2, i) Each branch a emanating from
that node produces a cash llow and takes the process to a coresponding node a at
time n— 1 If c§_, is the cash flow associated with this chioice, the total contribution to
(tunning) present value, accounting for the future as well, is ¢§_, +d,.2V, 1., because
the running present value is equal to the current cash flow plus a discounted version
of the running present value of the next peiriod We compute these new values tor all
possible arcs and select the largest This maximal value is defined to be V.., This
procedure, ilustrated in Figure 57, is cairied out for every node at time 7 — 2

This proceduie is continued, wotking backward until tinie zeio is reached, where
there is only one node The V-value determined theie is the optimal present value as
seen at time zero, and hence it is the overall best value The optimal decisions and
cash flows can easily be determined as a by-product of the dynamic programming

Voo V,) FIGURE 5.7 Second stage of dynamic pro-
. gramming. Assuming that the first n—2 slages of
\ choa V. the process have been completed, we evaluale

the best running present value for the remaining
v o slages
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procedure, either by recording them at the nodes as the V-values are computed, ot by
working forward, using the known future V-values.

The running dynamic programming method can be wiitten very succinctly by
a recurrence relation Define ¢f; to be the cash flow generated by moving from node
(k,7) to node (k + 1, a) The recursion procedure is

Vi = maximize (e +diViyr o)

An example will make all of this clear

Examples

Example 5.4 (Fishing problem) Suppose that you own both a lake and a fishing
boat as an investment puckage You plan to profit by taking fish from the lake Each
season you decide either to fish or not to fish If you do not fish, the fish population
in the lake will flourish, and in fact it will double by the start of the next season It
you do fish, you will extract 70% of the fish that were in the lake at the beginning
of the season The fish that were not caught (and some before they are caught) will
reproduce, and the fish population at the beginning of the next season will be the same
as at the beginning of the current season So corresponding to whether you abstain
or fish, the fish population will cither double or remain the same, and you get eithel
nothing ot 70% of the beginning-season fish population The initial fish population is
10 tons Your profit is $1 per ton The interest rate is constant at 25%, which means
that the discount factor is 8 cuch year Unfortunately you have only thiee seasons to
fish The management problem is that of determining in which of those seasons you
should fish

The situation can be desctibed by the binomial lattice shown in Figure 58 The
nodes are marked with the fish population A lattice, 1ather than a tree, is appropriate
because only the fish population in the lake is relevant at any time The manper by
which that population was achieved has no etfect on future cash flows The value on

20 40 80 FIGURES.8 Fishing problem. The node values are the
0 0 tonnage of fish in the lake; the branch values are cash
flows
14 28
i0 20 40
0 0
7 i4
i0 ™~ 20
0
7
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a branch indicates the catch (and hence the cash flow) associated with that branch
Horizontal branches cortespond to no fishing and no catch, whereas downward directed
branches correspond to fishing

The problem is solved by working backward We assign the value of 0 to each
of the final nodes, since once we arc there we can no longer fish Then at each of the
nodes one step from the end we determine the maximum possible cash flow (Clearly,
we fish in every case ) This determines the cash flow received that season, and we
assume that we obtain that cash at the beginning of the season Hence we do not
discount the profit The value obtained is the (running) present value, as viewed from
that time These values are indicated on a copy of the lattice in Figuic 59

Next we back up one time period and calculate the maximum present values at
that time Foir example, for the node just to the right of the initial node, we have

V =nmax (8 x 28, 14+ 8 x 14)

The maximum is attained by the second choice, comesponding to the downwaid branch,
and hence V = 14 + 8 x 14 = 25.2. The discount rate of 1/1 25 = 8 is applicable
al every stage since the spot tate curve is flat (See Section 4 6 ) Finally, a similar
calculation is carried out for the initial node The wvalue there gives the maximum
present value The optimal path is the path determined by the optimal choices we
discovered in the procedure The optimal path {or this example is indicated in Fig-
urec 59 by the heavy line In words, the solution is not to fish the first season (to
let the fish population increase) and then fish the next two seasons (to harvest the
population)

The lattice structure can accommodate any finite number of branches emanating from a
node The limit of this kind of construction is a continuous lattice, having a continuum
of nodes at any stage and a continuum of possible decisions at any node For example,
in the case of the oil well discussed in the previous section, from a total reserve R
you might pump any amount z between, say, 0 and M, leading to a new 1eserve of

FIGURE 5.9 Calculations for fish problem. The
node values are now the optimat running present
values, found by working backward from the ter-
minai nodes The branch values are cash flows
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FIGURE 5.10 Continuous lattice. A continuous lattice is a
powerful way to represent situations where there is a con-
tinuum of possible choices every period

Time

)
[
S

R — z Your choice 7 is continuous, and so is the level of reserves This type of
lattice is illustrated schematically in Figure 5 10 Here each vertical line represents the
continuum of nodes possible at a particular time (At the initial time thee is only one
node ) The fan emanating from a node represents the fan of possibilities for traveling
10 a subsequent node Ouly one fan is indicated for each time, whereas actually there
is such a fan emanating from every point on the vertical line This dynamic structure
works very much like the finite-node case: The process starts at the initial node, and
one of the possible choices is selected This leads to a specific node point on the line
for the next time, and the process continues Optimizing such a process by dynamic
programming works in the reverse direction, just like in the finite case, but is made
more difficult by the fact that a V-value must be assigned to every point on each
node line Hence V is a tunction defined on the line In some cases this function has
a simple analytic form, and then the dynamic programming procedure can be carried
out explicitly An illustiation of this kind is shown in the next example, which, by the
way, is the next in our continuing sequence of gold mine examples

Example 5.5 (Complexico mine) The Complexico mine is for lease This mine has
been worked heavily and is approaching depletion 1t is becoming increasingly difficult
to extract rich ore In fact, if x {s the amount of gold remaining in the mine at the
beginning of a year, the cost to extract ; < x ounces of gold in that year is $500z%/x
(Note that as v decreases, it becomes more difficult to obtain gold ) 1t is estimated
that the current amount of gold temaining in the mine is xg = 50,000 ounces The
price of gold is $400/0z We are contemplating the purchase of a I0-year lease of the
Complexico mine The interest rate is 10% How much is this lease worth?

To solve this problem we must know how to operate the tmine optimally over
the 10-yeat period In particular, we must determine how much gold to mine each year
in otder to obtain the maximum present value To find this optimal operating plan, we
represent the mine by a continuous lattice, with the nodes at any time representing the
amount of gold remaining in the mine gt the beginning of that year We denote this
amount by x This amount detexmines the optimal value of the remaining lease from
that point on
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We index the time poinis by the number of years since the beginning of the
lease The initial time is O, the end of the first year is I, and so forth The end of
the lease is time 10 We also assume, for simplicity, that the cash flow from mining
operations is oblained at the beginning of the year

We begin by determining the value of a lease on the mine at time 9, when the
remaining deposit is xy Only | year remains on the lease, so the value is obtained by
maximizing the profit for that year If we extract zo ounces, the revenue from the sale
of the gold will be gzg, where g is the price of gold, and the cost of mining will be
500:3/,\'9 Hence the optimal vatue of the mine at time 9 if xo {s the remaining deposit
level is

Vo(ag) = max (gzg — 50023 /x9)
k]

We find the maximum by setting the derivative with 1espect to zg equal to zero This
yields!
zy = gxo/1,000
We substitute this value in the {formula for profit to find
g% 500g%xg g
Vg(.\‘g) eyt P Sl iyl
1,000 1,000x 1,000 2,000

We wiite this as Vo(vg) = Koxy, where Ky = g2/2,000 is a constant, Hence the
value of the lease is dircctly proportional to how much gold remains in the mine; the
propottionality factor is Ko

Next we back up and solve for Vy(vg) In this case we account for the profit
generated during the ninth year and also for the value that the lease will have at the
end of that year—a value thal depends on how much gold we leave in the mine
Hence,

Vi(xg) = max [gzg — 50023 /xs + d Valag — z8)]
z

Note that we have discounted the value associated with the mine at the next year by
4 factor ¢ As in the previous example, the discount rate is constant because the spot
rate curve is flat In this case o = 1/1 1

Using the explicit form for the function Vy, we may write

Va(vg) = max [gzx - 500:%/.\'3 + d Ko{vg — zg)]
B3
We again set the derivalive with respect to z3 equal to zero and obtain
oo (g —dKo)xg
“* 1,000

This value can be substituted into the expression for Vg to obtain
(€ —dKo)
Velxg) = | ———
slxe) [ 2,000

This is proportional to xg, and we may write it as Vg(xg) = Kyxg

+ 11K9i| Xy

'We should check that =y < xg. which docs hold with The values we use
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TABLE 5.4
K-Values for
Complexice Mine
Years | K-values
0 21381
1 21145
2 208 17
3 203 58
4 19713
5 187 96
6 17479
7 155 47
8 126 28
9 8000
We can continue backward in this way, determining the functions V5, Vg,  , W

Each of these functions will be of the form V;{x;) == K; v, It should be clear that the
same algebra applies at each step, and hence we have the recursive formula

_ g~ dKn?
T 2,000
If we use the specific values g = 400 and ¢ = 1/1 1, we begin the recusion with
Kg = g2/2,000 = 80 We can then easily solve for all the other values, as shown in
Tabie 5 4, working from the bottom to the top
It is the last value calculated (that is, Kq) that determines the value of the original
lease That value is determined by finding the valuc of the lease when there is 50,000
ounces of gold remaining Hence V;(50,000) = 213 82 x 50,000 = $10,691,000
The optimal plan is determined as a by-product of the dynamic progiamming
procedure At any time j, the amount of gold to extract is the vatue g, found in the
optimization problern Hence Zy = gxy/1,000 and zg = (g —d Ko)vg/1,000 In general,
I o= (g ~ d Ky, /1,000

- dK, i

Dynamic programming probiems using a continuous lattice do not always work
out as well ag in the preceding example, because it is not always possible to find
a simple expression for the V functions (The specific functional form for the cost
in the gold mine example led to the linear form for the V tunctions ) But dynamic
programming is a general problem-solving technique that has many variations and
many applications The general idea is used repeatedly in Parts 3 and 4 of this book

5.5 THE HARMONY THEOREM*

We know that there is a difference between the present value criterion for selecting
investment opportunities and the internal rate of return criterion, and that it is strongly



122 Chapter 5 APPLIED INTEREST RATE ANALYSIS

believed by theorists that the present value criterion is the better of the two, provided
that account is made for the entire cash flow stieam of the investment over all its
periods But it you are asked to consider an investment of a fixed amount of dollars
(say, in your friend’s new venture), you probably would not evaluate this proposition
in termns of present value; you would more Kkely focus on potential return. In fact, if
you do make the investment, you are likely to encourage your friend to maximize the
return on your investment, not the present value of the fiimy Your friend might insist
on maximizing present value Is there a conflict here?

We will try to shed some light on this important issue by working through a
hypothetical situation Suppose your friend has invented a new gismo for which he
holds the patent rights To profit from this invention, he must raise capital and carry out
certain operations The cost for the operations occurs immediately; the reward occuts
at the end of a year In other words, the cash flow stream has just two elements: a
negative amount now and a positive anount at the end of a year

Your friend recognizes that there are many different ways that he can operate his
venture, and these entail different costs and different rewards Hence there are many
possible cash flow streams corresponding to different operating plans He must select
one The possibilities can be described by points on a graph showing the reward (at
the end of a year) versus the curzent cost of operations, as in Figure 5 11{(a) Your
friend can select any one of the points

Suppose also that the 1-year interest rate is 7 == 10% The possibility of deposit-
ing money in the bank can be represented on the graph as a straight line with slope
1 10: the current deposit is a cost, and the reward is 1 10 times that amount This slope
will be used to evaluate the present value of a cash flow sneam

Reward o Reward .
A
.
Maximum
. slope
Slope =110 iy >
° Slope =110
B
. .
. .
e Cost e Cost
{a) Maximum present value {b) Maximum return

FIGURE 5.11 Comparison of criteria. (a} Plan A is selecied because it has the greatest preseni value It is the point
corresponding to the highest line of slope, equal 1o 110 (b} Plan B is selecied because it is the point on the line from
the otigih of grealest stope As the iexi demonstrates, the analysis in (b) is faulty, and when correcied, the maximum
return criterion will correspond to ihe preseni vahse criterion
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If your fiiend decides to maximize the present value of his venture, he will draw
lines with slopes I+ =110 and find the highest onc that goes thiough a possible
operating plan The plun that lies on that line is the optimal one This optimal line
and plan are shown in Figure 5 [ I{a); point A is the optimal plan Using a bank, it is
possible to move along the line thiough A In particular, it is possible to move all the
way down to the horizontal axis At this point, no money will be received next year,
but an amount P of net profit is obtained now

Suppose your friend asks you to invest in his venture, supplying ua portion of the
operating cost and getting thal portion of the reward You would measure the return
on your investment The operating point that achieves the maximum 1etwn is lound
by swinging a line upwaid, pivoting around the origin, reaching an opeiating point
of greatest possible slope The 1esult of this process is shown in Figure 5 [1(#) The
optimal point according to this ciiterion is the point B in the figure The maximum
retmn is the slope of this maximum-siope line Note that this slope is gieater than
[10% So point B achicves a higher 1ate of 1eturn than point A Its present value,
however, is just P’, which s less than P There seems Lo be a conflict

Here is how the conflict is resolved Youwr friend currently owns the rights to
his gismo He has not yet committed any money {or operations; but liis present value
analysis shows that he could go to the bank, take out a loan sulficient to cover the
expenses for plan A, and then, at the end of the year, he could pay back the loan and
pocket the profit of 1 10P (which is worth P now) He doesn’t caue about the rate of
return, since he is not investing any money; hie is just taking out a loan Alternatively,
he could borrow the money from you, but he would not pay you any moie than the
current interest rate

But you mve not being asked to make a loan; you arc being asked to invest in the
venture—to have owneiship in it As an extrerne case, suppose you friend asks you
to buy the whole ventuie You will then have the tights to the gismo He is willing
to stay on and operate the ventuie (il you provide the necessary operating costs), but
you witl have the powet to decide what operating plan to use

If your friend sells you the ventue, he will charge you an amount P because
that is what it would be worth to him it he kept ownership So if you decide to buy
the venture, the total expense of an operating plan is now P plus the actual opeiating
cost If you want to maximize your return, you will maximize rewaid/(cost+ P) You
can find this new best operating plan by swinging a line upward, pivoting aiound
the point — P, reaching the opeiating point with the greatest possible slope That
point will be point A, the point that maximized the present value [Look again at
Figuie 5 1 Ha) ] Alteinatively, once you ate the ownei, you might consider maxi-
mizing the prescnt value That will lead to port A as well Theretore it you decide
to buy the ventuic, and you pay the full value P, you will maximize the ietuin on
youi investment by operating under plan A; and your ieturn will be 110% (It does
not muatter if you decide to boirow some of the opeiating costs instead of fund-
ing them yowself; still you will want to opeiate at A, and your icturn will stili be
110% )

We summarize the preceding discussion by a general iesult that we term the
hatmouv thearem 1t states that there is hamiony between the piesent value ciiterion
and the rate of 1etwin criterion when account is made tor ownership
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Harmony theorem Current ownets of a venture should want to operate the venture
to maximize the present value of its cash flow siream Potential new owners, who nuist
pay the full value of their prospective share of the vennue, will want the company ro
operate in the same way, in order to maximize the renan on their investment

The harmony theorem is justification for operating a venture (such as a company)
in the way that maximizes the present value of the cash flow stream it generates Both
current owners and potenttal investors will agree on this policy

The presentation in this section considered only deterministic cash flow stieams
with two flows The harmony theorem generalizes to multiple periods and to random
streamns as weli—under certain conditions A muitiperiod generalization is discussed
in Exercise 10

5.6 VALUATION OF A FIRM*

The principles of cash flow analysis can be used to evaluate the worth of publicly
traded corporations; indeed almost all analytic valuation methods do use some form
of cash flow analysis However, as straightforward as that may sound, the general
tdea is subject to a variety of interpretations, each leading to a different result These
differences spring from the question of just which cash flows should form the basis of
analysis: should they be the dividends that flow to a stockholder, the net earnings to
the company, or the flow that could be captured by a single individual or group who
owned the company and was free to extract the cash according to the group’s own
policy? If these varfous quantities are defined by standard accounting practice, they
can lead to signifieantly different inferred firm values

Another weakness of this kind of analysis is that it is based on an assumption
that future cash flows are known deterministically, which, of course, is usually not the
case. Often uncertainty is recognized in an analysis, but treated in a simplistic way
(for instance, by increasing the interest rate used for discounting above the risk-free
rate). We discuss other, more solidly based approaches to evaluation under uncertainty
in later chapters This section assumes that the cash flows are deterministic

Dividend Discount Models

The owner of a share of stock in a company can expect to receive periodic dividends
Suppose that it s known that in year k, k = 1,2, , a dividend of D; will be
received If the interest rate (or the discount rate) ts fixed at r, it is reasonable o
assign a value of the firm to the stock holders as the present value of this dividend
stream;, namely,
D, Dy Dy
(e

147 +(l+:)2+(l+z)3+

This formula is straightforward, but it requires that the future dividends be known
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A popular way to specify dividends is to use the constant-growth dividend
model, where dividends grow at a constant rate g In particular, given D} and the
relation Diyr = (1 + ) Dy, the present value of the stream is

Dy Dil+g) | Di(l+g) (1 + gt
_ D 1 g) ! 8 Dy Z g)

Vo= - = +.
TTv AT T Tae et

This summation is similar to that of an annuity, except that there is the extra giowth
term in the numerator The summation will have finite value only if the dividend
growth rate is less than the 1ate used for discounting; that is, if ¢ < In that case we
have the explicit Gordon formula (sec Exercise 1) for the summation

Vo = =L
L 4
Note that, according to this formula, the value of a firm’s stock increases il g increases,
if the current dividend Dy increases, or if the discount rate ¢ decreases All of these
properties are intuitively clear
If we project Dy from a current dividend (already paid) of Dy, we can iewrite
(5 1) by including the fiist-year’s growth We highlight this as {ollows:

(51

Discounted growth formula Consider a dividend stream that grows at a 1ate of g
per petiod Assigny > g as the disconnt rate per period Then the present value of the
stream, starting one period from the present, witli the dividend Dy, is
_ (i+a)Dy

r-g

Vo (52)

where Dy is the current dividend

To use the constant-growth dividend model one must estimate the giowth 1ate
& and assign an appropriate value to the discount rate » Estimation of g can be based
on the history of the firm’s dividends and on future prospects Frequently a value is
assigned to s that is larger than the actual risk-free interest rate to reflect the idea that
uncertain cash flows should be discounted more heavily than certain cash flows (In
Chapters 15 and 16, we study better ways to account for uncertainty )

Example 5.6 (The XX Corporation) The XX Corporation has just paid a dividend
of $1 37M The company is expected to grow at 10% for the foreseeable futue, and
hence most analysts project a similar growth in dividends The discount rate used
for this type of company is 15% What is the vaiue of a share of stock in the XX

Corporation?
The total value of all shares is given by (5 2) Hence this value is
P37M < L10
Vo = e = $30, 140,000
TG0 :

Assume that there are 1 million shares outstanding Each share is worth $30 14 ac-
cording to this analysis
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Free Cash Flow*

A conceptual difficuity with the dividend discount method is that the dividend rate is
set by the board of directois of the firm, and this rate may not be representative of the
firm’s financial status A different perspective to valuation is obtained by imagining
that you weie the sole owner and could take out cash as it is earned From this
perspective the value of the fiim might be the discounted vaiue of the net eainings
stream

The net earnings of a firm is defined by accounting practice In the simplest case
it is just revenue minus cost, and then minus taxes; but things ate rarely this simple
Account must be made for depieciation of plant and equipment, payment of interest
on debt, taxes, and other factors The final net earnings figure may have little refation
to the cash flow that can be extiacted [rom the firm

Within the limitations of a deterministic approach, the best way to value a firm
is to determine the cash flow sticam of maximum present value that can be taken
out of the company and distributed to the owners The corresponding cash flow in
any year is termed that yea’s free cash flow (FCF) Roughly, free cash flow is the
cash generated through operations minus the investnients necessary to sustain those
operations and their anticipated growth

It is dilficult to obtain an accurate measure of the fiee cash flow First, it is
necessary to assess the firm’s potential for generating cash under various policies
Second, it is necessary to deterniine the optimal rate of investment-—the rate that will
genetate the cash flow stream of maxinunn present value Usually this optimal rate
is merely estimated; but since the relation between growth rate und present value is
complex, the estimated rate may be far fiom the true optimum We shall illustrate the
ideal process with a highly idealized example

Suppose that a company has gross earnings of Y, in year 1 and decides to invest
a portion « of this amount each year in order to attain earnings growth The growth
tate is determined by the function g(i), which is a property of the firm’s chaiacter-
istics On a (simplified) accounting basis, depreciation is a fraction @ of the current
capital account (@ ~ .10, for example) In this case the capital C, lTollows the formula
Cppy = (1 ~a)C, +uY, With these ideas we can set up a general income statement
for a firm, as shown in Table 55

Exampie 5.7 (Optimal growth) We can go further with the foregoing analysis and
calculate ¥, and C, in explicit form Since Y,41 = [1 + g(1)]Y,,, it is easy to see that
Y, = [1 +5()]"Y, Likewise, it can be shown that
~(1—a)" +[1 +g@)]"

() +a
If we ignote the two termis hiaving (1 — )" (since they will nearly cancel) we have
- uYolt +g(10)]”
T g +a

C,= (1 —a)'Co+uly

(G
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TABLE 5 5
Free Cash Flow

Income statement

Before-tax cash flow from operations Y,
Depreciation aC,
Taxable income Yy = aCy
Taxes (34%) INY, - aC,)
Afier-1ax income 66(Y, — aC,)
After-1ax cash flow (after-tax income plus depreciation) 66(Y, ~ aC,) +aC,
Sustaining investment wY,
Free cash flow 66(Y, — aC,) + aC, ~ Y,

Depreciation is assumed to be o times the amount in the capital acconnt

Putting the expressions fot Y, and C, in the bottom line of Table 55, we find
the free cash flow at time @ to be

FCF = [66 + 34w—l°;':r~u - n] {1 +gwl' (54

This is a growing geometric series We can use the Gordon formula to calculate its
present value at intetest rate ¢ This gives

PV=[66+3‘ L ! Yo (55)
+ gl

_rg(n)Jru

It is not easy to sce by inspection what value of « would be best Let us consider
another exampie

Exampie 5.8 (XX Corporation) Assume that the XX Corporation has current earn-
ings of Yp = $10 million, and the initial capital® is Co = $19 8 million The interest
tate is ¢+ = [5%, the depreciation factor is @ = 10, and the relation between invest-
ment rate and growth rate is g(n) = .12}l — ¢¥@~] Notice that g(a) = 0, reflecting
the fact that an investment rate of @ times earnings just keeps up with the depreciation
of capital

Using (5.5) we can find the value of the company for various choices of the
investment rate # For example, for # = 0, no investment, the company will slowly
shrink, and the present value under that policy will be $29 million It u = .10, the
company will just maintain its cutrent level, and the present value under that plan witl
be $39 6 million Or if u = 5, the present value will be $52 million

It is possible to maximize (5 5) (by trial and ertor or by a simple optimization
routine as is available in some spreadsheet packages) The result is # = 37 7% and
(1) =9 0% The corresponding present value is $58.3 mitlion This is the company
value

?This value of Cy will make the terms vy were canceled in deriving (5 3) cancel exactly
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Here is a question to consider carefully Suppose that during the first year, the
finm operates according to this plan, investing 37 7% of its gross eainings in new
capital Suppose also, lor simplicity, that no dividends are paid that year What will
be the value of the company after | year? Recall that duting this year, capital and
earnings expand by 9% Would you guess that the company value will inctease by
9% as well? Remember the harmony theotem Actually, the value will increase by
the rate of interest, which is 15% Investors must receive this 1ate, and they do The
reason this may seem strange is that we assumed that no dividends were paid The
free cash flow that was generated, but not taken out of the company, is held for the
year (itself earning 15%), and this must be added to the present value calculation of
future cash flows If the free cash {low generated in the fiist year were distiibuted as
dividends, the company value would inctease by 9%, but the total return to investors,
including the dividend and the value increase, again would be 15%

Although this example is highly idealized, it indicates the character of a full
valuation procedire (under an assumption of certainty) The {ree cash {low stream must
be projected, accounting for future opportunities Furthermore, this cash flow stream
must be optimized by proper selection of a capital investment policy Because the
impact of current investment on future free cash flow is compliex, effective optimization
requires the use of formal models and formal optimization techniques

5.7 SUMMARY

Interest tate theory is probably the most widely used financial tool It is used to deter-
mine the value of projects, to allocate money among alternatives, to design complex
bond portfolios, to determine how to manage investments eflectively, and even to
determine the value of a firm

Intetest rate theory is most powerlul when it is combined with general problem-
solving methods, particulatty methods of optimization With the aid of such miethods,
interest 1ate theory provides more than just a static measure of value; it guides us to
find the decision or structute with the highest value

One class of problems that can be approached with this combination is capitai
budgeting problems In the classic problem of this class, a fixed budget is to be
allocated among a set of independent projects in order to maximize net present value
This problem can be solved approximately by selecting projects with the highest
benefit-cost ratio The problem can be solved exactly by formulating it as a zero—
one optimization problem and using an integer programming package Mote complex
capital budgeting problems having dependencies among piojects can be also be solved
by the zeto-one prograniming method

The selection of a bond portiolio to meet cettain requirements can be conve-
niently formulated as an optimization problem—but there are several possible formu-
lations A particularly simple problem within this class is the cash-matching problem,
where a portfolio is constructed to generate a tequired cash fiow in each period This
formulation has the weakness that in some periods extra cash may be generated, beyond
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that required, and this extia cash is essentially wasted More complex formulations do
not have this weakness

To produce excellent 1esults, many investments 1equire deliberate ongoing man-
agement The relation between a series of management decisions and the resulting
cash flow stream frequently can be modeled as a graph (Especially useful types of
graphs are tiees and lattices ) In such a graph the nodes correspond to states of the
process, and a bianch leading from a node corresponds to a paiticular choice made
from that node Associated with each bianch is a cash flow value

Optimal dynamic management consists of following the special path of arcs
thiough the giaph that produces the greatest present valuc This optimal path can
be found efficiently by the method of dynamic progiamming A particularly useful
vetsion of dynamic programming for investment problems uses the running method
for evaluation of present value

Dynamic progiamming works backwaid in time For a problem with n time
periods, the 1unning version ol the procedure starts by finding the best deciston at
cach of the nodes i at time n ~ | and assigns a V-value, denoted by V,_;;, to each
such node This V-value is the optimal present value that could be obtained if the
investment process were initiated at that node To find that value, each possible arc
emanating fiom node i is examined The sum of the cash flow of the arc and the
one-petiod discounted V-value at the node veached by the arc is evaluated The V-
value of the originating node i is the maximum of those sums After completing this
procedure for all the nodes at i - 1, the procedure then steps back to the nodes at time
n -2 Optimal V-vatues are found for each of those nodes by a procedure that exactly
parallels that ot the nodes at n — | The procedure continues by woiking backward
through all time periods, and it ends when an optimal V-value is assigned to the initial
node at time zeio

When operating a venture it is appropriate to maximize the present value On
the other hand, investors may be most interested in the rate of 1eturn These criteria
might seem to be in conflict, but the haimony theotem states that the ciitetia are
equivalent under the assumption that investors pay the full value for theit ownership
of the venture

Present value analysis is commonly used to estimate the value ol a fiim. One
such procedure is the dividend discount method, whete the value to a stockholder is
assumed to be equal to the present value of the strcam of future dividend payments If
dividends are assumed to grow at a rate g per year, a simple formula gives the present
value of the 1esulting stream

The better method of fitm evaluation bases the evaluation on free cash fiow,
which is the amount of cash that can be taken out of the firm while maintaining optimal
opetations and investment strategies In idealized form, this method requites that the
present value of free cash flow be maximized with respect to all possible management
decisions, especially those telated to investment that produces eatnings growth

Valuation methods based on present value suffer the defect that tutute cash
flows ate treated as if they were known with cettainty, when in f{act they ae usuaily
uncertain  The deterministic theory is thetefore not adequate This defect is widely
recognized; and to compensate {or it, it is common practice to discount predicted, but
uncettain, cash flows at highei intetest 1ates than the risk-free 1ate There is some
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theoretical justification for this, but a completely consistent approach to uncertainty

is more subtle The exciting story of uncertainty in investment begins with the next
chapter and continues throughout the remainder of the text

EXERCISES

Eﬁg 1. (Capital budgeting) A firm is considering funding several proposed projects that have the
financial properties shown in Table 56 The available budget is $600,000 What set of
projects would be recommended by the approximate method based on benefit—ost ratios?
What is the optimal set of projects?

TABLE 5.6
Financial Properties of Proposed Projects
Outlay Present worth

Project ($1,000) ($1,000)

1 100 200

2 300 500

3 200 300

4 150 200

5 150 250

1o

(The road®) Refer to the transportation alternatives problem of Example 52 The bridge
at Cay Road is actually part of the road between Augen and Burger Therefore it is not
reasonable for the bridge to have fewer lanes than the road itself This means that if projects
2 or 4 are carried out, either projects 6 or 7 must also be carried out Formulate a zero—one
programnting problem that includes this additional requirement Solve the problem

w

. (Two-period budget®) A company has identified a mrmber of promising projects, as
indicated m Table 57 The cash flows for the first 2 years are shown (they are ail negative)

TABLE 5 7
A List of Projects

Cash flow

Project 1 2 NPV

1 -90 -58] 150
2 -80 80 200
3 -50 -100| 100
4 -20 -64| 100
5 -40  ~50( 120
6 -80 ~20 150
7 -80 -100 240
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The cash flows in later years are positive, and the net present value of each moject is shown
The company manageis have decided that they can allocate up to $250,000 in each ol the
first 2 yeas to fund these projects [f less than $250,000 is used the first year, the balance
can be invested at 1055 and used to augment the next year’s budget Which projects should
be funded?

(Bond matrix o) The cash matching and othey problems can be conveniently represented
in matrix form Suppose there are m bonds We deline for each bond j its associated yearly
cash flow stream (column) vector ¢, which is n-dimensional The yealy abligations are
likewise represented by the n-dimensional vector y We can stack the ¢, vectors side by
side to form the columns of a bond matrix C Finally we let p and x be m-dimensional
column vectors The cash matching problem can be expressed as

minimize p’x
subjectto Cx >y

x>0
(a) Identity C, y, p, and x in Table 53
(by Show that if all bonds are priced according to & common term structure of interest
rates, there is a vector v satisfying

C'v=p

What are the components of v?
(c) Suppose b is a vector whose components represent obligations in each period Show
that a portfolio x meeting these obligations exactly satisfies

Cx=b

(d) With x and v defined as before, show that the price of the porttolio x is v/'b Interpret
this result

(TIrinomial lattice) A trinomial lattice is a special case of a tinoinial tree From each
node three moves are possible: up, middle, and down The special lesture of the lattice
is that certain pairs of moves lead to identical nodes two periods in the future We can
express these equivalences as

up-down = down-up = middle-middie
middle-down = down-middle
middle~up = up~middle

Draw a trinomial lattice spanning three periods How many nodes does it contin? How
many nodes are contained in a full trinornial tree of the same number ol periods?

(A bond project®) You are the manager of XYZ Pension Fund On Noveinber 3, 2011,
XYZ must purchase a portfolio of US Treasury bonds to meet the fund's projected liabili-
ties in the future The bonds available at that time are those of Exercise 4 in Chapter 4 Short
selling is not allowed Following the procedure of the eaelier exercise, a 4th-order polyno-
mial estimate of the term structure is constructed as 7 (1) = @y + @ + at® + a3r® + agt?
The liabilities of XYZ are as listed in Table 58
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TABLE 5.8
Liabilities of XYC Pension
Fund

Liabilities Occur on 15th

Feb 2012 $2,000
Aug 2012 $20,000
Feb 2013 $0
Aug 2013 $25,000
Feb 2014 $1,000
Aug 2014 %0
Feb 2015 $20,000
Aug 2015 $1,000
Feb 2016 $15,000

(@) (Simple cash matching) Construct a minimum-cost liability-matching postfolio by
buying Treasury bonds assuming that excess periedic cash flows may be held only at
zero interest to meet future liabilities

(by (Complex cash matching) Construct a minimum-cost liability-matching portfolio by

buying Treasury bonds assuming that all excess periodic cash ows may be reinvested

at the expected interest rates (implied by the current term structure) to meet future
liabilities No borrowing is allowed

(Duration matching) Construct a minimum-cost portfolio with present value equal to

that of the liability strewm Immunize against a change in the term structure parameters

Do this for five cases Case | is to guard against a change in @y, case 2 to guard against

changes in oy and oy, and so on

{c

. (The fishing problem) Find the solution to the fishing problem of Example 5 4 when the

interest rate is 33% Are the decisions different than when the interest rate is 25%? At
what critical value of the discount factor does the solution change?

. (Complexico mine @) Consider the Complexico mine and assume a 10% constant interest

rate; also assume the price of gold is consiant at $400/0z

{a) Find the value of the mine (nota [0-year lease) if the current deposit is xy In particular,
how much is the mine worth initially when x; = 50,000 ounces? [Hirr Consider the
recursive equation for Ky as & — oo ]

(b For the [0-year lease considered in the text, how much gold remains in the mine at
the end of the lease; and how much is the mine worth at that time?

{¢) If the mine were not leased, but instesd operated optimally by an owner, what would
the mine be worth afier 10 years?

(Little Bear Qil) You have purchased a lease for the Little Bear Oil well This well
has initial reserves of 100 thousand barrels of oil In any year you have three choices
of how to operate the well: (@) you can not pump, in which case there is no operat-
ing cost and no change in oil reserves; () you can pump normally, in which case the
operating €ost is $30 thousand and you will pump out 20% of what the reserves were at
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the beginning ol the year; or (¢} you can use enhanced pumping using water pressure,
in which case the operating cost is $120 thousand and you will pump out 36% of what
the reserves were at the beginning of the year The price of oil is $10 per barrel and the
interest rate is 10% Assume that both your operating costs and the oil reventies come at
the beginning of the year (through advance sales) Your lease is for a petiod of 3 years

{@) Show how to set up a trinomial lattice to represent the possible states of the oil reserves
(b) What is the maximum present value of your profits, and what is the corresponding

optimal pumping strategy?

(Multiperiod harmony theorem o) The value of & finm is the maximum present value of
its possible cash flow streams This can be expressed s

\4»=mu-‘[\-n+~"l—+—i——+ +—i——]

P+ (I +)? (145
where the maximization is with respect to wll possible streams xy, vi, X, and the 5,’s
are the spot rates Let x5 be the first cash flow in the optiinal plan If the firm chooses an
arbitrary plan that results in an initial cash flow of v (distributed to the owners), the value
of the firm after | year is

Vit I
1) = max {xy + ——
P+ (T4 (t+ 5yt
where now that maximum is with respect to atl feasible cash flows that start with x¢ and
the 5;'s are the spot rates after | year An investor purchasing the firm at its {ull fair price
has initial cash flow xq — Vg and achieves a value of V,(xy) after | year Hence the |-year
total return to the investor is
Vilve)
PYRRACTR
Vi — va
Ihe investor would urge that v be chosen to maxintize R Call this value ¥y Assuming that
interest rates follow expectation dynamics and that V;(Xq) > 0, show that the maximum
R is 1+ sy and that this return is achieved by the same &y that determines Vg

{Growing annuity) Show that for g <,

(Lt
T+t 1 -y

[Hiul Let S be the vatue of the sum Note that S = 1/(I +r)+ S(1+ /(1 +1) ]

(Two-stage growth) [t is common practice in security analysis to modity the basic div-
idend growth model by allowing more than one stage of growth, with the growth factors
being different in the different stages As an example consider company Z, which currently
distributes dividends of $10M annuatly The dividends are expected to grow at the rate of
10% for the next 5 years and at a rate of 5% thereafter

{a) Using a dividend discount approach with an interest rate of 15%, what is the value of
the company?

(by Find a general formula tor the value of & company satisfying a two-stage growth modet
Assume a growth rate of G for & years, followed by a growth rate of g thereafter, and
an initial dividend of Dy
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ypically, when making an investment, the initial outlay ot capital is known, but

the amount to be returned is uncertain Such situations are studied in this part

ol the text In this part, however, we restrict attention to the case of a single
investment petiod: money is invested at the initial time, and payolf is attained at the
end of the period

The assumption that an investment situation comprises a single period is some-
times a good approximation. An investment in a zeto-coupon bond that will be held
to maturity is an example Another is an investment in a physical project that will not
provide payment until it is completed However, many common investments, such as
publicly traded stocks, are not tied to a single period, since they can be liquidated at
will and may retum dividends periodically Nevertheless, such investments are often
analyzed on a single period basis as a simplification; but this type of analysis should be
regarded only as a prelude to Parts 3 and 4 of the text, which are more compiehensive

This part of the text treats uncertainty with three different mathematical methods:
(1) mean—vaiiance analysis, (2) utility function analysis, and (3) arbitzage (or com-
parison) analysis Each of these methods is an important component of investment
science

This first chapter of the second part ol the text treats uncertainty by mean—
variance analysis This method uses probability theory only slightly, and leads to
convenient mathematical expressions and procedures Mean—variance analysis forms
the basis for the important capital asset pricing model discussed in Chapter 7

6.1 ASSET RETURN

An investment instrument that can be bought and sold is frequently called an asset.
We introduce a fundamental concept concerning such assets

137
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Suppose that you purchase an asset at time zero, and [ year later you sell the
asset The total return on your investment is defined to be

amount received
total TELUIN s e
amount invested
Or if Xg and X are, respectively, the amounts of money invested and received and
R is the total 1etum, then
Xy
Xo
Often, for simplicity, the term refrrn is used for total return
The rate of return is

R =

amount received — amount invested

rate of retum = -
amount invested

Or, again, if Xo and X are, respectively, the amounts of money invested and received
and  is the rate of return, then
X1~ Xo
o ——
Xo
The shorter expression rennn is also frequently used for the rate of return
We distinguish the two definitions by using uppei- or lowercase letters, such as
R and s, respectively, for total teturn and rate of ieturn; and usually the context makes
things clear if we use the shorthand phrase return
It is clear that the two notions are related by

®n

Re=144
and that (6 1) can be rewritten as
Xi={+1Xo

This shows that a :ate of return acts much like an interest ate.

Short Sales

Sometimes it is possible to sell an asset that you do not own through the process of
short selling, or shorting, the asset To do this, you borrow the asset from someone
who owns it (such as a brokerage firm) You then self the borrowed asset to someone
else, receiving an amount Xy At a later date, you repay your loan by purchasing the
asset for, say, X; and return the asset to your lender If the later amount X; is lower
than the original amount Xg, you will have made a profit of Xy — X; Hence shoit
selling is profitable if the asset price declines

Short selling is considered quite risky—even dangerous—by many investors
The reason is that the potential for loss is unlimited If the asset value increases, the
loss is Xy — Xp; since X can increase arbitrarily, so can the loss For this reason
(and others) short selling is prohibited within certain financial institutions, and it is
purposely avoided as a poficy by many individuals and institutions However, it is
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not universally forbidden, and there is, in fact, a considerable level of shott selling of
stock market securities

When short selling a stock, you are essentially duplicating the role of the issuing
corporation You sel the stock to raise immediate capital If the stock pays dividends
during the period that you have borrowed it, you too must pay that same dividend to
the person from whom you borrowed the stock

In practice, the pure process of short selling is supplemented by certain restric-
tions and safeguards (For example, you must post a sccurity deposit with the broker
from whom you borrowed the asset ) But for theoretical work, we typically assume
that the pure shorting of an asset is allowed

Let us determine the return associated with short selling We 1eceive Xg initially
and pav X later, so the outlay is —X, and the final receipt is —X;, and hence the
total return is
=X X
T -Xo Xy
The minus signs cancel out, so we obtain the same expression as that for purchasing
the asset Hence the return value R applies algebraically to both purchases and short
sales We can wiite this as

Xtz e~ XgR = ~Xo(l 1)

R

to show that final receipt is rclated to initial outlay

Example 6.1 (A short sale) Suppose I decide to short 100 shares of stock in company
CBA This stock is currently selling for $10 per share I borrow 100 shares from my
broker and sell these in the stock market, receiving $1,000. At the end of I year the
price of CBA hus dropped to $9 per share I buy back 100 shares for $900 and give
these shares to my broker to repay the original loan Because the stock price fell, this
has becn a tavorable transaction for me [ made a profit of $(00

Someone who puirchased the stock at the beginning of the year and sold it at the
end would have lost $100 That person would easily compute

900

Rz ——
1,000

=90

ot
900 ~ 1,000
T 1,000
The rate of return is clearly negative as » = ~10%. Shoiting converts 1 nega-
tive rate of return into a profit because the original investment is also negative For
my shotting activity on CBA my original outlay was ~$1,000; hence my profit is
~$1,000 x 7 == $100

=~ 10

It iy a bit strange to refer to a rate of return associated with the idealized shorting
procedure, since there is no initial commitment of resources Nevertheless, it is the
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[ N]
=

propet notion In practice, shorting does requite an initial commitment of margin, and
the proceeds from the initial sale are held until the short is cleared This modified
proceduze will have a different rate of return (See Exereise 1) For basic theoretical
work, however, we shall often assume that the idealized procedure is available

Portfolio Return

Suppose now that n different assets ate available We can form a master asset, or
portfolio, of these 1 assets Suppose that this is done by apportioning an amount Xy
among the 7 assets We then select amounts X, i = 1,2, ,n,suchthat Y ; Xo; =
Xo, where Xq; represents the amount invested in the ith asset, If we are allowed to
sell an asset short, then some of the Xo,’s can be negative; otherwise we testrict the
Xo,'s to be nonnegative

The amounts invested can be expressed as {ractions of the total investment Thus
we write

Xo = w, Xg, i=1,2, n

"

wheie w, 1§ the weight or fraction of asset i in the porttolio Clearly,

’Z'w,-zl

and some w,'s may be negative if short selling is allowed

Let R, denote the total return of asset / Then the amount of money geneiated at
the end of the petiod by the ith asset is R, Xo, = Riw,Xg The total amount received
by this portfolio at the end of the period is therefore ', R,w; X Hence we find
that the overall total return of the portfolio is

ZT:x Row, X =
R= WXO o Z w, R;

Eguivalently, since Y, w, = 1, we have

This is a basic result concerning returns, and so we highlight it here:

Portfolio return  Both the total return and the 1ate of return of a porgolio of assers
are equal 1o the weighted swun of the corresponding individnal asset 1eturns, with the
weight of an asset being its 1elative weight (in purchase cost) in the poitfolio, that is,

" n
R=Zw,-R,-v 1 =Zw""

i=1

An example calculation of portfolio weights and the associated expected rate of
return of the portfolio are shown in Table 6 |
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TABLE 6.1
Calculation of Portfofio Return

Number of Total  Weight in
Security shates  Price  cost portfolio
Jazz, Inc 100 $40 $4,000 025
Classical, Inc 400 $20 $8,000 050
Rock, Inc 200 $20 $4,000 025
Portfclio total values $16,000 100

Weight in Rate Weighted
Security portfolio of return rate
Jazz, Inc 25 17% 425%
Classical, Inc 50 13%% 6 50%
Rock, Inc 25 23% 575%
Portfolio rate of return 16 50%

The welght of a security in a portfolio is its proportion of 1otal cost
as shown in the upper yable These weights then detennine the rate
of return of the portfolio, as shown in the fower table

6.2 RANDOM VARIABLES

Frequently the amount of money to be obtained when selling an asset is uncertain at the
time of purchase. In that case the return is random and can be described in probabilistic
terms In preparation for the study of random retums, we briefly introduce some
concepts of probability (For more detail on basic probability theory, see Appendix A )

Suppose v is a random quantity that can take on any one of a finite number of
specific values, say, xj, X2, X, Assume further that associated with each possible
Y;, there is a probability p; that represents the telative chance of an occurrence of x;
The p;'s satisfy Y i, p, = 1 and p; > 0 for each i. Each p; can be thought of as the
relative frequency with which x; would occur if an experiment of observing x were
repeated infinitely often The quantity .v, characterized in this way before its value is
known, is calied a random variable.

A simple example is that of rolling an ordinary six-sided die, with the number
of spots obtained being x The six possibilities ate 1, 2, 3, 4, 5, 6, and each has
probability 1/6

It is common to display the probabilities associated with a random variable
graphically as a density The possible values of .v are indicated on the horizontal axis,
and the height of the line at a point represents the probability of that point Some
examples are shown in Figure 6.1. Figure 6 I(a) shows the density corresponding to
the outcome of a roll of a die, where the six possibilities each have a probability
of 1/6 Figure 6 1(b) shows a more geneial case with several possible outcomes of
various probabilities
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FIGURE 6.1 Probability distributions. Probability distributions are shown for (a) the outcome of a roll of a die,
(b) another random variable with a finite number of possible ocutcomes, and {c) a continucus random variable

X

If the outcome variable can take any real value in an interval as, for example, the
temperature of a 100m, a probability density function p(x) desctibes the probability
The probability that the variable’s value will lie in any segment of the line is equal to
the area of the vertical region bounded by this segment and the density function An
example is shown in Figure 6 1(¢)

Expected Value

The expected value of a random variable v is just the average value obtained by re-
garding the probabilitics as frequencies For the case of a finite number of possibilities,
it is defined as

m

E(v) = ZX,'[),'
i=t

For convenience E(x) is oflen denoted by ¥ Also the terms mean or mean value are
often used for the expected value So we say . has mean ¥

Example 6.2 (A roll of the die} The expected value of the number of spots on a
roll of a die is

La+243+4+5+6)=35

Note that the expected value is not necessarily a possible outcome of a roll

The expected value operation is the main operation used in piobability calcula-
tions, so it is usetul to note its basic propetties:

1. Certain value If y is a known value (not random), then E(y) =y
This states that the expected value of a nonrandom quantity is equal to the
quantity itself
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2. Linearity If y and z are random, ther E(av + Bz) = aE(y) + BE(2) for any teal
values of o and 8
This states that the expected (or mean) value of the sum of two 1andom vari-
ables is the sum of their corresponding means; and the mean value of the multiple
of a random variable is the same multiple of the original mean For example, the
expected value for the total number of spots on two dice is 35+35=7.

3. Nonnegativity 1f v is random but never less than zero, then E(x) > 0.
This is a sign-pteserving propetty

Variance

The expected value of a random vaiiable provides a useful summaty of the proba-
bilistic nature of the vaiiable However, typically one wants, in addition, to have a
measure of the degtee of possible deviation from the mean One such measure is the
variance.

Given a random variable v with expected value ¥, the quantity ¥ — 7V is itself
random, but has an expected value of zero. [ This is because E(v~7V) = E(v) ~E(¥) =
7~ = 0] The quantity (v — 7)* is always nonnegative and is large when v deviates
greatly from ¥ and small when it is near ¥ Ihe expected value of this squared
variable (y ~ 7)? is a useful measure of how much y tends to vary from its expected
value

In genetal, foi any random vaiiable y the vatiance of y is defined as

var(y) =E[(v = 7)7]
In mathematical expiessions, variance is represented by the symbol o® Thus we wiite
cr;-f = var(y), or if v is understood, we simply wiite o® = var(y)
We fiequently use the squate root of the variance, denoted by o and called the
standard deviation. It has the same units as the quantity y and is another measuie of
how much the vaijable is likely to deviate from its expected value Thus, formally,

a = JE[(v~P?]

There is a simple formula for variance that is useful in computations We note
that

var (xv) = E[(v - ©)?]
= B(3%) — 2E(x)T 4 ¥
= E(\%) - ¥ 62)

This result is used in the following example

Example 6.3 (A roll of the die) Let us compute the variance of the random variable
v defined as the number of spots obtained by a toll of a die. Recalling that v =3 5
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we find

s

E(Gv) ~ 7
S +4+9416+25+ 361~ (357 =292
Hence o0 = /292 =171.

Q
Il

1

Several Random Variables

Suppose we are interested in two random vaiiables, such as the outside temperature
and the barometric pressure To describe these random variables we must have prob-
abilities for all possible combinations of the two values If we denote the variables
by v and y, we must consider the possible pairs (v, ¥} Suppose . can take on the
possible values xy,x2, v, and y can take on the values vy, ya, . ., yu (By assum-
ing limited measurement precision, temperature and pressure can easily be assumed
to take on only a finite number of values.) Then we must specify the probabilities
pij for combinations (x,,v;) for i = 1,2, ,nand j = 1,2, ,m Hence for
temperature and barometric piessute we need the probabilities of all possible combi-
nations

If we are interested in three random variables, such as outside temperature, baro-
metric pressure, and humidity, we would need probabilities ovet all possible com-
binations of the thiee variables For more vaiiables, things get progressively more
complicated

There is an important special case where the probability description of several
variables simplifies Two random variables v and vy are said to be independent ran-
dom variables if the outcome probabilities for one vaiiable do not depend on the
outecome of the other For example, consider the roll of two dice The probability of
an outcomie of, say, 4 on the second die is 1/6, no matter what the outcome of the
first die Hence the two random variables corresponding to the spots on the two dice
are independent On the other hand, outside temperature and barometric pressure ate
not independent, since if pressure is high, temperature is more likely to be high as
well

Covariance

When consideiing two of more random vaiiables, their mutual dependence can be
summarized conveniently by their covariance.

Let x; and x, be two random variables with expected values ¥; and ¥, The
covariance of these variables is defined to be

covirr. 1) = E[(xy = ¥1) (32 — )]

The covariance of two random varigbles x and v is frequently denoted by o,y
Hence for tandom variables .v; and xa we write cov(sy, ¥3) = oy, ., o1, alternatively,
cov(ry, 32) = o2 Note that, by symmetty, op2 = oa;
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Analogous to (6 2), there is an alternative shorter formula for covariance that is
easily derived; namely,

cov(xy, x7) = E(rpaz) ~ 1% (63)

This is useful in computations.

If two random variables x| and v, have the property that gy = 0, then they
are said to be uncorrelated. This is the situation (roughly) where knowledge of the
value of one variable gives no information about the other lf two random vaiiables
are independent, then they are uncorrelated 1f g3 > 0, the two vaiiables are said to
be positively correlated. In this case, if one vaiiable is above its mean, the other is
likely to be above its mean as well On the other hand, if gy; < 0, the two variables
are said to be negatively correlated.

Figure 62 illustrates the concept of correlation by showing collections of 1an-
dom samples of two variables x and v under the conditions (a) positive correlation,
(b) negative correlation, and (¢) no correlation

The following result gives an important bound on the covariance

Covariance bound The covariance of nvo 1andom variables satisfies
|02l < o102

In the preceding inequality, if 612 == gy02, the variables are perfectly correlated.
In this situation, the covariance is as large as possible for the given variances 1f
one variable were a fixed positive multiple of the othei, the two would be perfectly

correlated Conversely, if 612 = —agy0,, the two vaiiables exhibit perfect negative
correlation.
Another useful construct is the correlation coefficient of two variables, defined
as
o2
pry = ——
G102

From the covariance bound above, we see that |p12} < |
Note that the variance of a random variable x is the covariance of that variable
with itself Hence we write 0¥ == g,

¥ Yy Y
° ° ° ° °
: ° - ° L
B o
® X el o ° X ° . X
° ° 3
° ° 3
B .,
(a) Positively correlated (b) Negatively correlated {©) Uncorrelated

FIGURE 6.2 Correlations of data. Samples are drawn of the pair of random variables x and y, and
these pairs are plotted on an x—y diagram A typical pattern of points obtained is shown in the three
cases: {a) positive correlation, (b) negative correlation, and (c) no correlation
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Variance of a Sum

When we know the covariance between two random variables, it is possible to compute
the variance of the sum of the variables This is a computation that is used frequently
in what follows

Suppose that x and y are random variables We have, by linearity, that E(x+y) =
T+ 75 Also by definition,

var (x +v) = E[a =T+ y -5

E[( - %] + 2E[(x - By = W] + E[(y - 7]
=0} +20,,+ 0} 64)

This formula is easy to remember because it looks similar to the standard expression
for the square of the sum of two algebiaic quantities We just substitute variance for
the square and the covariance for the product

An impottant special case is where the two variables are uncorrelated In that
case 02 = g% + a2

Example 6.4 (Two rolls of the die) Suppose that a die is rolled twice und the
average of the two numbers of spots is recorded as a quantity z What are the mean
value and the variance of z? We let 1 and v denote the values obtained on the fitst
and second rolls, respectively Then z = %(.\' + y) Also x and y are uncorrelated,
since the rolls of the die are independent Theiefore 7 = %(f-}—?) =35, and var(z) =
166 +02) = 292/2 = | 46 Hence o, = 1 208, which is somewhat smallei than the
corresponding | 71 value for a single roll

6.3 RANDOM RETURNS

When an asset is originally acquired, its rate of return is usually uncertain. Accordingly,
we consider the rate of return ¢ to be a random variable For analytical purposes we
shall, in this chapter, summarize the uncertainty of the rate of return by its expected
value (or mean) E(+) = F, by its variance E[(r _,—.z)] = ¢?, and by its covariance
with other assets of interest We can best illustrate how rates of return are repiesented
by considering a few examples

Example 6.5 (Wheel of fortune) Consider the wheel of fortune shown in Figure 6 3
It is unlike any wheel you are likely to find in an amusement park since its payoffs
are quite favorable 1f you bet $1 on the wheel, the payoff you receive is that shown
in the segment corresponding to the landing spot The chance of landing on a given
segment is proportional to the area of the segment For this wheel the probability of
each segment is 1/6
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FIGURE 6.3 Wheel of fortune. if you bel §1 on the wheel, you witt
receive the amount equal to the value shown in the segment under
the matker after the wheet is spun

Let us first compute the mean and the vaiiance of the payoff of the wheel We
denote the payoff of segment i by Q; Therefore the expected payoff is

E:ZpiQ, == é(4——l+2——1+3)=7/6

The variance can be found from the shoit formula (6.2) to be
0y =E(QY) —T = L6+ 144+ 1+9) - (7/6) =381

The payoff of the wheel is the same as the total return under the assumption of
a $I bet Therefore Q = R and the 1ate of return is 1 == Q — 1. From this we find

F=E@)=0~1=1/6
o} =E[¢ —~F)]=E{l@—1- (@~ D] =0 =38l

Example 6.6 (Rate of return on a stock) Let us considet a share of stock in a major
corporation (such as General Motors, AT&T, o1 IBM) as an asset Imagine that we
are attemipting to describe the 1ate of return that applies if we were to buy it now and
sell it at the end of one year We ignore transactions costs As an estimate, we might
take E(1 ) = 12; that is, we estimate that the expected rate of return is 12% This is a
teasonable value for the stock of a major corporation, based on the past performance
of stocks in the overall market Now what about the standard deviation? We recognize
that the 12% figure is not likely to be hit exactly, and that there can be significant
deviations In fact it is quite possible that the 1-year rate of return could be ~5% in
one year and +25% in the next A reasonable estimate for the standaid deviation is
about 15, or 15% Hence, loosely, we might say that the rate of return is likely to be
[2% plus or minus 15% We discuss the process of estimating expected values and
standard deviations for stocks in Chapter 8, but this example gives a rough idea of
typical magnitudes

The probability density for the rate of return of this typical stock is shown in
Figure 64 It has a mean value of 12, but the teturn can become arbitrarily large
However, the rate of return can never be less than —1, since that represents complete
loss of the original investment
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H Il
-1 12 Rate of return

FIGURE 6.4 Probability density of the raie of return of a stock. The mean rate of return may be
aboul 12% and the slandard deviation about 15% The rate of return cannol be fess than —1

Example 6.7 (Betting wheel) Two kinds of wheels are useful for the study of in-
vestment problems The wheel of fortune of Example 6 5 is one form of wheel For
that type, one bets on (invests in) the wheel as a whole, and the payoff is determined
by the tanding segment

The other kind of wheet is a betting wheel, an example of which is shown
in Figute 65 For this kind of wheel one bets on (invests in) the individual seg-
ments of the wheel For example, for the wheel shown, if one invests $1 in the white
segment, then $3 will be the payoff if white is the landing segment; otherwise the
payoff is zeio and the original $I is lost One is allowed to bet different amounts
on different segments A 1oulette wheel is a betting wheel From a theoretical view-
point, a betting wheel is interesting because the i1eturms from different segments are
correlated.

For the wheel shown, we may bet on: (I) white, (2) black, or (3) gray, with
payoffs 3, 2, or 6, iespectively Note that the bet on white has quite favorable
odds

We can work out the expected rates of return for the thiee possible bets 1t is
much easier here to work first with total 1eturns and then subtract | For example, for
white the return is $3 with probability £ and 0 with probability 1

The three expected values are: )

Ri= i3+ 40 =3
Ry =4+ 30) =4
R=Le+i0)=1

Likewise, the three variances are, from (6 2),

af =3~ 3)P =125
@ =12 - (37 = 889
o} = 67 -1 =3
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v FIGURE 6.5 Betting wheel. It is possible to bet on any segment of
the wheel 1f that segment is chosen by the spin, the belter seceives
the amount indicated times the bet

Finally, we can calculate the covariances using (6 3). The expected value of
products such as E(Ry R;) are all zero, so we easily find

op = —-3(3)=~10

o = —3(l)=~15

o = —2(1) = — 67

Mean-Standard Deviation Diagram

The random 1ates of return of assets can be represented on a two-dimensional dia-
gram, as shown in Figure 6 6 An asset with mean 1ate of return ¥ [or m o1 E(1)]
and standard deviation o is 1epresented as a point in this diagram The horizon-
tal axis is used for the standard deviation, and the vertical axis is used for the
mean This diagram is called a mean~standard deviation diagram, or simply ¥~¢
diagram

In such a diagram the standaid deviation, rather than the variance, is used as
the horizonal axis This gives both axes comparable units (such as percent per year)
Such diagrams are used frequently in mean-variance investment analysis

FIGURE 6 6 Mean-standard deviation diagram.
Assels are described as points on the diagram

=i
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6.4 PORTFOLIO MEAN AND VARIANCE

Now that we have the concepts of expected value (or mean) and variance for retumns
of individual assets and covariances between pairs of assets, we show how these can
be used to determine the corresponding mean and variance of the retuin of a portfolio

Mean Return of a Portfolio

Suppose that there are » assets with (random) rates of retwn 71,12,  ,7, These have
expected values E(ry) = Fy,E(12) =F2, .,E(@,) =F,

Suppose that, as in Section 6 1, we form a portfolio of these i assets using the
weights w;, i == |,2, ,n The rate of return of the portfolio in terms of the return
of the individual rewurns is

PEwiyFwzt o wela
We may take the expected values of both sides, and using linearity (pioperty 2 of the
expected value in Section 6 2), we obtain
E(r) = wiE() + waE() +  + wE(n) -

In other words, the expected rate of return of the porttolio is found by taking the
weighted sum of the individual expected rates of return So, finding the expected return
of a portfolio is easy once we have the expected rates of return of the individual assets
from which the poitfolio is composed.

Variance of Portfolio Return

Now let us determine the variance of the 1ate of return of the portfolio.

We denote the variance of the return of asset i by o7, the variance of the return
of the poitfolio by o2, and the covariance of the ieturn of asset i with asset j by oy,
We perform a straightforward calculation:

o? = E[0 —F)?)

= E <Z wyt; — Zw,-l",)
i=1 =l
= B <Z w;it; — F,-)) <Z w, {15 —T'j))il
L \i=l j=1
=E| Y wwi; —F); —F,)il
Lij=!

u
N

= E wiw, gy
=t
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This important result shows how the variance of a portfolio’s return can be calculated
easily from the covariances of the pairs of asset returns and the asset weights used in
the portfolio (Recall, o, = rl,.2 )

Example 6.8 (Two-asset portfolio) Suppose that there are two assets with 7y = 12,
7y == 15, 0 = 20, o7 = 18, and o2 = 0} (values typical for two stocks) A
portfolio is formed with weights wy = 25 and wy == 75 We can calculate the mean
and the variance of the poitfolio First we have the mean,

Fa= 25(12) + 75(15) = 1425
Second we calculate the variance,
o7 = (253 20)* + 25(75)(.0F) + 75(25)(0F) + (.75)*( 18)% = 024475
Note that the two cross termis are equal (since w;w, = w,w,) Hence,

g = 1564

Diversification*

Poitfolios with only a few assets muay be subject to a high degree of risk, represented
by a relatively large variance As a geneial rule, the variance of the 1eturn of a portfolio
can be reduced by including additional agsets in the portfolio, a process relerred to
as diversification, This process reflects the maxim, “Don’t put all your eggs in one
basket

The effects of diversification can be quantified by using the formulas for com-
bining variances Suppose as an example that there are many assets, all of which are
mutually uncorrelated That is, the return of each asset is uncorrelated with that of any
other asset in the gioup Suppose also that the 1ate of teturn of each of these assets
has mean m and variance o° Now suppose that a portfolio is constiucted by taking
equal portions of 1 of these assets; that is, w, = 1/n for each i The overall 1ate of
return of this portfolio is

The mean value of this is 7 = m, which is independent of # The corresponding

variance is
13

1 \
var(r) = "—220

i=1

where we have used the fact that the individual retuins are uncorrelated The vatiance
decreases rapidly as n increases, as shown in Figure 6 7(a). This chart shows the
variance as a function of 1, the number of assets (when ¢? = 1) Note that considerable
improvement is obtained by including about six uncorrelated assets

The situation is somewhat different it the retuins of the available assets are corre-
lated As a siinple example suppose again that cach asset has a rate of return with mean
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Variance
Variance

i3 5 7 9 11 13 15 17 19 T3 5 7 9 11 13 15 17 19
n n

(a) Uncorrelated assets (b) Correlated assets

FIGURE 6.7 Effecls of diversification. If asseis are uncorrelated, the variance of a porifolio can be made very small
If assets are positively correlated, there is likely 1o be a lower fimit 10 the variance that can he achieved

m and vartance o, but now each return pait has a covariance of cov(s;,7;) = 3a>
for j £ j Again we form a portfolio by taking equal portions of » of these assets In
this case,

n 1 2
var()) = E I:Z,—,(z, ~—F)}
i=i

-sef[ge]ge )

—Zo’,]-— = lZm, +Zo’,,]

i#i

= {1103 + 3(n* — o’}

This result is shown in Figure 6 7(h) (whete again ¢ = 1) In this case it is impossible
to reduce the variance below 302, no matter how large i is made

This analysis of diversification is somewhat ciude, for we have assumed that
all expected rates of return are equal In geneial, diversification may reduce the overall
expected return while reducing the variance Most people do not want o sacrifice
much expected return for a small decrease in vaitance, so blind diveisification, without
an understanding of its influence on both the mean and the variance of return, is
not necessarily desirable This is the motivation behind the general mean-variance
apptoach developed by Markowitz It makes the trade-offs between mean and variance
explicit
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Nevertheless, there is an important lesson to be learned trom this simple analysis
Namely, if setwins are uncoirelated, it is possible through diversification to reduce
poitfolio variance essentially to zeio by taking » large Conversely, if rewns are
positively correlated, it is more difficult to reduce variance, and there may be a lower
limit o what can be achieved

Diagram of a Portfolio

Suppose that two assets are represented on a mean—standard deviation diagram These
two assets can be combined, according to some weights, to form a portfolio—a new
asset The mean value and the standard deviation of the rate of retin of this new
asset can be calculated fromy the mean, variances, and covariances of the returns of the
original assets However, since covariances aie not shown on the diagiam, the exact
location of the point representing the new asset cannot be determined from the location
on the diagram of the original two assets There are many possibilitics, depending on
the covariance of these asset returns

We analyze the possibilities as follows We begin with two assets as indicated in
Figure 6.8 We then define a whole family of portfolios by intioducing the variable ¢,
which defines weights as wy = I« and wy = « Thus as o varies from O to I, the port-
folio goes from one that contains only asset | to one that contains a mixture of assets
f and 2, and then to one that contains only asset 2. Values of o outside the range 0 <
o < ] make one o the other of the weights negative, coiresponding to short seiling

As o varies, the new poitfolios trace out a curve that includes assets | and 2
This curve will look something like the curved shape shown in Figure 6 8, but its
exact shape depends on o5, The solid poition of the curve corresponds to positive
combinations of the two assets; the dashed portion corresponds to the shoiting of one
of them (the one at the opposite end of the solid curve) 1t can be shown in fact that the
solid portian of the curve must lie within the shaded region shown in the figute; that is,
it must lie within a tiangular region defined by the vertices 1, 2, and a point A on the

FIGURE 6.8 Combinations of two assels When two
assets are combined in various combinations, Ihe result-
ing portfoios sweep oul a curve between Ihe points rep-
resenting Ihe originat assels This curve musl lie in the
shaded Irlangular region shown
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=7

vertical axis We state this property formally, but it is not essential that you absorb the
details at first reading It is only necessary to understand the general shape of the curve

Portfolio diagram lemma  The cirve in an 7—o diagiam defined by nonnegative mix-
nues of wo assets I and 2 lies within the tiongular 1egion defined by the two original
assets and the point on the vertical uxis of height A = (Fion + Facy) /(6 + 02)

Proof: The rate of retuin of the portfolio defined by e is 7 (@) = (1 —a)r; +
w1, The mean value of this return is

Fla) = (1 —a)F; +aFa
This says that the mean value is between the oiginal means, in direct pro-
portion to the proportions of the assets In a 50-50 niix, for example, the new
mean will be midway between the original means

Let us compute the standard deviation of the portfolio We have, from
the general formula of the previous section,

olw) = \/(i - c1)20'|2 + 2a(l — a)ay +ala}

Using the definition of the correlation coefficient p = gy2/(0y02), this equa-
tion can be written

o(a) = \/(1 — )20} + 2pa(l — @)oo, + a¥a)

This is quite a messy expression However, we can determine its bounds We
know that p can range ovet —1 < p <1 Using p = | we find the upper
bound

)

a(a) = \/(l - a)a] + 2a(l — )02 +a20)

[l - @)o +aaf

(I —a)o, +aa;

Using p = —1 we likewise obtain the lower bound

a(a), = \/(l — )2} — 20(l ~ @)ooz + a0

VId —a)e — aa)

](i - )0y ——ao'g]

Notice that the upper bound expiession is lineas in o, just like the ex-
pression for the mean If we use these two lincar expressions, we deduce that
both the mean and the standaid deviation move proportionally to o between
their values at & = 0 and & = |, provided that p = | This imiplies that as &
vaiies from 0 to I, the portfolio point will trace out a straight line between
the two points This is the diiect line between | and 2 indicated in the figure

The lower bound expression is nealy linear as well, except for the
absolute-value sign When o is small, the term inside the absolute-value sign
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is positive, so we can replace that teun by (I — @)ay — s This 1eniaing
positive until @ = oy /(g +02) After that it reverses sign, and so the absolute
value becomes aoy — (I ~ @)ay The reveisal occurs at the point A given
by the expiession in the proposition statement The two linear expressions,
together with the linem expression for the mean, imply that the lower bound
traces out the kinked line shown in Figure 6 8 We conclude that the curve
traced out by the portfolio points must lte within the shaded region; and fo
an intermediate value of p, it looks like the cuive shown

6.5 THE FEASIBLE SET

Suppose now that theie are 7 basic assets We can plot them as points on the mean—
standard deviation diagram Next imagine forming portfolios from these » assets, using
evety possible weighting schemie Hence theie are porttolios consisting of each of the
n assets alone, combinations of two assets, combinations of three, and so foith, all
the way to arbitrary combinations of all # These portfolios are made by letting the
weighting coefficients w, range aver all possible combinations such that ) ., w; = |

. Theset of points that cortespond to portfolios is catled the feasible set or feasible
region. The feasible set satisfies two impoitant properties

1. If there are at feast three assets (not petfectly correlated and with different means),
the feasible set will be a solid two-dimensional region

Figure 6 9 shows why the region wilt be solid There are three basic assets:

1, 2, and 3 We know that any two assets define a (curved) line between them as

corbination porttolios are formed The three lines between the possibie thiee pairs

are shown in Figure 69 Now if a combination of, say, assets 2 and 3 is formed

to produce asset 4, this can be combined with I to form a line connecting 1 and 4

As 4 is moved between 2 and 3, the line between 1 and 4 traces out a solid region

FIGURE 6.9 Three points form a re-

gion Combinations of assets 2 and 3

sweep out a curve between them Com-
3 hination of one of these assets, such

as 4, topether with asset | sweeps oul

another curve The family of all these
4 curves forms a solid region

-
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(@) (b)

FIGURE 6.10 Feasible region. The feasible region is the set of all points representing portfotios made from n original
assets Two such regions can be defined: (a) no shorting and (b) shorting attowed

2. The feasible region is convex to the left
This means that given any two points in the region, the stiaight line connecting
them does not cross the left boundary of the feasible set This follows from the fact
that all portfolios (with positive weights) made trom two assets tie on or to the left
of the line connecting them A typical feasible region is shown in Figuie 6 10(a)

Theie are two natwal, but alternative, definitions of the feasible region, corre-
sponding to whether shoit selling of assets is allowed or not allowed The two general
conclusions about the shape of the 1egion hold in either case However, in general
the feasible 1egion defined with short selling atlowed will contain the 1egion defined
without shoit selling, as shown in Figwie 6 10(6) (In general, the leftmost edges of
these (wo regions may pattially coincide—unlike the case shown in Figure 6 10)

The Minimum-Variance Set and the Efficient Frontier

The left boundary of a feasible set is called the minimum-variance set, since for any
value of the mean 1ate of 1etun, the feasible point with the smallest variance (or stan-
daid deviation) is the corresponding left boundaty point The minimum-variance set
has a characteristic builet shape, as shown in Figure 6 11(«) There is a speciat point on
this set having minimum variance It is termed the minimum-variance point (MVP)

Suppose that an investor’s choice of portfolio is restricted to the feasible points
on a given horizontal line in the ¥-o plane All portfolios on this line have the same
mean rate of return, but different standard deviations (o1 variances) Most investors
will prefer the portfolio cotresponding to the leftmost point on the line; that is, the
point with the smailest standard deviation for the given mean An investor who agrees
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T T
Minimum-variance point Minimum-variance point
T T
(a) Minimym-variance set (b) Efficient frontier
FIGURE 6.11 Special sets. The minimum-variance set has a characteristic butlet shape The minimum-variance poini

is the point with lowest possible variance The efficient frontier is the upper portion of the minimum-variance sel

with this viewpoint is said to be risk averse, since hie or she sceks to minimize risk
(as measured by standard deviation) An investor who would select a point other than
the one of minimum standaid deviation is said to be risk preferring. We direct out
analysis to risk-averse investors who, accordingly, prefer to minimize the standard
deviation Such investors are interested in points on the minimum-variance set

We can turn the argument around 90 degiees and considet portfolios correspond-
ing to the various points on a vertical line; that is, the portfolios with a fixed standard
deviation and various mean values Most investors will prefer the highest point on such
a line In other words, they would select the portfolio of the largest mean for a given
level of standard deviation This property ol investors is termed nonsatiation, which
reflects the idea that, everything else being equal, investors always waint more money;
hence they want the highest possible expected return for a given standard deviation

These arguments imply that only the upper part of the minimum-vaiiance sct
will be of interest to investors who are risk averse and satisly nonsatiation This upper
portion of the minimum-variance set is termed the efficient frontier of the feagible
region It is illustrated in Figure 6 11(b) These are the cificient poitiolios, in the
sense that they provide the best mean-variance combinations for most investors We
can therefote limit our investigation to this frontier The next section explains how to
calculate points on this frontier

6.6 THE MARKOWITZ MODEL

We are now in a position to formulate a mathematical problem that leads to minimum-
variance portfolios Agafn assume that therc are n assets The mean (or expected)
rates of retuin aie 7y, 71, 7, and the covariances are g, fo1 i, j = 1,2, N
A portfolio is defined by a set of n weights w,, i = 1,2, ,n, that sumto } (We



Chapter 6 MEAN-VARIANCE PORTFOLIO THEORY

allow negative weights, corresponding to short setting ) To find o minimum-variance
portfolio, we fix the mean value at some arbitrary value ¥ Then we find the feasible
portfolio of minimum variance that has this mean Hence we formutate the problem

I3
minimize 1 E W, W, 05
{y=t

"
subject to Z W, =T

i=1

iw,:l

i=1

The tactor of 4 in front of the variance is for convenience only It makes the final
formt of the cquations neater

The Markowitz problen: provides the foundation for single-period investment
theory The problem explicitly addresses the trade-off between expected rate of return
and variance of the rate of return in a poitfolio Once the Markowitz problem is for-
mulated, it can be solved numerically to obtain a specific numerical solution It is also
useful to solve the problem anaiytically because some strong additional conclusions
are obtained {rom the analytic solution. However, as we move to the next chapter, the
Markowitz problem is used mainly when a risk-free asset as well as risky assets are
available The existence of a risk-free asset greatly simptifies the nature of the feasible
set and also simplifies the analytic solution

Solution of the Markowitz Problem*

We can find the conditions for a solution to this problem using Lagrange muitipliers
X and ¢ We form' the Lagrangian

n "
[ == E Wi W;a,, = A Ew,-F,—F

izl

[STE

We then differentiate the Lagrangian with respect to each variable w; and set this
derivative to zero

The differentiation may be a bit difficult if this type of structwe is unfamiliar to
you Therefore we shail do it for the two-vaiiable case, after which it will be easy to
generalize to n variables For two vaiiables,

2?2 2.2
L = 4 (wial +w w0y + wow a3 + wio3)
~AMF W) + Fawg = F) — plw, + wy ~ 1)
'In generat, the Lagrangian is formed by iirst converting each consirint to one with a zero righi-hand
side Then each fefti-hand side is multiplied by his Lagrange multiptier and subtracied trom the objective

function In ow problem. A and y are the muttiptiers for the 1irst and second vonstraints, respectively (See
Appendix B)
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Hence,
aL \ 5 .
el (207w, + Gwy + oy wa) = AF) — pt
1
oL \ ) -
W = 3 (1713W| + onw, + 203 u)g) e AFa — 1t
2

Using the fact that gy = g, and setting these derivatives to zero, we obtain
Glw) + oWy~ AF) = g =0
anw) + H:zwg - APy == O

This gives us two equations. In addition, there are the two equations of the constraints,
so we have a total of four equations These can be solved?® for the four unknowns w,
wa, A, and u

The genera} form for » variables now can be written by obvious geneialization
We state the conditions here:

Equations for efficient set  The n porifolio weights w; for i = 1,2, ., n and the
two Lagrange multipliers » ond 1 for an efficient portfolio (with shoit selling allowed)
having mean rate of retin v satisfy

=0 fori=12,» 65a)
= F (6.5h)
P (6 5¢)

We have n equations in (6 5a), plus the (wo equations of the constraints (6 5b)
and (6 5¢), for a total of n -+ 2 equations Correspondingly, there are 7 + 2 unknowns:
the w,’s, A, and x The solution to these equations will produce the weights for an
efficient portfolio with mean 7 Notice that all # + 2 equations are linear, so they can
be solved with linear algebra methods

Example 6.9 (Three uncorrelated assets) Suppose there are three uncorrelated us-
sets Each has variance |, and the mean values are 1, 2, and 3, respectively Theie is

2The case of wo assets is aclually degenerate because the wo nnknowns uny and v are uniquely deter-
mined by the wo constraints. The degeneracy (usuafly) disappears when lhere are lhree or more assets
Neverthetess, the equations oblined for the 1wo-assel case foreshadow the patlem of the corresponding
equations for n assets
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a bit of simplicity and symmetry in this situation, which makes it relatively easy to
find an explicit solution
We have a‘z = ﬂzl = 1732 = | and 0,3 = g33 = 03 = 0 Thus (6.5a-c) become
wy =X - p o= O
wy — 2 —p o= O
w3 — 3 —p =0
wy + 2wy + 3wy = F
w), 4wy wy == ]
The top three equations can be solved for wy, wy, and w; and substituted into the
bottom two equations This leads to
140+ 6 = F
Oh+ 3 == |

These two equations can be solved to yield A = (7/2) — 1 and p = 23'4- —F Then

The standard deviation at the solution is ,/w% + wg + w%, which by direct subgtitution
gives

=L

66)

The minimum-variance point is, by symmetry, at ¥ = 2, with g = +/3/3 =
58 The feasible region is the region bounded by the bullet-shaped curve shown in
Figure 6 12

The foregoing analysis assumes that shorting of assets is allowed I shorting is
not allowed, the feasible set will be smaller, as discussed in the next subsection

Nonnegativity Constraints*

In the preceding derivation, the signs of the w; vaiables were not restricted, which
meant that short selling was allowed We can prohibit short selling by restricting
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FIGURE 6 12 Three-asset example. The feasibie region with
shorting contains the feasible region without shorting The out-
side curve is the minimum-variance set with shorting attowed
The short curved tines are portfolios made up of two of the
assets at a time

8 1 t2 14 16 «a

each w; to be nonnegative This leads to the following alternative statement of the
Markowitz problem:

minimize } Z g, ww, (6 Tar)
=
"

subject to Z Fow, =F (67b)

w1 (67c)

w, >0 lori=12, NG (6 7dy

This problem cannot be reduced to the solution of a set of linear equations It is termed
a quadratic program, since the objective is quadratic and the constraints are lineat
equalities and inequalities Special computer programs are available for solving such
problems, but small to moderate-sized problems of this type can be solved readily with
spreadsheet programs In the financial industry there are a muititude of special-purpose
programs designed to solve this problem for hundreds or even thousands of assets

A significant difference between the two formulations is that when short seliing
is allowed, most, if not ali, of the optimal w;’s have nonzeto vajues (either positive
or negative), so essentially all assets are used. By contrast, when short selling is not
allowed, typically many weights ate equal to zero

Example 6,10 (The three uncorrelated assets) Consider again the assets of Exam-
ple 6 9, but with shorting not allowed Efficient points must solve problem (6 7a) with
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the parameters of the eartier example. In this case the problem cannot be reduced to a
system of equations, but by considering combinations of pairs of assets, the efficient

{rontier can be {found The general solution is as {ollows:

<7<} t<rxt f<v=3
T
- 4

wy =2 - E R 0

1 ’ 3 B

wy=F -1 i 37
Fo, _

wy == 0 ;—; 7o 2

6.7 THE TWO-FUND THEOREM®

The minimum-variance set has an important property that greatly simplifies its com-
putation Recall that points in this set satis{y the system of » + 2 finear equations

[Eqs (6 5a-c)], which is repeated here:

"
> ogwy AR —p =0 fari=12.»
1=

"
E iy, =T
i=1

n
w; = |
i=1
Suppose that there are two known sofutions, w' = (w], w),

wha (wi, g, wd), A%, 1%, with expected rates of return 7'

{6 8a)

(6 8b)

(6 8¢)

ro,
swh), A, p' and
and 72, respectively

Let us form a combination by muftiplying the first by o and the second by (f — a)
By direct substitution, we see that the result is afso a solution to the n + 2 equations,
carresponding (o the expected value o + ({ —a)F* To check this in detaif, notice
that @ew' 4 (1 — @ )w? is a legitimate portfofio with weights that sum to {; hence (6 8¢)
is satisfied Next notice that tfic expected return is in fact aF; + ({ — a)¥»; fience (6 8b)
is satisfied for that vafue Finaify, notice that since both sofutions make the left side
of (6 8a) equal to zero, their combination does also; hence (6 8a) is satisfied This
implies that the combination portfofio aw! + (1 — a)w? is afso a sofution; that is, it
also represents a point in the minimum-variance set This simple result is usuaffy quite
surprising o most peopfe on their first exposure (o the subject, but it highlights an

important property of the minimum-variance set
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To use this result, suppose w' and w? arc two different portfolios in the minimum-
variance set Then as o« varies over —oco < @ < 0o, the portfolios defined by
aw! 4 (] — a)w? sweep out the entire minimum-variance set We can, of course,
select the two origina} solutions to be efficient (that is, on the upper portion of the
minimum-variance set), and these will generate alf othier efficient points (as welf as
ail other points in the minimum-variance set) This resuft is often stated in a form that
has operational significance for investors:

The two-fund theorem Twa cfficient funds (poitfolios) can be established so that ony
efficient portfolia can be duplicated, in terms of mean ond variance, as a cambination
of these two In othier words, all investors seeking efficient porifolios need only invest
in combinations of these two finds

This result has dramatic impiications According to the two-fund theorem, two
mutual funds’ could provide a complete investment service fot everyone There would
be no need for anyone to purchase individual stocks sepaiately; they could just pur-
chase shares in the mutual funds This conclusion, however, is based on the assumption
that everyone cares only about mean and variance; that everyone has the same assess-
ment of the means, variances, and covartances; and that a single-period fiamework
is appropriate  All of these assumptions are quite tenuous Neveitheless, if you are
an investor without the time o1 inclination to make careful assessments, you might
choose to find two funds managed by people whose assessments you tiust, and invest
in those two funds,

The two-fund theorem also has implications for computation In order to solve
(6 Sa—c) for all values of F it is only necessaty to find two solutions and then form
combinations of those two A particularly simple way to specify two solutions is to
specify values of A and p. Convenient choices are (@) A =0, p = 1 and (b) A =1,
u =0 In either of these solutions the constzait Y., w; = 1 may be violated, but
this can be remedied later by normalizing all w;’s by a common scale factor The
solution obtained by choice (a) ignores the constraint on the expected mean rate of
return; hience this is the minimum-variance pofnt The overall procedure is lustrated
in the following example

Example 6.11 (A securities portfolio) The information concerning the 1-yeuar co-
varfances and mean values of the rates of return on five securities is shown in the top
pait of Table 6 2, The mean values are expressed on a percentage basis, whereas the
covariances are expressed in units of (percenty’ /100 Foi example, the first security
has an expected rate of return of 15 1% = .{51 and a variance of return of 023, which
tanslates into a standard deviation of v/ 023 = 152 = 15.2% per yeas

3A mujuat fund is an investmenl company that aceepts investmenl capitat trom individuals and reinvesls
that capiiat in @ diversity of individual stocks Each individual is entilled to his or her proportionale share
of the fund s portlolio value, tess cerlain operaing fees and conunissions
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TABLE 6.2
A Securities Portfolio
Security Covariance V T

1 230 93 62 74 -231151
2 93 140 22 56 26 {125
3 62 22 180 78 271147
4 7456 78 340 561 902
5 - 23 26 —27 56 2601768

v

1413652 088 158
401 | 3583 251 155
452 | 7248 282 314
166 | 874 104 038
440 | 7706 275 334

Meun 14413 | 15202
Variance 625 659
S dev 791 812

Ihe cavariances and mean rates of return are
show for five securities The portfolio whis phe
minint-variance poiny. and w2 is another of-
Sicient pottfolio made fiom these five secnrities

We shall find two funds in the minimum-variance set First we set A = 0 and
@ =11in (65) We thus solve the system of equations

5
Za,-jv} =1
j=1

tor the vector v = (v;, vz', , v5') This solution can be found using a spreadsheet

package that solves linear equations The coefficients of the equaton are those of the

covariance matrix, and the right-hand sides are all 1's The resulting v/.l’s are listed in

the first column of the bottom part of Table 6 2 as components of the vector v!
Next we normalize the v,."s so that they sum to 1, obtaining w}’s as

1
j=1Yj

The vector w! = (w}, w}, ,wl) defines the minimum-variance point.
Second we set o =0 and A =1 We thus solve the system of equations

1 - .
E g;jv; =T, =412 .5

=T
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for a solution v = (vlz, U%, ,vﬁz) Again we normalize the resulting vector v:
50 its components sum to 1, to obtain w* The vectors v', v2, w', w? ae shown
in the bottom part of Table 62 Also shown are the means, variances, and standard
deviations corresponding to the portfolios defined by w' and w? Al efficient portfolios
are combinations of these two

6.8 INCLUSION OF A RISK-FREE ASSET

In the previous {ew sections we have implicitly assumed that the n assets available
are all risky; that is, they each have o > 0 A risk-free asset has a return that
is deterministic (that is, known with ceitainty) and therefore has ¢ = 0 In other
words, a 1isk-free asset is a pure interest-bearing instrumen; its inclusion in a portfolio
corresponds to lending or borrowing cash at the 1isk-free rate Lending (such as the
purchase of a bond) corresponds to the risk-free asset having a positive weight, whereas
borrowing cortesponds to its having a negative weiglit

The inclusion of a risk-free asset in the list of possible assets is necessaty to
obtain realism Investors invariably have the opportunity to borrow or lend Fortu-
nately, as we shall see shortly, inclusion of a risk~free asset introduces a mathematical
degeneracy that greatly simplifies the shape of the efficient frontier

To explain the degeneracy condition, suppose that there is a risk~free asset with
a (deterministic) rate of return 1, Consider any other risky asset with rate of return 7,
having mean 7 and variance o> Note that the covariance of these two retuins must
be zero. This is because the covariance is defined to be E[(l Pyl - 1/)] = (.

Now suppose that these two assets are combined to form a portfolio using a
weight of a for the risk-free asset and 1 —a for the risky asset, with @ < | The mean
rate of return of this portfolio will be a7y + (1 ~ «)7. The standard deviation of the
return will be /(1 —a)?e? = (I —a)o This is because the risk-f1ee asset has no
variance and no covariance with the 1isky asset The only tenm left in the formula is
that due to the risky asset

If we define, just for the moment, oy = 0, we see that the portfolio ate of
retuin has

mean = ary + (| ~a)r
standard deviation == ao; + (1 ~a)o

These equations show that both the mean and the standard deviation of the portiolio
vary lineatly with & This means that as a vaiies, the point representing the portfolio
traces out a straight line in the 7-o plane

Suppose now that there are n risky assets with known mean rates of retuin 7,
and known covariances o;, In addition, there is a risk-free asset with rate of 1etuin 1,
The inclusion of the risk-free asset in the list of available assets has a profound effect
on the shape of the feasible 1egion The reason {o1 this is shown in Figure 6 13(a)
Fitst we construct the ordinary feasible region, defined by the n 1isky assets (This
region may be either the one constructed with shoiting allowed or the one constructed
without shorting ) This 1egion is shown as the darkly shaded region in the figure Next,
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(@ b
FIGURE 6.13 Effect of a risk-free assel. Inclusion of a risk-free asset adds lines 1o the feasible region {a) If both
horrowing and lending are allowed, a complete infinite triangular region is obtained (b) If only lending is allowed,
the region will have a triangular front end, but will curve for larger o

for each asset (or portfolio) in this region we form combinations with the risk-free
asset In forming these combinations we allow boirowing or lending of the risk-free
asset, but only puichase of the risky asset These new combinations trace out the
infinite straight line originating at the risk-free point, passing through the risky asset,
and continuing indefinitely There is a line of this type for every asset in the original
feasible set The totality of these lines forms a tifangularly shaped feasible 1egion,
indicated by the light shading in the figure

This is a beautiful result. The feasible region is an infinite tfangle whenever a
risk-frec asset is included in the universe of available assets

If borrowing of the risk-free asset is not allowed (no shorting of this asset), we
can adjoin only the finite line segments between the risk-free asset and points in the
original feasible region We cannot extend these lines further, since this would entail
boniowing of the risk-fiee asset The inclusion of these finite line segments leads to
a new feasible region with a straight-line front edge but a 10ounded top, as shown in
Figure 6 13(b)

6.9 THE ONE-FUND THEOREM

When risk-free borrowing and lending ave available, the efficient set consists of a single
straight line, which is the top of the triangular feasible region This line is tangent
to the original feasible set of risky assets (See Figure 6 14 ) There will be a point
F in the original feasible set that is on the line segment defining the overall efficient
set. It is clear that any efficient point (any point on the line) can be expressed as a
combination of this asset and the risk-free asset We obtain different efficient points by
changing the weighting between these two (including negative weights of the risk-free
asset to boriow money in order to leverage the buying of the risky asset) The portfolio
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FIGURE 6.14 One-fund theorem When both
borrowing and lending at the risk-free rate are
alfowed, there is a unique fund F of risky assets
that is efficient All points on the efficient frontier
are combinations of F and the risk-free asset

represented by the tangent point can be thought of as a fund made up of assets and
sold as a unit The role of this fund is summaiized by the following statement:

The one-fund theorem Theieis a single fund F of riskv assets such that any efficient
portfolio can be constincted as a combination of the fund F and the 1isk-fice asset

This is a final conclusion of mean-variance portfolio theory, and this conclusion
is the launch point for the next chapter It is fine to stop reading here, and (after doing
some exercises) to go on to the next chapter But if you want to see how to calculate
the special efficient point F, 1cad the specialized subsection that follows

Solution Method™

How can we find the tangent point that represents the efficient fund? We just character~
ize that point in terms of an optimization problem Given a point in the feasible region,
we diaw a line between the 1isk-free asset and that point We denote the angle between
that line and the horizontal axis by 6 For any feasible (risky) portfolio p, we have
tan§ = Tl
Op
The tangent portfolio is the feasible point that maximizes 8 or, equivalently, maxi-
mizes tané It tuns out that this problem can be reduced to the solution of a system
of linear equations
To develop the solution, suppose, as usual, that there are n 1isky assets We
assign weights wy, w2, . w, to the 1isky assets such that 3 ;_, w, = | There is
zero weight on the risk-free asset in the tangent fund (Note that we are allowing short
selling among the risky assets ) Fot 7, = Y r_, w7, we have 7, = Y /_, w,7; and
o=y wey Thus,

Soai wilF = tp)

tan & == " 7
20 ymt O W “JJ)
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It should be clear that muitiplication of all w;’s by a constant will not change the
expression, since the constant will cancel Hence it is not necessary to impose the
constraint .\, w, = | here

We then set the derivative of tan@ with respect to each wy equal to zero This
leads (see Exercise 10) to the following equations:

n
ngi/\wisz—l-/, k=12, .,n 69
[

where A is an (unknown) constant Making the substitution v, = Aw; fo1 each i, (6 9)

becomes

"
ZU/;:'U7=7‘/.~"I/, k=12, ,n (6.10)
=

We solve these linear equations for the v,’s and then normalize to determine the 1;’s;
that is,
Vi
W, = e

7]
k=1 Vk

Example 6.12 (Three uncorrelated assets) We consider again Example 6 9, where
the three risky assets were uncorrelated and each had variance equal to 1 The three
mean rates of return wete 7y = 1, F3 = 2, and 73 == 3 We assume in addition that
there is a 1isk-free asset with 1ate 77 = 5

We apply (69), which is very simple in this case because the covatiances are
all zero, to find

i

Uy fo 5= 5

Vpm 2 5= 15
Uy 3— 5= 25

We then normalize these values by dividing by their sum, 4 5, and find

5

1 1
Wy =g, Wy == %, w3 = F

Example 6.13 (A larger portfolio) Consider the five risky assets of Example 6 11
Assume also that there is a risk-free asset with 1, == 10% We can easily find the
special fund F

We note that the system of equations (6 [0) is identical to those used to find v'
and v? in Example 6 11, but with a different right-hand side Actually the right-hand
side is a linear combination of those used for v! and v?; namely, Fe~1s == [ XFptgx1
Therefore the solution to (6.10) is v = v* —-r/v' Thus (using Ty 10 to be consistent
with the units used in the carlier example), v = (2 242, — 427, 2 728, — 786, 3 306)
We normalize this to obtain the final 1esuit w = ( 317, ~ 060, .386, ~ [ 11, 468)

Basically, we have used the fact that portfolio F is a combination of two known
efficient points
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6.10 SUMMARY

The study of one-period investment situations is based on asset and portfolio returns
Both total returns and rates of return are used The return of an asset niay be uncertain,
in which case it is useful to consider it foimally as a random variable The piobabilistic
propeities ol such jandom returns can be summarized by their expected values, their
variances, and theil covariances with each other

A portfolio is defined by allocating fractions of initial wealth to individual assets
The fractions (or weights) must sum to |; but some of these weights may be negative
if short selling is allowed The return of a portfolio is the weighted sum of the returns
of its individual assets, with the weights being those that define the poitiolio The
expected return of the portfolio is, likewise, equal to the weighted average of the
expected retwns of the individual assets The variance of the portfolio is deteimined
by & more complicated formula: gl = Z;‘FI w;w;o; j, where the w,’s are the weights
and the g;;’s are the covariances

From: a given collection of n tisky assets, there results a set of possible portiolios
made from all possible weights ol the # individual assets Tf the mean and the standard
deviation of these portfolios are plotted on a diagram with vertical axis 7 (the mean)
and horizontal axis o (the standard deviation), the 1egion so obtained is called the
feasible region Two alternative feasible regions are defined: one allowing shoiting of
assets and one not allowing shoiting

It can be argued that investors who measure the value of a portfolio in terms of
its mean and its standard deviation, who are 1isk averse, and who have the nonsatiation
property will select portfolios on the upper left-hand portion of the feasible region—the
efficient Irontier

Points on the efficient fiontier can be characterized by an optimization problem
originally formulated by Markowitz This problem seeks the portfolio weights that
minimize variance for a given value of mean return Mathematically, this is a problem
with a quadratic objective and two linear constraints If shorting is allowed (so that
the weights may be negative as well as positive), the optimal weights can be found by
solving a system of n+2 linear equations and 242 unknowns Otherwise if shoiting is
not allowed, the Markowitz probleni can be solved by spectal quadratic programming
packages

An important propetty of the Markowitz problem, when shorting is allowed, is
that if two solutions are known, then any weighted combination of these two solutions
is also a solution [his leads to the fundamental two-fund theorem: investors seeking
etficient portfolios need only invest in two master efficient finds

Usually it ts appropriate to assume that, in addition to # risky assets, there
is available a risk-frec asset with fixed rate of retwrn 7, The inclusion of such
an asset gieatly simplifies the shape of the feasible region, transiorming the up-
per boundary into a straight line This line is the efficient frontier The straight-
line fiontier touches the original feasible region (the 1egion defined by the tisky
assets only) at a single point £ This leads to the important one-fund theorem: in-
vestors seeking efficient portiolios need only invest in one master fund of risky assets
and in the iisk-free asset Different investors may prefer different combinations of
these two
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The single efficient fund of risky assets F can be found by solving a system of
n linear equations and » unknowns When the solution to this system is normalized
so that its components sum to 1, the resulting components are the weights of the risky
assets in the master fund

EXERCISES

m 1. {Shorting with margin}) Suppose thai to short a stock you are required to deposit an

amount equal 1o the initial price Xg of the stock At the end of | year the stock price is X
and you lguidate your position You receive your profit from shorting equat 1o Xp — X
and you recover your originat deposit H R is the rotal return of the stock, what is the 1otat
feturn on your shon?

2. {Dice product) Two dice are rolled and the two resulting values are multiptied together 1o
form the quantity z What are the expected value and the varjance of the randomn variable
:? [Hinr Use the independence of the two separate dice ]

3. (Two correlated assets) The correlation p between assets A and B is 1, and other data
are given in Table 63 [Note p = gap/{oa0n) ]

TABLE 6.3
Two Correlated Cases

Asset ¥ o

A 100% 15%
B 180% 30%

(a) Find the proportions ¢ of A and {] — ) of B that define a portfolio of A and B having
minimum standard deviation

{b} What is the value of this minimum standard deviation?

(¢} What is the expected return of this portfolio?

E

(Two stocks)  Two stocks are available The corresponding expected rates of retumn are 7y
and 7»; the corresponding variances and covariances are o7, 023, and oy, What percentages
of total investment should be invested in each of the two stocks to minimize the tota
variance of the rate of return of the resulting portfolio? What is the inean rate of return of
this portfolio?

5. {Rain insurance) Gavin Jones’s friend is planning to invest $1 million in a rock concert
to be held | year from now The friend figures that iie wiil obtain $3 million revenue from
his $1 miltion investment—uniess, my goodness, it rains If it rains, he will lose his entite
investment There is a 50% chance that it will rain the day of the concert Gavin suggests
that he buy rain insurance He can buy one unit of insurance for $ 50, and this unit pays
$1 if it rains and nothing if it does not He may puichase as many units as he wishes. up
to $3 million
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{a) What is the expected 1ate of return on his investment if he buys # units of insurance?
{The cost of insurance is in addition to his $1 miition investment )

{b) What numbes of units will minimize the variance of his retusn? What is this minimum
value? And what is the corresponding expected rate of return? [Hinr Before calculating
a general expression for variance, think about a simple answer }

. {Wild cats) Suppose there are # asscts which are uncorrelated (They might be n different

“wild cat” oil well prospects } You may invest in any one, or in any combination of them
The mean rate of return 7 is the same for each asset, but the vaiiances are different The
return on asset { has a variance of a,:' fori==1,2, WM

{a) Show the situation on an F~o diagram Describe the efficient set

{b) Find the minimum-variance point Express youl resuit in terms of

At <Z

. {Matkowitz fun) There are just three assels with rates of return 7y, 12, and ry, respectively

The covariance nmatrix and the expected rates of return are

210 4
Vet 2 {|, F=|8
01 2 8

{a) Find the minirnum-variance portfolio [Hinr By symmetry wy = w3 ]
{b) Find another efficient portfolio by setting A = 1, pt = 0
{¢) If the risk-free rate is 1, = 2, find the efficient portfolio of risky assets

. {Tracking) Suppose that it is impractical to use ali the assets that are incorporated into

a specified portfolio (such as a given eflficient porttolio) One alternative is to find the
portfolio, made up ol a given set of n stocks, that tracks the specified portfolio most
closety—in the sense of minimizing the variance of the difference in returns

Specifically, suppose that the target portfolio has (random) rate of return 7,; Suppose
that there are n assets with (random) rates of return 7y, 2, ,7, We wish to find the
porttolio rate of return

r=ophtaant Aty

(with | &, = 1) minimizing var(r 7 )

{a} Find a set of equations for the &;’s

{b) Although this portfolio tracks the desired porttolio most closely in terms of variance,
it may sacrifice the mean Hence a logical approach is to minimize the variance of
the tracking error subject to achieving a given mean return As the mean is varied,
this results in a family of porttolios that are efficient in a new sense—say, tracking
efficient Find the equation for the ¢, that are tracking efficient

. {Betting wheel) Consider a general betting wheet with n segments The payoft for a §t

bet on a segment ¢ is A, Suppose you bet an amount 8, = /4, on segment j for each
i Show that the amount you win is independent of the outcome of the wheel What is the
risk-free rate of return for the wheel? Apply this to the wheel in Example 6 7
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10. (Efficient portfolio o) Derive (6 9) [Hint Note that

" L 72 7 =12 7
i
e E G, W, = E O W, Wy E oy,
aw, -
i gl

u
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——=— THE CAPITAL ASSET
=5 PRICING MODEL

wo main problem types dominate the discipline of investment science The first

is to determine the best coumse of action in an investment situation Problems

of this type include how to devise the best portfolio, how to devise the optimal
strategy ol managing an investment, how to select from a group of potential invest-
ment projects, and so forth Several examples of such problems were treated in Part |
of this book. The second type of problem is to determine the corvect, arbitiage-free,
fair, or equilibrium price of an asset We saw examples of this in Par¢ | as well, such
as the formula for the correct price of a bond in terms of the term structure of interest
1ates, and the formuia for the appropriate vaiue of a firm

This chapter concentrates mainly on the pricing issue. Tt deduces the correct
price of a risky asset within the framework of the mean-variance setting The result is
the capital asset pricing model (CAPM) developed primarily by Sharpe, Lintner, and
Mossin, whicl foliows logically from the Markowitz mean-variance portfolio theory
described in the previous chapter Later in this chapter we discuss how this result can
be applied to investment decision problems

7.1 MARKET EQUILIBRIUM

Suppose that everyone is a mean-varianee optimizer as described in the previous
chapter Suppose further that everyone agrees on the probabilistic structure of assels;
that is, everyone assigns to the returns of assels the same mean vajues, the same
variances, and the same covariances Furthermoie, assume that there is a unique risk-
free rate of borrowing and lending that is availabie to all, and that there are no
transactions costs With these assumptions what will happen?

From the one-fund theorem we know that everyone wili purchase a single fund of
tisky assets, and they may, in addition, borrow or lend at the risk-free rate Furthermore,
since everyone uses the same means, variances, and covariances, everyone will use the

173
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same 1isky fund The mix of these two assets, the risky fund and the risk-free asset,
will likely vary across individuals according (o their individual tastes for risk. Some
will seek to avoid risk and will, accordingly, have a high percentage of the risk-free
asset in their portfolios; others, who are more aggressive, will have a high percentage
of the risky fund However, every individual will form a portlolio that is a mix of the
risk-free asset and the single, risky one fimd FHence the one find in the theotem is
reaily the only fund that is used

If everyone purchases the same fund of risky assets, what must that fund be?
The answer to this question is the key insight underiying the CAPM A bit of reflec-
tion reveals that the answei is that this fund must equal the market portfolio. The
maket portfolio is the summation of ali assets In the world of equity securities, it
is the totality of shares of IBM, GM, DIS, and so forth If everyone buys just one
fund, and their puichases add up to the market, then that one fund must be the market
as well; that is, it must contain shames of every stock in proportion to that stock’s
representation in the entite market

An asset’s weight in a portfolio is defined as the proportion of portfolio capital
that is allocated to that asset Hence the weight of an asset in the market poutfolio
is equal to the proportion of that agset’s total capital value to the total market cap-
ital value These weights are termed capitalization weights. It is these weights that
we usuaily denote by w; In other words, the w,’s of the market portfolio are the
capitalization weights of the assets

The exact definition of the maiket poitfolio is illustrated as follows Suppose
there are only tnee stocks in the maiket: Jazz, Inc, Classical, Inc, and Rock, Inc
Their outstanding shates and prices are shown in Table 7 I. The market weights aie
propoitional to the total market capitalization, not to the number of shares

In the situation where everyone follows the mean-variance methodology with
the same estimates of parameters, we know that the efficient fund of risky assets will
be the market portfolio Mence under these assumptions there is no need for us to
formulate the mean-variance problem, to estimate the underlying parameters, or to
solve the system of equations that define the optimal portfolio We know that the
optimal portfolio will turn out to be the market portfoiio

TABLE 7.1
Market Capitalization Weights

Shares Relative shares Weight in
Security oufstanding fn market Price Capitalization | market
Jazz, inc 160,000 18 $6 00 $60,000 3/20
Classical, Inc 30,000 348 $400 $120,000 3/10
Rock. Inc 40,000 12 $5 50 $220,000 1120
Total 80,000 T $400,000 1

The percentage of shaves of a stock yn the market portfoho is a share-weighted propoition of total
shares These percentages are 0ot the market portfolio weights The market portfolio weight of a
stock is proportional to capitalization Jf the price of an asset changes the share proportioms do
not change. bt the capitalization weights do change
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How does this happen? How can it be that we solve the problem even without
knowing the required data? The answer is based on an equilibrium aigument It
everyone else (or at least a large number of people) solves the problem, we do not
need to It works like this: The return on an asset depends on both its initial price
and its finai price The other investors solve the mean~variance portfolio probiem
using their common estimates, and they piace orders in the matkel to acquire their
pottfolios If the orders piaced do not match what is available, the prices must change
The prices of assets under heavy demand will increase; the prices of assets under
fight demand wiil decrease These price changes affect the estimates of asset returns
directly, and hence investors will recaiculate their optimal portfolios This process
continues until demand exactly matches supply; that is, it continues untit there is
equilibrium

In the idealized woild, where every investor is a mean-variance investor and
all have the same estimales, everyone buys the same poitfolio, and that must be
equal to the matket portfolio In other words, prices adjust to drive the market (o ef-
ficiency Then after other people have made the adjustments, we can be sure that
the efficient portfolio is the maiket portfolio, so we need not make any caicula-
tions

This theory of equilibrium is usually applied to assets that ate traded repeatediy
oves lime, Such as the stock market In this case it is argued that individuals adjust
their return estimates siowly, and only make a series of minot adjustments to their
calculations rather than solving the entire portfolio optimization problem at one time

Finally, in such equilibrium models it is argued that the appropriate equiltibrium
need be caiculated by only a few devoted (and energetic) individuals They move
prices around to the proper value, and other investors foilow their lead by purchasing
the market portfolio

These arguments about the equilibrium process ail have a degree of plausibility,
and ail have weaknesses. Deeper analysis can be carried out, but for our puiposes we
will merely consider that equilibrium occurs Hence the ultimate conclusion of the
mean-variance approach is that the one find must be the market portfolio

7.2 THE CAPITAL MARKET LINE

Given the preceding conclusion that the single efficient fund of risky assets is the
market poitfolio, we can label this fund on the -0 diagram with an M for mairker
The efficient set therefore consists of a single straight line, emanating from the risk-
free point and passing through the market portfolio This line, shown in Figute 7 1, is
called the eapital market Jine.

This line shows the relation between the expected rate of return and the risk
of return (as measured by the standard deviation) for efficient assets or portfolios of
assets It is aiso referred to as a pricing line, since prices should adjust so that efficient
assets fali on this line

The line has great intuitive appeal It states that as risk increases, the correspond-
ing expected rate of return must aiso increase Furthermore, this 1elationship can be
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FIGURE 7 1 Capital market line. Efficient as-
F sets must all lie on the line determined by the
risk-free rate and the marlet portfolio
M
i

described by a straight line if risk is measured by standard deviation In mathematical

terms the capital market line states that

Ta iy
Ml
au

Fa=iy+ an
whete T3 and oy are the expected value and the standard deviation of the market rate
of 1eturn and 7 and o are the expected value and the standard deviation of the rate of
return of an arbitrary efficient asset

The slope of the capital market Hne is K = (Fy — 1¢)/oy, and this value is
frequently called the price of risk. It tells by how much the expected rate of return
of a portfolio must increase if the standmd deviation of that rate increases by one
unit

Example 7.1 (The impatient investor) Mr Smith is young and impatient He notes
that the risk-free rate is only 6% and the market portfolio of risky assets has an
expected return of 12% and a standard deviation of 15% He figures that it would take
about 60 years for his $1,000 00 nest egg to increase to $1 miltion it it earned the
market rate of retuin He can’t wait that tong. He wants that $1 miltion in 10 years

Mr. Smith easily deteimines that he must attain an average rate of return of
about 100% per yeai to achieve his goal (since $1,000 x 210 = $1,048,000) Corre-
spondingly, his yearly standard deviation according to the capita) market line would
be the value of o satisfying

12~ 06
10= 06+ e

or o = 10 This coiresponds to o = 1,000% So this young man is certainly not
gumanteed success (even il he could borrow the amount required to move far beyond
the market on the capital market line)
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Example 7.2 (An oil venture) Consider an oil drilting venture The price of a share
of this venture is $875 It is expected o yield the equivatent of $1,000 after | year,
but due to high uncertainty about how much oil is at the drilling site, the standard
deviation of the return is o = 40% Currently the 1isk-fiee rate is 10% The expected
rate of return on the market portfolio is 17%, and the standard deviation of this rate
is 12%

Let us see how this venture compares with assets on the capital market line
Given the level of o, the expected rate of return predicted by the capital market line is
re 10+ 71002 330
12
However, the actual expected 1ate of return is only 7 = 1,000/875 — 1 = 14% There-
fore the point 1epresenting the oil venture lies well below the capital market Hne (This
does nor mean that the venture is necessarily a poor one, as we shall see later, but it

certainty does not, by itself, constitute an efficient portfolio )

7.3 THE PRICING MODEL

B

The capital market line relates the expected rate of retuin of an efficient portfolio to
its standard deviation, but it does not show how the expected 1ate of return of an
individual asset relates to its individual risk This relation is expressed by the capitat
asset pricing modet

We state this major 1esult as a theorem The reader may wish merely to glance
over the proof at first reading since it is a bit involved We shalt discuss the implications
of the result following the proofl

The capital asset pricing model (CAPM) If the maiket poitfolio M is efficient, the
expected reun T of any asset i satisfies

Fo—tg= Bi(Fa—1y) 72
where
=22 (73)
it

Proof: For any a consider the portfolio consisting of a portion « invested
in asset i and a portion | — « invested in the market portfotio M (We allow
a < 0, which corresponds to borrowing at the risk-free 1ate ) The expected
rate of retwmn of this porttolio is

o= af, + (1 —a)ry
and the standard deviation of the 1ate of return is
ox =[00] + 2u(t =)oy + (L — ) o3, ]'7?

AS$ a vaties, these values tiace out a curve in the F—o diagram, as shown in
Figure 7 2 In particulai, @ = 0 corresponds to the market poitfolio M This
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FIGURE 7.2 Portiolio curve. The family of
portfolios traces out a curve on the diagram This
curve cannot cross the capital market line, and
hence must be 1angent to that fine

curve cannot cross the capital market line If it did, the portfolio corresponding
to a point above the capital market line would violate the very definition of
the capital market line as being the efficient boundary of the feasible set.
Hence as & passes through zero, the curve must be tangent to the capital
market line at M. This tangency is the condition that we exploit to derive the
formula

The tangency condition can be tianslated into the condition that the
slope of the curve is equal to the stope of the capital market line at the point
M To set up this condition we need to calculate a few derivatives

First we have

dry o
‘a =y — Far
doy _ ao’ + (1~ 2a)am + (@ — Doj,
a B Ou )
Thus,
dow | _ oiar — o}
da u:(l_ ay '
We then use the relation
dry,  dF./de
dog  dog/da
to obtain
dre| (i —Tadow
doy u=()~ GiM — ”%t

This stope must equal the slope of the capital market line Hence,
i —Tadour _ Tu—1y
g — g T ow
We now just solve for 7;, obtaining the final result
Fr=17+ (I“M‘:—'L> am=1r+ B Far—1y)
it
This is cleaily equivalent to the stated formula B



7 3 THE PRICING MODEL 179

The value B, is 1efeired to as the beta of an asset When the asset is fixed in a
discussion, we often just write beta without a subscript—§ An asset’s beta is all that
need be known about the asset’s risk chaiacteristics to use the CAPM formula

The value ¥; — 1y is termed the expected excess rate of return of asset f; it
is the amount by which the rate of retuin is expected to exceed the risk-free rate
Likewise, 7gy — 17 is the expected excess rate of return of the market postfolio In
terms of these expected excess rates of return, the CAPM says that the expected
excess 1ate of return of an asset is proportional to the expected excess rate of return
of the market postfolio, and the propoitionality factor is § So with 1, taken as a base
point, the expected returns of a particular asset and of the market above that base are
propoitionat

An altemnative interpretation of the CAPM formula is based on the fact that g is
a normalized version of the covariance of the asset with the market portfolio Hence
the CAPM formula states that the expected excess 1ate of 1eturn of an asset is directly
proportional to its covariance with the market It is this covariance that determines the
expected excess 1ate of retuin

To gain insight into this result, tet us consider some extieme cases Suppose,
first, that the asset is completely wncon elated with the market; that is, § = 0 Then,
according to the CAPM, we have 7 = 1, This is perhaps at first sight a surprising
result It states that even if the asset is very risky (with large o), the expected rate of
return will be that of the risk-free usset—there is no premium for 1isk The reason for
this is that the risk associated with an asset that is uncorrelated with the market can
be diversified away If we had many such assets, each uncorrelated with the others
and with the market, we could purchase small amounts of each of them, and the
resulting tota) variance would be small Since the final composite 1eturn would have
small variance, the corresponding expected rate of return should be close to 1

Even more extreme is an asset with a negative value of § In that case 7 < 13
that is, even though the asset may have very high risk (as measured by its o), ils
expected 1ate of return should be even less than the risk-free rate The reason is that
such an asset reduces the overall portfolio risk when it is combined with the market
Investors are therefore willing to accept the lower expected vatue for this risk-reducing
potential Such assets provide a form of insurance They do well when everything else
does poorly

The CAPM changes our concept of the risk of an usset from that of o to that
ol B Ttis stitl true that, overall, we measure the risk of a portfolio in terms of o, but
this does not trunstate into a concein for the o’s of individual assets For those, the
proper measuse is their f's

Example 7.3 (A simple caleulation) We itlustrate how simple it is to use the CAPM
formuta to calculate an expected 1ate of return. Let the sisk-free 1ate be 1y = 8%
Suppose the 1ate of retuin of the market has an expected vatue of 12% and a standard
deviation of 15%
Now consider an asset that has covariance of 045 with the matket Then we find
B = 045/(15)> =20 The expecled retuin of the asset is F = 08--2x ( 12— 08) =
16 = 16%
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Betas of Common Stocks

The concept of beta is well established in the financial community, and it is referred to
frequently in technical discussions about pasticular stocks Beta values are estimated
by various financial service oiganizations Typically, these estimates are formed by
using a record of pust stock vatues (usually about 6 or 18 months of weekly values) and
computing, from the data, aveiage values of returns, products of returns, and squates
of returns in order to approximate expected retuins, covartances, and variances The
beta values so obtained diift around somewhat over time, but unless there are dragtic
changes in a company’s situation, its beta tends to be relatively stable.

Table 7 2 Jists some well-known US companies and their corresponding beta
(B) and volatility (o) values as estimated at a particutar date Try scanning the Jist
and see if the values given support your intuitive impression of the company’s market

TABLE 7.2

Some U S. Companies: Their Betas and Sigmas

Ticker sym Company name Beta Volatility
KO Coca-Cola Co I19 8%
DIS Disney Produciions 223 22%
EK Easiman Kodak P43 34%
XON Exxon Corp 67 18%
GE General Eleciric CO 26 15%
GM General Motors Corp 81 19%
GS Gittetie Co 109 2%
HWP Hewieni-Packard Co 165 24%
HIA Holiday inns inc 256 39%
KM K-Man Corp 82 20%
LK Lockheed Cotp 302 43%
MCD McDonalds Corp 156 21%
MRK Meick & Co 94 20%
MMM Minnesoia Mining & Mig 100 17%
icp Penny J C Inc 122 20%
MO Phillip Morris ine 87 21%
PG Procter & Gambie 70 14%
SA Saleway Siores Inc 72 14%
S Sears Roebuck & Co 104 19%
SD Siandard Oit of Calif 85 24%
SYN Syntex Corp 118 3%
TXN Texas Instruments 146 23%
X US Steet Corp 103 26%
UNP Union Pacific Corp 65 18%
ZE Zenith Radio Cotp 201 32%

Source: Dailygraph Stock Option Gunle Willism O Neit & Co. Ine. Loy
Angeles. December 71979 Repristed with permission of Daity Graphs.
PO Box 66919 1oy Angeles CA 90066
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properties Generally speaking, we expect aggiessive companies or highly leveraged
companies to have high betas, whereas conservative companies whose performance
is nnrelated to the general market behavior we expected to have low betas Also, we
expect that companies in the same business wilt have simnilar, but not identical, beta
values Compare, tor instance, JC Penny with Sears Roebuck, or Exxon with Standard
Oil of Calitornin

Beta of a Portfolio

It is easy to caleulate the overall beta of a poitfolio in teims of the betas of the
individuai assets in the portfolio Suppose, for example, that a portfolio contains n
assets with the weights wy, un, . ,w, The rate of return of the portfolio is 1 =
Y iy wir; Hence cov(r, 1) == 3" w,cov(r,, 1) It follows immedintely that

L3
Bp = Z w; B a4
=1
In other words, the portfolio beta is just the weighted average of the betas of the
individual assets in the portfolio, with the weights being identical to those that define
the portfolio

7.4 THE SECURITY MARKET LINE

The CAPM fonmula can be expiessed in graphicat form by regmding the formula as a
Jinear 1ctationship This retatiouship is termed the security marlket line. Two versions
are shown in Figure 73

Both graphs show the linear variation of 7 The fust expresses it in covaliance
form, with cov(:, 14) being the horizontal axis The market portfolio corresponds to
the point (7;"71 on this axis The second graph shows the relation in beta form, with beta
being the horizontat axis In this case the market corresponds to the point g = |

Both ol these lines highlight the essence of the CAPM formula Under the
equilibrium conditions assumed by the CAPM, any asset should fall on the security
market line

The security market line expresses the risk-reward stiucture of assets according
to the CAPM, and emphasizes that the risk of an asset is a function ol its covariance
with the market or, equivalently, a function of its beta

Systematic Risk

The CAPM implies a special structural pioperty for the retuin of an asset, and this
property provides further insight as to why beta is the most important measure of risk
To develop this result we write the (tandom) rate of return of asset i as

no=ag A+ B rg) e (75)
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FIGURE 7.3 Security market line. The expecied rate of relurn increases linearly as the covariance with the market
increases or, equivalenily, as # increases

This is just an arbitrary equation al this point The random variable ¢; is chosen lo
make it true However, the CAPM formula tells us several things about &

First, taking the expected vatue of (75), the CAPM says that E(g,) = 0. Sec-
ond, taking the corretation of (7.5) with ryy (and using the definition of £;), we find
cov(g,, op) = 0 We can therefore write

2 g2 2
o = fif oy + var(e:)

and we see that of is the sum of two parts The first part, f7o},, is termed the
systematic risk. This is the risk associated with the market as a whole This risk cannot
be reduced by diversification because every asset with nonzero beta contains this risk
The second part, var(e;), is termed the nonsystematic, idiosyncratic, or specific risk.
This 1isk is uncotrelated with the market and can be reduced by divessification It is
the systematic (or nondiversifiable) risk, measured by beta, that is most important,
since it directly combines with the systematic risk of other assets

Considet an asset on the capital market line! with a value of # The standad
deviation of this asset is Boy, It has only systematic risk; there is no nonsystematic
tisk This asset has an expected rate of retuin equal to ¥ = 1y + B(Tps — 14) Now
consider a whole group of other assets, ail with the same value of B According to
CAPM, these all have the same expected rate of 1eturn, equal to ¥ However, if thesc
assets canry nonsystematic 1isk, they will not fall on the capital market line. Indeed, as
the nonsystematic risk increases, the points on the 7o plane 1epresenting these assets
drift to the tight, as shown in Figure 74 The horizontal distance of a point from the
capital market line is therefore a measure of the nonsystermatic risk

'Of course. 1o be exactly on the line, the assel must be equivalent fo & combination of the markes porfalio
and the risk-free asset
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FIGURE 7.4 Systematic and nonsys-
tematic risk An asset on the capital mar-
ket tine has only systemalic risk Assets
with nonsystematic risk fali to the right
of the capital markel line

~t

Assels with
nonsystematic risk

Asset with systematic risk only

7.5 INVESTMENT IMPLICATIONS

The question of interest for the investor is: Can the CAPM help with investment
decisions? Theie is not a simple answer to this question

The CAPM states (or assumes), based on an equilibrium argument, that the
solution to the Markowilz problem is that the matket portfolio is the one fund (and
only fund) of risky assets that anyone need hold This fund is supplemented only
by the risk-free asset The investment recommendation that follows this argument
is that an investor should simply purchase the maiket portfolio That is, ideally, an
investor should purchase a little bit of every assel that is available, with the propottions
determined by the relative amounts that are issued in the matket as a whole If the
world of equity secuiities is taken as the set of available assets, then each person
should puichase some shares in every available stock, in propottion to the stocks’
monetary share of the total of all stocks outstanding It is not necessary to go to the
tiouble of analyzing individual issues and computing a Markowitz solution Just buy
the market portfolio

Since it would be rather cumbersome for an individual to assemble the market
portiolio, mutual funds have becen designed to match the market portfolio closely
These funds are termed index funds, since they usually attempt to duplicate the port-
folio of a major stock market index, such as the Standard & Poor’s 500 (S&P 500),
an average of 500 stocks that as a group is thought to be representative of the market
as a whole Other indices usc even larger numbers of stocks A CAPM purist (that
is, one who {ully accepts the CAPM theoiy as applied to publicly traded securities)
could just puichase one of these index funds (to serve as the one fund) as well as
some 1isk-ree secuiitics such as U S Treaswy bills

Some people believe that they can do better than blindly purchasing the maiket
poitfolio The CAPM, after all, assumes that everyone has identical inlormation about
the (uncertain) retuins of all assets Clearly, this is not the case If someone believes
that he o1 she possesses superior information, then presumably that person could form
a poitfolio thal would outpeitorm the market We return to this issue in tbe next
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chapter, where questions concerning data and information are explicitly addressed It
is shown there that it is not at all easy to obtain accurate data for use in a Markowitz
model, and hence the solution computed from such a model is likely to be somewhat
nonsensical For now we just state that the best designs scem to be those formulated as
deviations or extensions of the basic CAPM idea, rather than as bold new beginnings
In other woids, in constructing a portfolio, one piobably should begin with the maiket
poitfolio and alter it systematically, 1ather than attempting to solve the full Maikowitz
problem from scratch

" One area where the CAPM approach has direct application is in the analysis of
assets that do not have well-established mazket piices In this case the CAPM can be
used Lo find a 1easonable price “An important class of problems of this type ate the
pioject evaluation problems (variations of capital budgeting problems) that arise in
firms This application is considered explicitly in Section 7 8

7.6 PERFORMANCE EVALUATION

The CAPM theory can be used to evaluate the performance of an investment portfolio,
and indeed it is now common piactice to evaluate many institutional poitfolios (such
as pension funds and mutual funds) using the CAPM framework We shall present
the main ideas by going through a simple hypothetical example. The piimary purpose
of this section, however, is to use these performance measue ideas to iHustrate the
CAPM

Example 7.4 (ABC fund analysis)y The ABC mutual fund has the 10-year record
of rates of return shown in the column labeled ABC in Table 73 We would like to
evaluate this fund’s performance in terms of mean-variance poitfolio theory and the
CAPM. Is it a good fund that we could recommend? Can it serve as the one fund for
a prudent mean-~variance investor?

Step 1. We begin our analysis by computing the three quantities shown in Ta-
ble 7 3 below the given return data: the average rtate of retuin, the standaid deviation
of the 1ate as implied by the 10 samples, and the geometric mean rate of return These
quantities are estimates based on the available data

in geneial, givens,,i = 1,2, ,n, the aveiage 1ate of return is

P&
oo E 1,
i3

and this seives as an estimale of the true expected retusn ¥ The average variance is?

T TR

i=1

IThe reason that # — 1 is nsed in the denominator instead of # is discussed in the nexi chapler
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TABLE 7.3
ABC Fund Performance

Rate of return percentages

Year ABC S&P T-bills

i 14 i2 7

2 10 7 75

3 19 20 77

4 -8 -2 75

5 23 12 85

6 28 23 8

7 20 17 73

8 i4 20 7

9 -9 -5 75

10 19 16 8

Average i3 12 76
Standard deviation i24 94 5
Geometric mean 123 16 76

Cov(ABC, S&P) 0107
Beta 120375 1
Jensen 000i04 000000
Sharpe 043577 046669

The top pait of the table shows the rate of retura achieved
by ABC S&P 500 aud T-bills aver a 10-year period The
lower portion shows the leaven aund Sharpe indices

and the estimate s of the standard deviation is the square root of that It is also useful
to calculate the geometric mean rate of return, which is

p=[0+00+m  A+]"" =1

This measures the actual rate of return over the n years, accounting for compounding
This value will generally be somewhat lower than the average rate of return

Step 2. Next we obtain data on both the market portfolio and the risk-free 1ate
of return over the 10-year period We use the Standard & Pooi’s 500 stock average
and the l-year Treasury bill rate, respectively These are shown in Table 73 We
calculate average rates of return and standard deviations of these by the same method
as for ABC We also calculate an estimate of the covariance of the ABC fund with
the S&P 500 by using the estimate

l 2 - -
covn, i) =y E(u =) = Tar)

We then calculate beta from the standard formnula,
covir, 1)
var(s )

This gives us enough information to carry out an interesting analysis



186  Chapter 7 THE CAPITAL ASSET PRICING MODEL

-t

fensen index

-t

-
-

.
~
PPte ABC

-~
-~ .

Sharpe ratio
-~

L 9

FIGURE 7.5

1 B Opy o

(a) (b)

Performance indices for ABC. The Jensen index measures the height above 1he security market line; 1he

Sharpe ratio measures 1he angle in the 7o plane

Step 3. (The Jensen index) We write the formula

;_‘—I/:«‘v/-l—ﬂ(;_‘,u-*lf)

This looks like the CAPM pricing formula (7 2), except that we have replaced expected
rates of return by measuied average returns (for that is the best that can be done in
this situation), and we have added an error term / The J here stands for Jensen’s

index.

According to the CAPM, the value of .J should be zero when true expected
returns are used Hence J mweasures, approximately, how much the performance of
ABC has deviated from the theoetical value of zero. A positive value of J presumably
implies that the fund did bette: than the CAPM prediction (but of cousse we recognize
that approximations are introduced by the use of a finite amount of data to estimate

the important quantities)

The Jensen index can be indicated on the security market line, as shown in
Figuie 7 5(a) For ABC, we find that indeed J > 0, and hence we might conclude

that ABC is an excellent fund But is this really a correct inference?

Aside trom the difficulties inherent in using short histories of data this way, the
inference that ABC is a good mutual fund is not entirely warranted 1t is not clear
that it can serve as the one fund of 1isky assets in an efficient portfolio The fact that
J > 0 is nice, and may tell us that ABC is a good asser, but it does not say that the

ABC fund is, by itselt, efficient

It can be argued that the Jensen index tells us nothing ahout the fund, but instead is a measure of the
validity ol the CAPM I the CAPM is valid. then every security (or fund) must satisfy the CAPM lormula
curity with a
nonzero Jensen index, then that is a sign that the market is not efficient. The CAPM formula is often applied
to (new) financial instruments or projects that are not traded and hence not part of the market portfolio In

exuctly. since the formula is ¢

identity if the market portfolio is cficient. {I we find a s

this case, the Tensen index cun be a uselul measure



77 CAPM AS A PRICING FORMULA 187

Step 4. (The Shaipe index) In order to measuie the efficiency of ABC we
must see where it falls relative to the capital market line Only portfolios on that line
are efficient We do this by wiiting the formula

f7-t/ = Sa

The value of S is the slope of the line drawn between the iisk-free point and the
ABC point on the F-¢ diagram The S stands for Sharpe index. For ABC we find
S = 43577 This must be compared with the corresponding value for the market—
represented by the S&P 500 We find the value tor the S&P 500 is § = 46669 The
situation is shown in Figure 7 5(b) Clealy ABC is not efficient, at least as revealed
by the available data

We conclude that ABC may be worth holding in a portfolio By itself it is not
quite efficient, so it would be necessay to supplement this fund with other assets o1
funds to achieve etficiency Or, to attain efficiency, an investor could simply invest in
a broad-based fund instead of the ABC fund

7.7 CAPM AS A PRICING FORMULA

2

The CAPM is a pricing model. Howevei, the standard CAPM formula does not
conmin prices explicitly—only expected rates of return To see why the CAPM is
called a pricing model we must go back to the definition of return
Suppose that an asset is purchased at price P and later sold at price Q The rate
of return is then » = (Q — P)/P Here P is known and Q is rtandom Putting this in
the CAPM formula, we have
[

P -
3 =1+ B(Fy ~17)

Solving for P we obtain

T+ BFu~1p)
This gives the price of the asset accoiding to the CAPM We highlight this important
result:
Pricing form of the CAPM  The price P of an asset with pavoff Q Is

[4]
P —
Lo+ BFy —1g)

where B is the beta of the asset

(76)

This pricing {ormula has a lorm that very nicely geneializes the {amiliar dis-
counting formula for deterministic situations In the deterministic case, it is appropriate
to discount the future payment at the interest rate 77, using a factor of 1/(1 + 17) In
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the random case the appropriate inteiest rate is /7 + B (Fas —1 ), which can be regarded
as a risk-adjusted interest rate

Example 7.5 (The price is right) Gavin Jones is good at math, but his friends el
him that he doesn’t always sec the big pictmre Right now, Gavin is thinking about
investing in a mutual fund This fund invests 10% of its funds at the risk-free rate of
7% and the remaining 90% in a widely diversified portfolio that closely approximates
the market portfolio, which has an expected rate of return equal to {5% One share ol
the mutual fund represents $100 of assets in the tund Having just studied the CAPM,
Gavin wants to know how much such a share should cost

Gavin figures out that the beta of the fund must be 90 The value of a share
after 1 year is expected to be 10 x 107+ 90 x 1 15 = 114 20 Hence, according to
(7 6),

_ 114 20
T 1074+ 90 x 08

Yes, the price of a share will be equal to the value of the funds it repiesents Gavin
is reassured (but suspects he could have figured that out more simply)

= $100

Example 7.6 (The oil venture) Conside: again, as in Example 7 2, the possibility
of investing in a share of a cestain oil well that will produce a payott that is random
because of the uncertainty associated with whether or not there is oil at that site and
because of the uncertainty in future oil prices The expected payoft is $1,000 and the
standard deviation of return is a relatively high 40% The beta of the asset is 8 = 6,
which is relatively low because, although the uncertainty in teturn due to oil prices
is correlated with the market poitfolio, the uncertainty associated with exploration is
not The risk-free rate is 1, = 10%, and the expected return on the market poztfolio is
17 What is the value of this share of the oil venture, based on CAPM? (Recatt that
earlier it was stated that the offered price was $875 ) We have immediately

_ $1,000
T 110+ 6(17 ~ 10)
and @ does not enter the calculation
The venture may be quite risky in the traditional sense of having a high standard

deviation associated with its return But, nevertheless, it is fairly priced because of the
relatively low beta

= $876

Linearity of Pricing and the Certainty Equivalent Form

We now discuss a very important property of the pricing formula—namely, that it is
linear. This means that the price of the sum of two assets i the sum of their prices,
and the price of a multiple o} an asset is the same multiple of the price This is really
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quite startling because the formula does not look linear at all (at least for sums) For
example, if
= _-_-_———5‘ Py = 0

Loy + By —r1p)’ T bty BaFar i)

it does not seem obvious that

Py

O+ 0,

Lty + Brya@a —1p)
wheie 8.2 is the beta of a new asset, which is the sum of assets 1 and 2 Fuithermore,
based on oui recognition that the covaiiance between assets is important in assessing
how to use them in a portfolio, it may scem mnreasonable that the pricing formula
should be lineas We can easily take care of the first doubt by conveiting the formula
into another form, which appea:s linear; then we will discuss the intuition behind the
result

The form of the CAPM pricing formula that clearly displays linearity is called
the certainty equivalent form. Suppose that we have an asset with piice P and final
value Q Here again P is known and Q is uncertain Using the fact that 1 = Q/P ~1,
the value of beta is

Pi+ Pro=

f= cov[(Q/P —~ 1), 1]

3
Ty
This becomes
cov(Q, 1a)
B = T
T
Substituting this into the pricing formula (7.6) and dividing by P yields
[

| = .
P(tap) +cov(Q, )y —10) oy

Finally, solving for P we obtain the following formula:

Certaiuty equivalent pricing formula  The price P of an asset with pavoff Q is

1 |:5 _eov(Q, 1) Ty — l[):|

P o= 5 77
Lty ay an

The term in brackets is called the certainty equivalent of Q This value is
treated as a ceitain amount, and then the normal discount factor /(1 +1,) is applied
to obtain P The certainty equivalent form shows clearly that the pricing formula is
tinear because both tesms in the brackets depend linearly on Q

The reason for linearity can be traced back to the principle of no aibitiage: if
the price of the sum of two assets were not equal to the sum of the individual prices,
it would be possible to make arbitrage piofits For example, if the combination asset
were priced lower than the sum of the individual prices, we could buy the combination
(at the low price) and sell the individual pieces (at the higher price), thereby making a
profit By doing this in large quantities, we could make arbitiarily large profits 1f the
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ieveise situation held—it the combination asset were pticed higher than the sum of
the two assets—we would buy the assets individually and scll the combination, again
making arbitrage piofits Such aibitrage opportunities aie 1uled out if and only if the
pricing of assets is lineat This linearity of pricing is theiefore a fundamental tenet of
financial theoty (in the context of peifect maikets), and we shall retuin to it fiequently
throughout the text

Example 7.7 (Gavin tries again) Gavin Jones decides to use the certainty equivalent
form of the pricing equation to calculate the share price of the mutual fund considered
in Example 75 In this case he notes that cov(Q, 1) = 900"%,, where Q is the value
of the fund after 1 year Hence,
11420 - 90 x 08
P o= — T = $100
All is well again, according to his math

7.8 PROJECT CHOICFE*

A firm can use the CAPM as a basis for deciding which projects it should carnty out
Suppose, for example, that a potential project requires an initial outlay of P and will
generate 4 net amount Q after 1 year As usual, P is known and Q is random, with

expected value Q It is natural to define the net present value (NPV) of this project
by the formula

NPV = — P + Q

|:—__ cov(Q, 1y )Ty ~ '[):| as

T+

This formula is based on the ceitainty equivalent foum of the CAPM: the first (negative)
term is the initial outlay and the second tetm is the certainty equivalent of the final
payoft

The fitm may have nmuany diffeient projects from which it will select a few
What criterion should the fitm employ in making its selection? Extending our knowl-
edge of the deterministic case, it seems appropriate for the firm to select the group
of projects that maximize NPV Indeed this is the advice that is normally given to
firms

How would potential investois view the situation? For them a patcular firm is
only one of a whole gioup of firms in which they may choose to invest Investors
are conceined with the overall performance of their portfolios, and only incidentally
with the internal decisions of a particular fiim 1f investors base their investment
decisions on a mean-variance criterion, they want an individual fiim to operate so
as to push the efficient fiontiei, of the entire universe of assets, as far upward and
leftward as possible This would improve the efficient trontier and hence the perfor-
mance of a mean-variance efficient portdolio Thesefore polential investors will wige
the management teams of firms to select projects that will shift the efficient fron-
tier outward as far as possible, then they will invest in the efficient pordotio. Fos

2
Tt



78 PROJECT CHOICE® 191

firms to do this, they must account for the selections made by all other firms, {or
it is the combined effect, accounting for interactions, that determines the efficient
frontier

The two criteria—net present value and maximum expansion of the efficient
frontier—may, it seems, be in conflict The NPV criterion focuses on the firm itself;
the efficient frontier criterion focuses on the joint effect of all firms But really, there
is no conflict The two criteria are essentially equivalent, as stated by the following
version of the harmony theorem:

Harwony theorem lf a finn does not mavinmize NPV, then the efficient firontier can
be expanded

Proof: Suppose firm i is planning to operate in a manner that leads to a net
present value of A which does not maximize the net present value available
The initial cost of the project is P? Investors pay £ = PP + A and plan
to receive the reward Q,, obtaining a rate of retwin 1, = (Q, — P,)/P, We
assume that firm / has a very small weight in"the market portfolio of risky
assets and that projects have positive initial cost

The current 1ate of return 1, satisfies the CAPM relation

o= BT — 1)
which as shown earlier is equivalent to
0 = cov(Q, 1)y —1p)/oh
L+
Hence from the viewpoint of investors, the cuient net present value is zero
Suppose now that the firm could operate to increase the present value

by using a project with cost Pio’ and reward Q; Investors pay A to buy the
company and pay the operating cost P The total P/ = PY + A satisfies

0=-P +

>0

—f e

Py Q; —cov(Q), 1a)Fy —17) /9%
! L4y
which, since P} > 0, implies that
=0y —eov(!, 1) Fu i) jed > 0

Now consider the portfolio with return 1, = 24 + m{ — a1 where o
is the original weight of the firm / in the market portfolio This portfolio
corresponds to dropping the old firm project and ieplacing it by the same
weight of the new

We want to show that this portfolio lies above the old etficient fiontier
To show this we evaluate
To—1f

O

tané, =

for small @ > 0 Differentiation gives
dtand, | dF,

Ty — 1y dog
de a, de gl  de
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Using
&e =TT
do fyp ' '
das, M — Opgi
do |ymg ay
we find
dtanéy, T, =T, Tuigoue —ow
do fuo  om ok oM
1

= —[F — BiGFm—1)1— J—m ~ BiFar —17)] >0
aM I

The final inequality tollows because the first bracketed term is positive and
the second is zero Since o is small this means that tan6, > tanf,; Hence
the efficient frontier is larger than it was originally 8

7.9 SUMMARY

{f everybody uses the mean-variance approach to investing, and if everybody has the
same estimates of the asset’s expected 1eturns, variances, and covariances, then every-
body must invest in the same fund F of risky assets and in the rigk-free asset Because
F is the same for everybody, it follows that, in equilibrium, F must correspond to the
market portfolio M—the portfolio in which each asset is weighted by its proportion
of total market capitalization This observation is the basis for the capital asset pricing
model (CAPM)

If the market portfolio M is the efficient portfolio of risky assets, it tollows
that the efficient frontier in the F~o diagram is a straight line that emanates from the
1isk-free point and passes through the point iepresenting M This line is the capital
market line Its slope is called the miarket price of risk Any efficient portfolio must
lie on this line

The CAPM is derived directly from the condition that the market portfolio is a
point on the edge of the feasible region that is tangent to the capital market line; in
other words, the CAPM expresses the tangency conditions in mathematical form The
CAPM iesult states that the expected rate of return of any asset / satisfies

Fo—tp=BiFar —1g)
wheie B, = covls,, 1a)/0}, is the beta of the asset

The CAPM can be represented giaphically as a security market line: the expected
rate of return of an asset is a straight-line function of its beta (o1, alternatively, of its
covariance with the market); gieater beta implies gieater expected return Indeed, from
the CAPM view it follows that the risk of an asset is fully characterized by its beta
1t follows, for example, that an asset thut is uncorrelated with the market (8 = 0) will
have an expected 1ate of return equal to the risk-free rate

The beta of the market portfolio is by definition equal to | The betas of other
stocks take other values, but the betas of most U S stocks tange between 5 and 25
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The beta of a potfolio of stocks is equal to the weighted average of the betas of the
individual assets that make up the portfolio

One application of CAPM is to the evaluation of mutual fund performance The
Jensen index meagures the histotical deviation of a fund from the secwity market line
(This measure has dubious value for funds of publicly traded stocks, however ) The
Sharpe index measures the slope of the line joining the fund and the risk-tree asset
on the F-o diagram, so that this slope can be compared with the market price of
tisk

The CAPM can be converted to an explicit formula for the price of an asset

.In the simplest version, this formula states that piice is obtained by discounting the

expected payoft, but the interest rate used for discounting must be 1y + B(Fy — 1),
where 8 is the beta of the asset An alternative form expresses the price as a discounting
of the certainty equivalent of the payoff, and in this formula the discounting is based
on the 1isk-iree rate 1

1t is important to recognize that the pricing formula of CAPM is linear, meaning
that the price of a sum of assets is the sum of their prices, and the price of a multiple of
an asset is that same multiple of the basic price The certainty equivalent formulation
of the CAPM clearly exhibits this linear property

The CAPM can be used to evaluate single-period projects within firms Managers
of firms should maximize the net piesent value of the firm, a$ calculated using the
pticing form of the CAPM formula This policy will genetate the greatest wealth {or
existing owners and provide the maximum expansion of the elficient frontier for all
mean-variance investors

1. (Capital market line)  Assume that the expected rate of return on the market porilolio is
23% and tiie raie of return on T-bilis (the risk-free rate) is 7% The srandard deviation of
the market is 32% Assume that the market portfolio is efficient
(@) What is ihe equation of the capitul niarkei line?

(b) (i) 1f an expected return of 39% is desired, what is the standard deviation of this
position? (it} 1i you have $1,000 to invest how shouid you allocate it 10 achieve the
above position?

(¢} 1f you tnvest $300 in the risk-free asset and $700 in the market portfolio, how niuch
money should yon expect io fgve at the end of the year?

2. (A smalf worldy Consider a world in which there ure only two risky assets, A and B,
and a 1isk-lree asset F The two risky assets are in equul supply in the market; that is,
M = LA+ B) The following information is known: 1, = 10, a3 = 04, gyp = 01,
n,:, = 02, and ¥y = I8

(o) Find a geneial expression (without substituting values) for a3, A, and By
() According to the CAPM, what are the numerical values of ¥4 and 7p?

3. (Bounds on retums) Consider a universe of just three securitics They have expected
1otes of return of 10%, 20%, and 10% respectively Two pontfolios are known to tic on
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the minimum-variance set They aie defined by the porifolio weights

60 80
w= 20|, ¥ o - 20
20 40

1t is also known that the market portfolio is efficient

(@) Given this information, what are ihe minimum and maximum possible vafues for the
expecied rate of rewrn on the market porifotio?

(h) Now suppose you are iold that w represents the minimum-variance portfolio Does
this change your answers 1o part (a)?

=

(Quick CAPM derivation} Derive the CAPM formula for 7, —r; by using Equation (6 9)
in Chapter 6 {Hins Note that

"
E Tty = cov{ry, 1y} }

=)

Apply (6 9) both 1 asset & and w0 the market jtself

5. (Uncorrelated assels) Suppose there are n mulally uneorrelated assets The return on
assel i has variance g The expected rates of return are unspecified at this point The tolat
amount of asset i in the market is X, Welet 7 =3, X, and then set v = X,/T, for
i =1,2,  .n Hence the market portfolio in normalized form is x = (), X2, . x,)
Assume there is a risk-free asset with rate of rewrn 7, Find an expression for 8, in terms
of the x,’s and g,’s

s

(Simpletand) In Simpleland there are only two risky stocks. A and B, whose details are
listed in Table 74

TABLE 7.4
Details of Stocks A and B

Number of shares Price Expected Standard deviation
outstanding per share rate of return of return
Stock A 100 $t50 15% 15%
Stock B 150 $200 12% 9%

Furtheimore, the correlation coeflicient between the returns of stocks A and B is pap = %
There is also a risk-free asset, and Simpleland satisfies the CAPM exactly

(a) What is the expected rate of return of the market portfolio?

(b} What is the stndard deviation of the market portfolio?

(¢} What is the beta of stock A?

(d) What is the risk-lree rate in Simpleland?

7. (Zero-beta assels) Let wy be the poruolio (weights) of risky assets corresponding the
nininuni-variance point in the {easible iegion Let wy be any other portfolio on the efficient
froniier Define 1) and 7, o be the corresponding rewrns
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There is a formula of the foim gy = Aﬂ,)2 Find A [Him Consider the portfolios
(I~ a)wy + aw,, and consider small varjations of the variance of such portfolios near
a=0]

Carresponding to the portfolio w there is a portfolio w. on the minimum-variance set
that has zero beta with respect to wy: that is, oy ; = 0 This poitfolio can be expressed
as w, = (| — a)wy + aw, Find the proper value of o

(¢) Show the relation of the three portfolios on a diagram that includes the feasible 1egion
(d) H there is no tisk-free asset, it can be shown that other asseis can be pticed according
to ihe formuta

(a

®

=B (Fu —F:)

where the subsciipt A denoies the market porifolio and 7. is the expected rate of retutn
on the portfolio that has zero beta with the market portfolio Suppose that the expecied
returns on ihe market and the zero-beta portfotio are 15% and 9%, respectively Sup-
pose that a stock / hag a correlation coefficient with the market of 5 Assume also
that the siandard deviation of the retums of the markei and stock i are 15% and 5%,
respectively Find the expected retun of stock i

foed

(Wizards o) Electron Wizards, Inc (EW{) has a new idea for producing TV sels, and it is
planning to enter the development stage Once the product is developed (which will be at
the end of 1 year), the company expecis to sell its new process for a price p, with expected
value 7 = $24M Howevet, this sale price will depend on the market for TV sets at the
time By examining the stock histories of various TV companies, it is determined that the
final sales price p is correlated with the market return as E{(p ~p) (1 oy ~Fs)l = $20Maf‘

To develop the process, EWI must invest in a research and development project
The cost ¢ of this project will be known shortly after the project is begun (when a technical
uncertainiy wili be resotved) The current estimate is that the cost will be either ¢ = $20M
of ¢ == $16M, and each of these is equally likely (This uncertainty is uncorrelated with
the final price and is also uncorrelated with the market ) Assume that the risk-free rate is
17 = 9% and the expected return on the market is ¥y = 33%

(@) What is the expected rate of return of this project?
(b) What is the beta of this project? {Hint I this case, notc that

- 1§
E [(%) (1~ rm} =E (:) El(p — ) = Fu)] }

(c) Is this an acceptabie project based on a CAPM ciiterion? In pariicular, what is the
excess rate of retuin (4 01 ~) above the return predicted by the CAPM?

9. (Gavin’s probiem) Prove to Gavin Jones that the results he obtained in Examples 7 5 and
77 were not accidents Specifically, tor a fund with retum ary + (1 — a) 4, show that
both CAPM pricing fonmulas give the price of $100 worth of fund assets as $100

The CAPM theory was devefoped independently in references {1—4] There are now numerous
extensions and textbook accounts of that theory Consult any of the basic finance textbooks
tisted as references for Chapter 2 The application of this theory to mutnal fund performance
evaluation was presented in {5, 6] An alternative measure, not discussed in this chaptes, is due
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to Treynor {7] Foi summaries of the application of CAPM 10 corporate analysis, see {8, 9]
The idea of using a zero-beta assel, as in Exercise 7, is due to Black [I0]

I Sharpe, W F (1964), “Capital Asset Prices: A Theory of Market Equitibrium under Con-
ditions of Risk,” Journal of Finance, 19, 425-442
2 Lintner, 1 (1965), “The Valuation of Risk Assets and the Selection of Risky Investment in
Stock Portfolios and Capital Budgets,” Review of Econoniics and Statistics, 47, 13-37
3 Mossin, I (1966), “Equilibriuny in a Capital Asset Market,” Econometrica, 34, no 4,
768-783
4 Treynor, ] L (1961), “Towards a Theory of Market Value ot Risky Assets,” unpublished
manuscript
5 Sharpe, W F (1966), “Mutual Fund Performance” Journal of Business, 39, lanuary,
119-138
6 Jensen, M C (1969), “Risk, the Pricing of Capital Assets, and the Evaluation of Investment
Portfolios,” Jomnal of Business, 42, April, 167-247
7 Treynor, ] L (1965), “How to Rate Management Investment Funds,” Harvard Business
Review, 43, January-February, 63-75
8 Rubinstein, M E (1973), “A Mean~Variance Synthesis of Corporate Financial Theory,”
Journal of Finance, 28, 167182
Fama, E F (1977), “Risk-Adjusted Discount Rates and Capital Budgeting wnder Uncer-
ainty,” Journal of Financial Economics, 5, 3-24

o

[0 Biack, F (1972), “Capital Market Equilibrium with Restricted Borrowing,” Jonnal of

Business, 45, 445454
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8.1 INTRODUCTION

The theory of the previous two chapters is quite general, for it can be applied to bets
on a wheel ol fortune, to analysis of an oil wild cat venture, to constiuction ot a
portfolio of stocks, and to many other single-period investment problems Howevet,
the primary application of mean-~variance theory is to stocks, and this chapter focuses
primarily on those special secusities, although much of the material is applicable to
other agsets as well

A major obstacle in the application of mean~variance theory to stocks is the
determination of the pajameter values that the theory requires: the mean values of
each of the assets and the covariances among them These parameter values are not
readily available {or stocks and other financial securities; nor can they be surmised
by logical deduction as they can be for a wheel of fortune, which has clear payoffs
and agsociated probabilities For stocks and other financial securities, we must use
indirect and subtle methods to obtain the information required for a mean-variance
formulation

This chapter examines how models of stock returns, suitable for mean-variance
analysis, can be specified It shows how to build a Factor model of the retum process
to simplify the structure and reduce the number of required parameters Along the way
a new theory of asset pricing, termed arbitrage pricing theory (APT), is obtained
Later we turn directly to the issue of determining parameter values We congider the
possibility of using historical data to determine parameter values, but we discover that
this approach is of limited value

1t should become clear that the application of mean~variance theory and the
CAPM to the design of a portiolio of stocks is not straightforward, but is fraught
with many practical and conceptual difficulties. Undesstanding these difficulties and
developing stiategies for alleviating them is an essential element of investment science

197
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8.2 FACTOR MODELS

The information required by the mean-variance approach grows substantially as the
number n of assets increases. There are n mean values, n variances, and n(n — 1)/2
covariances—a total of 21 + n(n — 1)/2 parameters When »n is large, this is a very
large set of required values For example, if we consider a universe of 1,000 stocks,
501,500 values are required to fully specify a mean-variance model Clearly it is a
formidable task to obtain this information directly We need a simplified approach

Fortunately the randomness displayed by the retumns of n assets often can be
traced back to a smaller number of undeilying basic soutces of randomness (termed
factors) that influence the individual retums A factor model that 1epresents this con-
nection between {actors and individual returns leads to a simplified structute for the
covariance matrix, and provides important insight into the relationships among assets

The factors used to explain 1andomness must be chosen carefully~—and the
proper choice depends on the universe of assets being considered For real estate
parcels within a city, the underlying factors might be population, employment rate,
and school budgets For common stocks listed on an exchange, the factors might be
the stock market average, gross national product, ecmployment rate, and so forth Se-
lection of factors is somewhat of an art, or a trial-and-etror process, aithough formal
analysis methods can also be helpful. (See Exetcise 3 )

This section introduces the {actor model concept and shows how it simplifies
the covariance structure

Single-Factor Model

Single-factor models are the simplest of the tactor models, but they illustrate the
concept quite well Suppose that there are # assets, indexed by i, with rates ot return
15,1 = 1,2, ., n There is a single lactor f which is a random quantity (such as the
stock market average rate ot return for the period) We assume that the rates of retum
and the factor are refated by the following equation:

n=a+bif +e @1

fori=1,2, ,n Inthis equation, the ¢;’s and the &;’s ate fixed constants The ¢;’s
are random quantities which represent errors, Without loss of generality, it can be
assumed that the errors each have zero mean, that is, Ee,) = 0, since any nonzero
mean could be uansferred to a, In addition, however, it is usually assumed that the
errors are uncorrelated with f and with each other; that is, E[(f — f)e;] = 0 for each
i and E(e;e;) = 0 for i % j Thesc are idealizing assumptions which may not actually
be true, but are usually assumed to be true for puiposes of analysis It is also assumed
that variances of the ¢;’s are known, and they are denoted by ‘73:

An individual factor model equation can be viewed graphically as defining a
linear fit to (potential) data, as shown in Figure 8 I Imagine that several independent
obscrvations arec made of both the rate of return 1, and the factor f These points
are plotted on the graph Since both are random quantities, the points ase likely to be
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FIGURE 8.1 Single-factor model. Re-
turns are relaled linearly 10 the factor f,
except thal random errors are added to
the return

Slope=1b

scattered A straight line is fitted through these points in such a way that the aveiage
value of the error, as measured by the vertical distance from a point to the line, is zero

It is helpful to view Figure 8 | in two ways First, given the model (8 1), we
can draw the line on the diagram before obtaining data points Then i we believe
the model, we believe that the data points will fall in the kind of pattem shown in
the diagram In the second view, we imagine that we fizst obtain the data points, then
we construct the line that fits the data When we diaw the line, however, we are
implying that additional data are likely to support it in the sense of falling in the same
patiern

When applied to a group of assets, the fitting process is carried out for each
asset separately As a result, we obtain for each asset i an a@; and b, The a,’s arc
termed intercepts because ¢, is the intercept of the line for asset i with the vertical
axis The #;'s are termed Factor loadings because they measure the sensitivity of the
return to the factor

i{ an historical record of asset 1eturns and the factor values arc available, the
parameters of a single-factor model can be estimated by actuaily fitting straight lines,
as suggested before Note, however, that different values of the a;°s and b, s are likely
to be obtained for different sets of data For example, il we use monthly data on
returns and the factor f for one year to obtain values of the «;’s and b,’s, and then
we do it again the next year, we are likely to get different values In what follows, we
assume that the model is given, and that it 1epresents our understanding of how the
retums are related to the tactor f We ignore the question of where this modet comes
from——at least for now

If we agree to use a single-tactor model, then the standard parameters for mean—
variance analysis can be determined directly from that model We calculate

P+ b f (8 2a)
of = [),;U/z + a:', (82b)
a; = I),bjaf2 ) P # (8 2¢)
b, = cov(,, /)/U} (8 2d)

These equations reveal the primary advantage ol a factor model In the usual
representation of asset returns, a total ot 21 4 n(n — 1)/2 parameters are requited to
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specify means, variances, and covariances In a single-factor model, only the a,’s, b,’s,
aj’s, and f and a/z are required—a total of just 3n + 2 parameters

Portfolio Parameters

When asset returns are described by a single-factor model, the return of any portfolio
of these assets is described by a corresponding factor model equation of its own To
verify this important property, suppose that there are n assets with raes of return
governed by the factor model

N=a +bf +e, i=12 ,n

Suppose that a portfolio is constructed with weights w;, with ., w, = | Then the
rate of return 7 of the porifolio is just the corresponding combination of individual
rates of return; namely,

n " u
rom= E wia; + E wb; f + E w;e,
=1 it i=1

We can write this as
r=a+bf +e

where

n

a = Zw,-a,-
Juxl
1

b=y wb,
ra=t
1

e = Zw,-e,-
Tl

Both a and b are constants, which are weighted averages of the individual a;'s and
b,"s The error term e is random, but it, too, is an average Under the assumptions that
E(e;) = 0, E{(f — F)e;1 = 0, and E(eje;) = 0 for all i # j, it is clear that E(e) = 0
and E[(f - T)e] == 0; that is, e and f are uncorrelated The variance of e is

) n n n
af = E(ez) = F [(Zw,e;) (Z w,-ej):| = E (Z wilef) = Z w,-la:',
femt j=t =1 izt

where we have used the fact that the ¢,’s are uncorrelated with each other Thus we
have a simple and full description of the portfolio return as a factor equation

A factor model is a good model to use to explore the effects of diversification,
showing how risk can be reduced but not entirely eliminated For simplicity, let us
assume that in the one-factor model 03, is the same for all /; say, af, = 5% Suppose that
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a poitlolio is lormed by taking equal fractions ol each asset; that is, we put w, = 1/n
lot each i In that case, lrom belore, we find

2 1o

‘o

Hence as n — oo we see that 07 — 0 So in a well-diversified potlolio the etro:
term in the lactor equation is small
The overall variance ol the portlolio is

2 2 2
0" =boj +o;,

The o7 term goes to zeto, but since b is an average of the b,’s, the bla/". tern remaing
mote or less constant Hence the variance of the portlolio tends to decrease as n
increases because o goes (o zeto, but the portlolio variance does not go to zero

This observation leads to a genetal conclusion For any one asset with a rate ol
return described by a factor model

L=a,+bf +e

thete are two sources ol risk: that due to the b, f term and that due to ¢, The tisk
due to ¢, is said to be diversifiable because this term’s contribution to overall risk
is essentially zero in a well-diversified poitlolio On the other hand, the b, f term
is said to be a systematic or nondiversifiable risk, since it is piesent even in a
divessified poitfolio The systematic 1isk is due to the factor that influences every
asset, so diversification cannot eliminate it The risks due to the ¢,’s are independent
and, hence, eaeh can be reduced by diversification

Example 8.1 (Four stocks and one index) The upper portion ol Table 8 | shows
the historical 1ates ol return (in percent) lot four stocks over a petiod of 10 years Also
shown is a vecord of an industrial price index over this same petiod We shall build
a single~index model tor each ol the stocks using this index as the lactor As a fist
step, we calculate the historical averages of the etuins and the index We denote the
averages by 7, and 7 1o distinguish these values liom the true (but unknown) values
7 oand T

Letsf lot k= 1.2, 10, denote the 10 samples of the 1ate of rewun 7, Then
the estimate of F, is

10

o { \
Foe 3

We estimate the variances with the formula
10

var(y,) = éZ(lf —

=

which is the standard way to estimate vaiiance ' Analogous lormulas are used to

culculate estimates ol the mean and the variance of the index

!See Section 8 6 tor details on this estimation tormula
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TABLE 8.1
Factor Model

Year Stock1 Stock2  Stock3 Stock4  Index

| 1191 29 59 2327 2724 1230
2 18 37 1525 1947 1705 550
3 364 353 -6 58 10 20 430
4 24 37 1767 1508 2026 670
5 3042 1274 16 24 19 84 970
6 ~145 -2 56 1505 151 8130
7 2011 2546 17 80 12 24 560
8 928 692 18 82 1612 570
9 1763 973 305 2293 570
10 1571 2509 1694 349 360
aver 1500 14 34 1090 1509 674
var 90 28 107 24 162 19 68 27 699
cov 234 499 545 1113 699
b 033 071 078 159 1 00
a 1274 953 565 436 000

e-var 89 49 10368 157 95 50 55

The record of the rates of returnt for four stocks and an index of indus-
trial prices are showa The averages and variances are all compited.
as well as the covariance of each with the index From these quanti-
ties. the by's and the a,'s are calenlated Finally. the computed error
variances are also shown The index does not explain the stock price
variations very well

Next the covariances of the returns with the index are estimated The formula
used for this purpose is

10

1 S . =
covii, =5 (F=F)(1* =7 (83)
k=t
Once the covariances are estimated, we find the values of b; and @; from the formulas
cov(i;, f)
by = i)
var(/f)
a; = Fp — bj

(The first of these is obtained by forming the covariance with respect to f of both
sides of the factor equation )

After the model is constructed, we estimate the variance of the error under the
assumption that the errors are uncorrelated with each other and with the index Hence
using (8 2b) we write

var(e,) = var(s,) — l),-z var(f)

These values are shown in the last row of Table 8 | Notice that these etror variances
are almost as large as the vaiiances of the stock returns themselves, and hence the
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factor does not explain much of the variation in returns In other words, there is high
nonsystematic risk. Furthermore, by applying a version of (8 3) to estimate cov{e;, ¢;),
it turns out that the errors are highly correlated For example, the estimation formula
gives cov(ey, e2) = 44 and cov{es, e3) = 91, whereas the factor model was constructed
under the assumption that these error covariances are zero Hence this single-index
model is not a very accurate representation of the stock returns (A better model tor
thege data is given in the next section )

Multifactor Models

The preceding development can be extended to include more than one tactor For
example, it there are two factors fi and fo, with perhaps the first factor being a broad
index of the market return and the second an index of the change since the previous
petiod of consumer spending, the model for the rate of return of asset i would have
the form

ri=ap 4+ by fi+bafr+e

Again the constant g; is called the intercept, and by; and by, are the factor loadings The
tactors fy and f; and the enor e, are random variables It is assumed that the expected
value of the enor is zero, and that the error is uncorrelated with the two tactors and
with the errois of other assets However, it is not assumed that the two tactors are
uncorrelated with each other These [actors are presumably observable variables, and
their statistical properties can be studied independently of the asset retums,

in the case ot the two-lactor model we easily detive the tollowing values for
the expected rates of return and the covariances:

o= a4+ by Fy+ ba' T

bthU/:, + (bubay + baibrj)cov(fi, f) + [)3,‘[)2]!7/:1 ) i

cov(iy, 1) A )
i b}of + 2bubucovifi, ) + bio} + a2, i=j

Il

The by;’s and by;’s can be obtained by forming the covariance of 7; with f; and
f>, leading to

cov(iy, i) = bua} + buoy, 4,
cov(i, f2) = buoy o+ budj,

These give two equations that can be golved for the two unknowns by, and by,

A two-factor model is often an improvement of a single-tactor model For ex-
ample, suppose a single-tactor model were proposed and the a;’s and b,’s determined
by fitting data 1t might be found that the resulting error terms are large and that they
exhibit correlation with the factor and with each other In this case the single-factor
model is not a good representation of the actual returns structure A two-factor model
may lead to smaller error terms, and these terms may exhibit the assumed correlation
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propeities The two-factor model will still be much simpler than a full unstructured
covariance matrix

it should be clear how to extend the model to include a greater number ot factors
Quite comprehensive models of this type have been constructed 1t is generally agieed
that for models of U S stocks, it is appropriate to use between 3 and 15 factors

Selection of Factors

The selection ol appropriate factors for a factor model is part science and part ait (like
most practical analyses) It is helptul, however, to place lactois in three categories
Once these categoties are 1ecognized, you will no doubt be able to dream up additional
useful factors Here are the categories:

1. External [actors Very commonly, {actors ate chosen to be variables that
are external to the securities being explicitly considered in the model Examples are
gross national product (GNP), consumer price index (CPI), unemployment rate, or a
new construction index The U S Goveinment publishes numerous such statistics 1t is
possible to use other external variables as well, such as the numbe: of traffic accidents
in a month or sun spot activity

2. Extracted factors Mt is possible to extract factors from the known intorma-
tion about gccurity returns. For example, the factor used most frequently is the rate
of return on the mavket portfolio This factor is constructed directly {rom the returns
ot the individual securities As another example, the rate of return of one secuiity
can be used as a {actor {or others More commonly, an average of the retuins of the
securities in an industry is used as a factor; for example, there might be an industrial
factor, a utilities factor, and a transportation {actor Factors can also be extracted by
the method of principal components (See Exercise 3 ) This method uses the covari-
ance matrix of the retins to find combinations of secwities that have large variances
indeed, extracted factors aie usually linear combinations ol the returns of individual
securities (as in the preceding examples) Factois can be extiacted in more complex
ways For example, a factor might be defined as the ratio of the 1eturns of two stocks,
the number of days since the last market peak, or a moving average of the market
return

3. Firm characteristics Firms are characterized financially by a number of
firm-specific values, such as the price-earnings ratio, the dividend-payout ratio, an
carnings forecast, and many other variables About 50 such variables for each major
sceurity are available from various data services These characteristics can be used in
a factor model The characteristics do not serve as factors in the usual sense, but they
play a similar tole Ag an example, suppose that we decide to use a single factor f (of
the normal kind) and a single firm characteristic g (such as last quarter’s price-earnings
ratio) We then represent the tate of return on secusity i as

po=a b f g +e 84
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In this model, the constant ¢ is the same for each security, but g, (the value of
the characteristic) varies The characteristic term does not contribute to systematic (ot
nondiversifiable) risk, but rather it may reduce the variance of the eiror tetm ¢, In
other words, the term cg; can be regarded as an estimate of the error term that would
appear in the standard single-factor model Fiun characteristics are etfective additions
to factor models

8.3 THE CAPM AS A FACTOR MODEL

The CAPM can be detived as a special case of a single-factor model This view adds
considerable insight to the CAPM development

The Characteristic Line

Let us hypothesize a single-factor model for stock returns, with the factor being the
matket rate of retum 1y For convenience we can subtract the constant 1, from this
factor and also from the rate of return s;, thereby expressing the model in terms of
the excess returns 1; — 1y and 15 — 1y The factor model then becomes

=ty =0+ By — ) ey 85)

It is conventional to use the notation «, and § for the coefficients of this special
model, rather than the a,’s and &;’s that are being used more generally Again it is
assumed that E(e,) = 0 and that ¢; is uncotrelated with the market return (the factor)
and with other ¢;’s

The characteristic equation o1 characteristic line corresponding to (8 5) is the
line formed by putting ¢; = 0; that is, it is the line 1; — ry = a; + Bi{14r = 17) diawn
on a diagram of 1; versus 7. Such a line is shown in Figure 82 A single typical
point is indicated on the line If measurements of 1, =1, and 14 — 1, were taken and
plotted on this diagram, they would fall at various places, but the chaiacterisiic line
would presumably define a good fit through the scatter of points

FIGURE 8.2 Characteristic line. This line
represenis a single-factor model that has
e —n as the factor for the variable r, -

1

10%
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The expected valuc of this equation is
Fo—ty =+ B, Fy —1y)

which is identical to the CAPM except {or the presence of o; The CAPM predicts
that o; =0

The value of §, in this model can be calculated directly We take the covariance
of both sides of (8 5) with 14 This produces

2
Tqa = ,BIUM
and hence
e
Bi=—
]

This is exactly the same cxpression that holds for the §; used in the CAPM (and that
is why we use the same notation)

The characteristic line is in a sense more genetal than the CAPM because it
allows o; to be nonzero From the CAPM viewpoint, o; can be regarded as a measuie
of the amount that asset i is mispriced. A stock with a positive o, is, according
to this view, performing better than it should, and a stock with a negative o, is
performing worse than it should Some financial services oiganizations (and some
highly technical investors) estimate o as well as 8 for a large assortment of stocks
Note, however, that the single-tactor model that leads to the CAPM formula is not
equivalent to the geneial model underlying the CAPM, since the general model is
based on an arbitrary covariance matrix, but assumes that the market is efficient The
single-factor model has a very simple covariance structure, but makes no assumption
about efficiency

Example 8.2 (Four stocks and the market) Let us rework Example 8 | by using
the excess market return as a factor We assume that the market consists of just the
four stocks, with equal weights Therefore the market return in any year is just the
average of the returns of the four stocks These are shown in the upper pottion of
Table 8 2 We also adjoin the historical value of the risk-free rate of return for each of
the 10 years The rclevant statistical quantities are computed by the same estimating
tormulas as in the earlier example, except that the factor is taken to be the cxcess
return on the market, which will change the formula for ¢, to o; As seen from the
table, a large portion of the vaiiability of the stock returns is explained by the factor In
other words, there is 1clatively low nonsystematic risk Fuithermore, a side calculation
shows that the errors are close to being uncorrelated with each other and with the
matket return For example, the data provide the estimates cov (e, e2) = —14 and
cov (€3, €3) == 2, which aic much smaller than for the earlier model We conclude that
this single-factor model is an excellent representation of the stock returns of the four
stocks In other words, for this example, the market return serves as a much better
factor than the industrial index factor used earlier However, this may not be true for
other examples
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TABLE 8.2
Factor Model with Market

Year Stock 1 Stock 2 Stock 3 Stock 4 Market Riskless

i 1191 29 59 2327 2724 2300 620
2 1837 1525 1947 1705 1754 670
3 364 353 638 1020 270 640
4 2437 1767 1508 2026 934 570
5 3042 1274 16 24 1984 i9 81 590
6 ~145 -256 —i505 151 439 520
7 2014t 2546 i780 i224 1890 490
8 928 692 1882 i6 12 278 5350
9 1763 973 305 2293 1334 610
0 571 2509 1694 349 1531 580

aver 1500 14 34 1090 1509 1383 584
var 9028 10724 (6219 68 27 7212
cov 65 08 7362 10078 48 99 7212
B 90 102 140 68 100
o 195 4 -6l 382 000
¢-var 3154 3209 2137 3499

Now the factor is faken 1o be the excess return on the wmatket porffolio The
vartation in stock retaras iy largely explained by ihis repan and the errors
are nucorrelated with each other and with the market This model provides
an excellentt fit to the date

8.4 ARBITRAGE PRICING THEORY”

The factor model framework leads to an alternative theory of asset pricing, termed
arbitrage pricing theory (APT) This theory does not require the assumption that
investors evaluate portfolios on the basis of means and variances; only that, when
returns are certain, investors prefer greater return to lesser return In this sense the
theory is much morte satisfying than the CAPM theory, which relies on both the
mean-variance framework and a stiong version of equilibrium, which assumes that
everyone uses the mean—vaiiance framework

The APT docs, however, requite a special assumption of its own This is the
assumption that the universe of assets being considered is large For the theory to work
exactly, we must, in {act, assume that there are an infinite number of securities, and that
these securities differ from each other in nontrivial ways This assumption is generally
telt to be satisfied well enough by, say, the universe of all publicly traded U S stocks

Simple Version of APT

To explain the concept underlying the APT, we first consider an idealized special case
Assume that all asset rates of return satisty the following one-factor model:

n=a,+bf
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Different assets will have diffeient ;s and b,’s This factor model is special because
there is no enor term The uncertainty associated with a return is due only to the
uncettainty in the factor f. The point of APT is that the values of &, and b, must
: be related if arbitrage opportunities are to be excluded To wotk out the relationship
between a; and b; we write the model tor two assets / (as before) and j, which is

tp=a;tbf.

The only requirement in the selection of these two securities is that b; # b; Now
form a portfolio with weights w; = w and w; = 1 — w We know that the rate of
return of this portiolio is

r=wa, + (1 - wa, +[wb, + (1 — w)b;1f

We shall select w so that the coefficient of f in this equation is zei0. Specifically, we
select w = b;/(b; - b,} This yields a rate of return of

a;b; a;b,
by =bi b ~b;
This special portfolio is risk free because the equation for 1 contains no random
element If there is a separate risk-free asset with rate of return 1, it is clear that
the portfolio constructed in (8 6) must have this same 1ate—otherwise there would
be an aibitrage oppoitunity Even if there is no explicit risk-free asset, all portfolios
constructed this way, with no dependence on f, must have the same rate of returmn We
denote this rate by Ay, recognizing that Ay = 1, if there is an explicit risk-{ree asset

Setting the right-hand side of (8 6) equal to A, we find

(86)

P =wa + (1 - w)a; =

Aylbj = b)) = a,b; - a;b,
which can be iearranged to

aj ~ Ay _a - Ao
b; b,

This is a general relation that must hold for att ; and j Therefore,
a X
bi -
holds for all i {or some constant ¢. This shows explicitly that the values of ¢; and b;
ate not independent Indeed, a, = Xy + b;¢
To see that such a 1elation is reasonable, suppose we take f to be the rate of
retuin on the S&P 500 average It a; and b; were aibitrary, we might specity a stock
i with ; = 50 and b, = 10, which would give i a rate ot retum of 50% plus
the S&P 500 rate Clearly this is unieasonably high No stock does this well More
realistically, if we have a4, = 50, then b; will be negative so that, overall, 1, makes
sense As another case, it a; is the risk-{ree 1ate, then b; should be zeio The relation
a, = Ao + bj¢ keeps things in pioper alignment
We can use this information to write a simple {ormula {ot the expected rate of
return of asset i We have

c

Fy=a -+ bif = Ao+ bie+bf




84 ARBITRAGE PRICING THEORY* 209

or, alternatively,
Foe= o+ bidy 87

for the constant A; = ¢ + f We see that once the constants Ay and A, are known, the
expected return of an asset is determined entirely by the tactor loading b, (since a;
must follow b;)

Notice that the pricing formula (8 7) looks similar to the CAPM If the factor
f is chosen to be the rate of return on the market 14, then we can set Ay = 15 and
Ay =TFp =1y, and the APT is identical to the CAPM with b; = g,

For additional factots the result is similar We now give a mote general statement
and proof:

Simple APT  Suppose that there are n assets whose rates of reiin are goveined by
n < u factoi s according o the equation

m

o=+ ZI),] 1
J=t

fori=12, Ji Then there are consants ry, Ay, o Ay Such that

at

F=At ZIJ,‘J‘AJ
=t
fori=1,2, N

Proof: We prove the statement for the case of two factors Suppose we

invest a dollar amount x; in asset i, i = 1,2, , i1, in order to satisfy
Y =0, Y xbie =0, and 37, x,biz = 0 This portfolio requires

zero net investment and has zero 1isk Therefore its expected payoff must
be zeto Hence )7  x,7; = 0 Defining the vectors x = (x(,xa, , ¥y),
bt = (b bat, - L bet), b2 = (b, baa, by, L be), 1= (L], D),
and T = (Ft, T2, , Ty, we can restate the foregoing as {oHows: For any
x satistying x"1 = 0, x"b; = 0, and x"b, = 0 it {ollows that X' = 0;
that is, any X orthogonal to 1, by, and by is also oithogonal to T It {ollows
from a standard result in linear algebia® that F must be a linear combination
of the vectors 1, by, and by Thus there are constants A, A¢, A2 such that
T =Apl + DA +DbaAy This is identical to the given statement B

To understand this result, let us look at some special cases If all the by;’s
arc zeto, then there is no risk and we have a, = Xy, which is approptiate 1{ a b,,
is nonzero, then 7; increases in proportion to b,; the value A, is the price of risk
associated with the factor f;, often called the factor price. As one accepts greatet
amounts of f,, one obtains greater expected return

2You can visualize this in the three dimensions of a room Fix a veetos b, suy. runming along the floor 4
perpendicutar to o wall Suppose shat for aff X with x”b = 0 there also holds x'F = 0 The set of x
those on the wali Then you should see that F = Ab for some A
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Well-Diversified Portfolios

We now consider more realistic {actor models, which have etror terms as wel] as factor
terms Suppose there are a total of » assets and the rate of return on asset / satisfies
i
= +Zbi1fj +e
j=t

where E(e,) = 0 and Efe,]* = 67 Also assume that ¢, is uncorrelated with the factors

and with the eror terms of other assets Let us form a portfolio using the weights
wy, Wy, . > wy with 37wy =1 The rate of return of the portfolio is

w
I=U+ijfj+(_’

=i

where

u
a = E wid,
=1
"
by = E w, bi;
i=1
"

2 _ § : 2 2
g, = wio,,
i=1

Suppose that for each ¢ there holds U:" < 87 for some constant S Suppose also that
the portfolio is well diversified in the sense that for each 7 there holds w; < W/n
for some constant W ~ 1 This assuies that no one asset is heavily weighted in the
pottfolio We then find that

1< I
2 =S WSt < —w3st.
ols ) WS s~

We now let n - oo While doing this we assume that the bound ‘73, < S remains
valid for alli Also for each n, we select a pottfolio that is well diversified Asn — oo,
we see that 62 — 0 In other words, the error term associated with a well-diversified
portfolio of an infinite number of assets has a variance of zero. For a finite, but large,
number of assets the error term has approximately zero variance

General APT

We now combine the ideas of the preceding two subsections We imagine forming
thousands of different well-diversified portfolios, each being (essentially) error free
These portfolios form a collection of assets, the return on each satisfying a factor
mode! without etior We therefore can apply the simple APT to conclude that there
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are constants Ag, Ay,  , Ay such that for any well-diversified portfolio having a rate

of return
w

I =a+ Zl)j f
=

the expected rate of retum is

ut

F=d+ Y bk
je=|

Since various well-diversified portfolios can be formed with weights that differ on
only a small number of basic assets, it follows that these individual assets must also
satisfy

w

Fo=ho+ Z/;,,Aj
jem |

(This argument is not completely rigorous; but a more rigorous argument is quite
complex )

This is again basically a relation that says that ¢, is not independent of the b,;’s
The risk-fiee term must be related to the factor loadings This is true even when there
are error terms, provided there is a large number of assets so that erior terms can be
effectively diversified away

APT and CAPM

The factor model underlying APT can be applied to the CAPM framework to derive
a relation between the two theories
Using a two-factor model we have

n=aitbyfithafate
We find the covariance of this asset with the market portfolio to be
cov(tar, 11) = bycovQiay, fi) + bacov(iy, f2) + covliy, e)
If the market represents a well-diversified portfolio, it will contain essentially no
erior term, and hence it is reasonable to ignore the term cov{r 4, &) in the foregoing
expression We can then write the beta of the asset as
B = bn By, + babp
where
s
B =0u 1 /0y

Br = ow /oy
Hence the overall beta of the asset can be considered to be made up {tom undetlying
factor betas that do not depend on the particular asset. The weight of these factor betas
in the overall asset beta is equal to the factor loadings. Hence in this framework, the
reason that different assets have different betas is that they have different loadings
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8.5 DATA AND STATISTICS

Mean-variance portfolio theory and the related models ot the CAPM and APT are
frequently applied to equity securities (that is, to publicly traded stocks) Typically,
when using mean-variance theory to construct a portfolio, a nominal investment pe-
riod, or planning horizon, is chosen—say, | year o1 | month-—and the portfolio is
optimized with respect to the mean and the variance for this peiiod However, to
carty out this procedure, it is necessary to assign specific numerical values to the
parametets of the model: the expected returns, the variances of those returns, and
the covariances between the returns of different securities Whete do we obtain these
parameter values?

One obvious source is historical data of security 1eturns For example, to obtain
the expected monthly rate of return of a particular stock, we might average the monthly
rates of return of that stock over a long period of time, say, 3 years This average
over the past should, hopetully, give a 1easonable estimate of the true expected value
of the rate of retuin over the next month Likewise, we might estimate the variance of
the stock by averaging the square of the month’s deviations {rom the expected value
The covariances could be estimated in a similar manner

This method of extracting the basic parameters from historical returns data is
comnionly used to structure mean—variance models It is a convenient method since
suitable sources of data are readily available Some financial service organizations
either supply the data o1 provide the parameter estimates based on the data The
method is also reasonably reliable for certain of the parameters such as the vari-
ances and covariances; but it is decidedly mmn eliable for other parameters, such as
the expected returns The lack of reliability is not due to {aulty data or difficult com-
putation, it is due to a fundamental limitation of the process of extiacting estimates
from data 1t is a statistical limitation, which we loosely term the blur of history. It
is important to understand the basic statistics of data processing and this fundamental
limitation

Period-Length Effects

Suppose that the yearly retuin of a stock is [+, This yearly return can be considered
to be the 1esult of 12 monthly 1eturns and thus can be wiitten as

T+iy =040+ (T+)

In this equation the monthly returns ate nor measuwed in yearly terins; they are the
actual returns for the month For small values of the 1,’s we can expand the product
and keep only the first-order terms, as

I+ l+ir+i+ + i (88)

In other words, 1, ~ 3i_, 1;, which means that the yearly ratc of retuin is approx-
imately equal to the sum of the 12 individual monthly retuins This approximation
ignoies the compounding effect, but it is good enough for our present purpose, which
is to estimate the rough magnitudes of the parameters
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Assume that the monthly retums of a given stock all have the same statistical
properties and are mutualty uncorrelated; that is, cach monthly ; has the same expected
value 7 and the same variance o> Using the approximation (8.8) we find that

Fyoa 12F

Likewise, we find

N

2 - 12
a}.zﬁ[zo,——r)} E[Z(l,——?){':ﬂaz
i=1

i=1

i

where in the second step we used the fact that the returns are uncorrelated Tuin-
ing thesc equations around and taking the square root of the variance, we obtain an
expression for the monthly values in terms of the ycarly values,

-1

F =,
12"°

_ 1
T = =0y
12

This analysis can be generalized to any length of petiod, such as a weck or a day It we
assume that the returns in different (identical length) periods have identical statistical
properties and arc uncorrelated, we obtain a simifar 1esult Specifically, it the period
is p part of a year (expressed as a fraction of a year), then the expected retumn and the
standard deviation of the 1-period rate of return can be found by generalizing from
monthly periods where p = 1/12 We have for general p

Fp = pFy (8 9a)
o = /o, (89b)

It is the square-root term that causes the difficulty in cstimation problems, as we
shall see

The effect of the period length on the expected rate of return and the standard
deviation of the period teturns is shown in Figure 8 3 The values for a 1-year period
ate normalized to unity {or both the expected rate of return and the standard deviation
As the period is 1educed, botl: the expected rate of return and the standard deviation of

FIGURE 8.3 Perlod effects, The expected rate
T e e — of return over a period increases approximately
P linearly with the length of the period The stan-
dard deviation increases as the square root of the
length of lhe period

p (years)
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the period returns decrease. The expected rate of return is directly proportional to the
length of the perfod However, the standard deviation is proportional to the square root
of the length of the period This means that the 1atio of the two—the ratio of standard
deviation to expected rate of return—increases dramatically as the period length is
teduced In {act, this ratio goes to infinity as the perfod length goes to zero Therefore
the rates of return for small periods have very high standard deviations compared to
their expected values

Let us apply this analysis to a typical stock The mean yearly rate of return for
stocks ranges from around 6% to 30%, with a typical value being about 12% These
mean values change with time, so any particular value is meaningfut only for about 2
or 3 years The standard deviation of yearly stock returns ranges from around 10% to
60%, with 15% being somewhat typical

Now let us translate the values of mean and variance into corresponding monthly
values Accordingly, we set p = 1/12 in the formulas (8 9¢) and (8 9b) Let us use
the nominal values of ¥y = 12% for the yearly expected rate of return, and oy = 15%
for the yearly standard deviation This leads to 7112 = 1% and o112 = 4 33% for the
corresponding monthly values Hence the standard deviation of the monthly retum is
4 3 times the expected rate of return, whereas for the yearly figures the ratio is 1 25
The relative error is amplified as the period is shortened Let us go a bit further and
assume that returns are generated through independent daily returns Assuming 250
trading days per year, we set p = /250 Then Fypsp = 048% and ayp50 = 95%
are the corresponding daily values The ratio of the two is now 95/048 = {98
This result is confirmed by ordinary experience with the stock market On any given
day a stock value may casily move 3 to 5%, whereas the expected change is only
about 05% The daily mean is fow compared to the daily variance

Mean Blur

We now show how this amplification eftect makes the estimation of expected (or
mean) rates nearly impossibie

Let us select a basic period length p (such as p = 1/12 for a monthly period)
We shall try to estimate the mean rate of return for this period That is, we assume
that the statistical properties of the returns in each of the periods are identical, with
mean value ¥ and standard deviation o We also assume that the individual retums
are mutually uncorrelated We wish to cstimate the common mean value by using
historical data

Suppose that we have 1 samples of these period setuns The best estimate of
the mean rate of return is obtained by averaging the samples Hence,

(8 10)

The value of 7 that we obtain this way is itseif random If we were to use a different
set of n data points, we would obtain a diffcrent value of r, even if the probabilistic
character of the stock did not change (that is, it the true mean remained constant)
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Howevey, the expected value of the estimate (8 10) is the tiue value 7 since

"

2 ! -
EF) =E ;ZI, =7

We want to calculate the standaid deviation of the estimate 7, for it shows how
accurate the estimate is likely to be We have immediately

. R L 2
= E[(F -7)?] =E ;Z(:,—F) =
(3

Henee,

=2 @®1n

oz NG
This is the basic fovmula for the enror in the estimate of the mean value
Let us put a few numbers into the formula We take the period length to be
I month. For the numbers used earlier, the monthly values are ¥ == 1% and o = 4 33%
If we use 12 months of data, we obtain oy = 4 33%/+/12 = 1 25% Hence the standard
deviation of the estimated mean is larger than the mean itself I, using | year of data,
we find F = 1%, we me only able to say, roughly, “the mean is 1% plus or minus
125% " This is not a good estimate If we use 4 years of data, we cut this standud
deviation down by # factor of only 2—whiclt is still poor In order to get a good
estimate, we ueed a standard deviation of about one-tenth of the mean value itself
This would require # = (43 1)? = 1,875, o1 about 156 years of data However, the
mean values me not likely to be constant over that length of time, and hence the
estintation procedure is not really improved by much
This is the historical blur problem for the measurement of ¥ It is basically im-
possible to measure ¥ to within workable accuracy using historical data Furthermore,
the problem cannot be improved much by changing the period length [f longer periods
arc used, each sample is more 1eliable, but fewer independent samples are obtained in
any year Conversely, if smaller periods are used, more samples are available, but each
is worse in tetms of the 1atio of standard deviation to mean value (See Exercise 5)
The problem of mean blur is a fundamental difficulty

Example 8.3 (A statistical try) We simulated 8 years of monthily rates of return of
a stock that had a monthly mean of 1% and a monthly standaird deviation of 4 33%,
corresponding approximately to yearly values of 12% and 15%, respectively Random
monthly retums were geneiated using a novmal distribution with these parameters, and
thege returns arc shown in the upper portion of Table 83 The sample means were
caleulated each year lor the entite 8-year period The sample means for each year
are indicated below the monthly returns for that year The sample standard deviation
is also indicated (Note that the sample standard deviations are also estimates—the
accuracy of these is discussed in the foliowing subsection ) Note how the individuai
yearly estimates ol the mean, as determined by the sample averages, jump around
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TABLE 8.3
Manthiy Rates of Return and Estimation of Mean (Expressed as Percent)

Year of return

1 2 3 4 5 6 7 8 Overall

Jan | -8 65 261 639 -452 P28 449 -144 330
Feb| 861 -238 -~122 230 14 758 434 375
Mar| 550 ~328 112 -39 -263 502 124 395
Apr| 204 745 369 -84 315 -5l 892 -313
May 751 796 28 35 ~-47 ~-19  -46 -3
Jun | -250 ~937 36l 696 704 118 828 -89
Jul 228 ~727 145 423 363 i6f -533 ~639
Aug 18 -530 683 21 274 262 ~101  -60
Sep! 58 569 232 4 ~208 -232 377 ~76
Oct 137 524 -379 -—648 173 308 418 192
Nov 317 294 ~52 11l 618 542 -227 ~397
Dec | 923 1% 277 286 38 293 491 518

Mean | 302 52 i67 0l 176 206 137 i7 i3
] 501 588 321 381 298 324 466 355| 41

[

Each column represents a yea of randondy generated yemns The huse mean values are oll 1%.
but e estimaltes deviate significanily from Whis value

quite a bit {rom year to year From this analysis we expect these estimates to have a
standard deviation of | 25%, and the results appear to be consistent with that. Even
the 8-year estimate is quite far from the true value We certainly should hesitate to
use these estimates in a mean-variance optimization problem

A histogram of the individual monthly returns is shown in Figuie 8.4 Note that
the standard deviation of the samples is large compared to the mean One can see,
visually, that it is impossible to determine an accurate estimate of the true mean from
these samples The mean value is too close to zero compared to the breadth of the
distiibution; hence one cannot pin down the estimate to within a small fraction of its
actual value

FIGURE 8.4 Histogram of monthly re-
{urns, The distribution is too broad to pin
down the true mean of 01 to within a smalt
fraction of its value

-1-08 -06 -04 -02 0 02 04 06 08 1

Relurn
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8.6 ESTIMATION OF OTHER PARAMETERS

Estimates of other parameters from historical data are also subject to error In some
cases the emror level is tolerable and in others it s not In any event it is important to
secognize the piesence of ertoss and to determine their rough magnitudes—otherwise
one might propose elaborate but fundamentally flawed procedures for portfolio con-
struction

Estimation of o
The blurring effect is not nearly as strong for the estimation of variances and covari-

ances as it is for the mean Suppose again that we have n samples of period rates of
return 7, 72, .1, We caiculate the sample mean

and the sample variance

The use of # 1 in the denominator instead of # compensates for the fact that 7 is used
instead of the true (but unknown) 7 It then follows that E(s?) = ¢* (See Exercise 4)
Hence s* provides an unbiased estimate of the variance
The accuracy of the estimate s? is given by its variance (or its standard deviation)
It can be shown that if the original samples are normally distributed, the variance of
1.
st s

N 20
var(s”) =
n—1

or, equivalently,

sidev(s?) =

This shows that the standard deviation of the variance is the fraction /2/(n — 1) times
the tiue variance, and hence the relative entor in the estimate of o2 is not too extreme
if n is reasonably large

Example 8.4 (One year of data) Suppose we again use a petiod length of 1 month
Using 12 months of data, we obtain stdev(s?) = 02/2 35, which is alieady less than
half of the value of o2 itself Hence the variance can be estimated with reasonable
accuracy with about 1 year of historical data

This conclusion is validated by the experiment shown in Table 8 3 The yearly
estimates of o shown in the bottom 1ow are all 1easonably close to the true value of
4 33% (certainly they are much better than the cstimates of 7), and the full 8-year
estimate is really quite good
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a Blur

The blur phenomenon applies to the parameters of a factor model, but mainly to the
determination of @ In fact the presence of @ blur can be deduced from the mean-blur

phenomenon, but we omit the (somewhat complicated) details

The inherently poor accuracy of a estimates is reflected in a so-called Beta
Book, published by Merill Lynch, a page of which is shown in Table 8.4. Note that
the reported standard deviation for « is typically larger than the value of  itself The

relative etror in estimating g is somewhat better

8.7 TILTING AWAY FROM EQUILIBRIUM*

One way to use mean—variance theory is to rely on the insight of the CAPM that if
everyone followed the mean-variance approach and everyone agreed on the parame-
ters, then rhe efficient fund of risky assets would be the market portfolio Using this
idea, you need not compute anything; just purchase a mixture of the market portfolio

and the risk-free asset

Many investors are not completely satisfied with this solution and believe that
a superior solution can be computed by solving the Markowitz mean-—variance portfo-
lio problem directly, using appropriate parameters We have seen, however, that it is
fundamentally impossible to obtain accurate estimates of expected returns of common
stocks using historical data The standard deviation (or volatility) is just too great Fur-
thermore, the solution of the Markowitz mean~variance portfolio problem tends to be
fairly sensitive to these values This, unfortunately, makes it cssentially meaningless
to compute the solution to the Markowitz problem using historical data alone The
Murkowilz approach to portfolio construction can be salvaged only if better estimates

of the mean values are obtained

Better estimates can only be obtained if there ts information regarding the fu-
ture prospects of the stock available that supplements the information contained in the
historical record Such information can be obtained in a variety of ways, including:
(1) from detailed fundamental analyses of the firm, including an analysis of its future
projects, its management, its financial condition, its competition, and the projected
masket for its products or services, (2) as a composite of other analysts’ conclusions,
ot (3) from intuition and hunches based on news reports and personal experience Such
information can be systematically combined with the estimates derived from historical

data to develop superior estimates

Howeves, the solution to the Markowitz problem will still be sensitive to the esti-
mates used, and it is therefore likely that the solution obtained using the new estimates
will differ substantially from the market portfolio An investor miglit feel uncomfort-
able departing so significantly from the CAPM’s recommendation to select the market
portfolio A compromise uses both the CAPM view and additional information This

is the idea presented in this section
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Equilibrium Means

The first part of the approach uses the CAPM in a reverse fashion It determines the
expected rates of return that would be required to produce the market portfolio That
is, a set of expected 1ates of return is found, which, when used as the rates in the
mean-variance problem, will Jead to the market portfolio as the solution Let us see
how that works

The required CAPM 1ates are given by the CAPM formula; namely,

=1+ BilFa —1p)

We have added the superscript ¢ to emphasize that this is the value of F, obtained
through the equilibrium argument Note that this value of 7} is [aitly easy to obtain Itis
only necessary to estimate §; (which can be estimated quite reliably) and Fy, (which is
more difficult, but often a consensus view can be used) No equations need be solved

Information

The tiue expected rates of return are random variables that we cannot know with cer-
tainty The equilibrium values computed before give us some information about these
values, but these too are only estimates We expect that these estimates each have some
variance and they ate correlated with each other We therefore write the equation
Fo=F 4E

for each stock 7 to express the fact that the true value of 7; is equal to the values
obtained by the equilibrium argument plus some error The error g has zero mean
For convenience, often all the enor variances are set to some small value 7, and the
error covariances are assumed to be zero.

Other information about expected rates of return can be expressed in a similar
way For example, lo incorporate historical data on asset 7, we might write an equation
of the form 7, = 7 + ¢;, whete 7 is the value of F, obtained {rom historical data and
¢, has variance equal to that implied by the length of the historical record

Likewise, we might include subjective information about the expected return,
or information based on a careful analysis of the firm In each case we also assign a
variance to the estimate

We can imagine building up the estimate in steps We can start with the estimate
based on the equilibrium expected returns This will lead to the maiket portfolio as the
solution to the Markowitz problem As additional information is added, the solution
will tilt away [rom that initial solution The degree of departure, or tilt, will depend
on the natuie of the adjoined equations and the degree of confidence we have in them,
as expressed by the variances and covariances of the error terms

Example 8.5 (A double use of data) Refer to Example 8 2 and the data of Table 8 2
Most of the summary part of this table is repeated here in Table 8 5 The first tow ol the
table gives the 10-year average retuins. It is easy to calculate the corresponding CAPM



88 A MULTIPERIOD FALLACY 221

TABLE 8.5
Data for Tilting

Stock 1 Stock 2 Stock 3 Stock 4 Market Riskless

aver 1500 1434 1090 1509 1383 584
var 90 28 10724 16219 6827 7212

cov 6508 7362 10078 4899 7212

B 90 102 140 68 100

CAPM 1305 1400 1701 127

tilt 1382 14 14 1417 1252

The hivtarical average returns ave not equal 1o the average returns predicred
by CAPM Botlt estimates lave errors but they can be combined 1o form new
estimates called il

estimates For example, for stock 1 we have ¥ = 584 + 90(13.83 — 5 84) = 13 05
These estimates are clearly not equal to the historical averages

To form new, combined, estimates, we assign a variance to each estimate Since
there are 10 years of data, it is appropiiate to use (8 11) to write ai" = o,/\/l—O for
the standard deviation of the error in the historical estimate of ¥, For stock 1, this is
of = /9028710 = 300

To assign enor magnitudes to the CAPM estimates, we notice that these estimates
are based on our esthmates of 1y, §,, and 7y, Let us ignore all errors except that
contained Fa. The standad deviation of the ertor in Fy is thus £ % aM/\/l—O =
90/72.12/10 = 2 42

For stock 1, it we treat these two estimates of 7, the historical and the CAPM
(equilibrium) estimates, as independent, then they are best combined by?

ol Ty T [1+ LI AP
"=lGoor T 2ar||lGo:  @ae] T

(See Exercise 8 ) The new estimates {or the other stocks aie found in a similar fashion

8.8 A MULTIPERIOD FALLACY

The CAPM theory is a beautiful and simple theory that Tollows very logically {rom the
single-period mean-variance theory of Markowitz In practice, however, both mean-
variance theory and the derived CAPM are applied to situations that are inherently
multiperiod, such as the construction of portfolios of common stocks that can be traded
at any time

The simplest way to apply mean~variance theory to the multipesiod case is that
implied by the statistical procedures used to estimate parameters Specifically, a basic

F1hese two esti are not reatly independent since the market returst is based in part ou the
kistorical return of stock |. Furthermore the CAPM ersors of different stocks are kighly correlated since
they all depend on the market We ignore these correlutions for the sake of simplicity
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petiod fength—say, | month—is selected The Markowitz problem is {ormulated for
this period If this problem is solved, it should, according to the CAPM assumption,
prescribe that the optimal poitiolio weighting vectol w is equal to the market portfolio
This idea can then be carried {orward another period If it is assumed that the statistical
propeities of the returns for the next period are identical to those of the previous
period and the new returns are uncorrelated with those of the previous period, the
new weighting vector w will be equal to that of tlie pievious period However, in the
meantime the prices will have changed ielative to each other; and hence the vector
w will no longer conespond to the market poitiolio since the market weights me
capitalization weights, and a price variation changes the capitalization This is a basic
fatlacy, or contiadiction, since the Markowitz model keeps giving the same weights,
but the market poit{olio weights change every period

Let us consider a simple example Suppose that there are only two stocks, each
having the same initial price of, say, $i, the same mean and vaiiance of return, and
zero correlation with each other Both stocks are in equal supply in the market—say,
1,000 shares ol each Suppose that we have an amount Xj to invest By symunetry, the
mean-variance solution will be w = (%, %); hence we should puichase equal amounts
of both assets (equal dollar amounts, which is equivalent to equal numbers of shares
since the prices of the two stocks are equal) This solution corresponds to the market
poitiolio

Suppose that dwing the frst period the first stock doubles in value and the
second does not change Hence now p; = $2 and p2 = $1, and our total wealth
has incieased to } 5X; Since the statistical properties remain unchanged, the optimai
mean-variance solution will still have w = (4, 1) This implies that we should again
divide ou1 money evenly between the two stocks But if we do that we will purchase
115X, shaies of stock 1 and 1.5Xo shares of stock 2 This does nor coiespond to
the market poitfolio, which stll has equal numbeis of shwes of the two stocks In
general, as prices change refative to each other, the dollar proportions iepresented in
the market also change; but a repeating mean-variance model dictates that the dollar
proportions of an optimal portiolio shouid remain fixed, which is a contradiction

The fallacy can be 1epaired by assuming that the expected returns change each
period in a way that keeps the market portfolio optimal; but this destroys the elegance
of the model It is more satislying to develop a {ull mmltiperiod appioach (as in
Part 4 of this text) The multiperiod approach reverses some conclusions of the single-
period theory For example, the multiperiod theory suggests that price volatility is
actually desirable, rather than undesirable Neveitheless, the single-petiod fiamework
of Maikowitz and the CAPM are beautifut theotics that ushered in an era of quantitative
anatysis and have provided an elegant foundation to support further work

8.9 SUMMARY

Special analytical proceduies and modeling techniques can make mean—variance port-
{olio theory more piactical than it would be if the theory weie used in its batest form
The procedures and techniques discussed in this chapter include: (1) {actor modets to
reduce the number of parameters required to specify a mean—variance stiucture, (2) use
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of APT 1o add factors to the CAPM and also to avoid the equilibrium assumption that
underties the CAPM, (3) recognition of the errors inherent in computing paiameter
estimates from historical records of returns, and (4) blending of different types of
parameter estimates to obtain informed and reasonable numerical results

A factor modet expresses the rate of retum of each asset as a linear combination
of certain specified (random) {actor vaiiables The same factors are used {or each asset,
but the coefficients of the linear combination ol these factors are different for dilferent
assets In addition to the factor terms, thete ate a constant term ¢, and an error term
¢; The coelficients of the factors are called factor loadings In making calculations
with the model, it is usually assumed that the etror terms are uncorretated with each
other and with the factors

A great advantage of a {actor model is that it has far {ewer parameters than
a standard mean-variance tepresentation In practice, between thiee and fifteen fac-
tors can provide a good representation of the covariance properties of the retuins of
thousands of U S stocks

There ate several choices for factots The most common choice is the return
on the maiket poitfolio A factor model using this single factor is closely related to
the CAPM Other choices include vatious economic indicators published by the U S
Government or factors extiacted as combinations of certain asset retwns It is also
heltpful to supptement a factor model by including combinations of company-specific
financial chaiacteristics

When the excess matket retuin is used as the single factor, the tesulting factor
model can be interpreted as defining a straight line on a graph with 15, — 7, being the
horizontal axis and 1 — 1 the vertical axis This line is called the characteristic line of
the asset Its vertical intercept is called alpha, and its slope is the beta of the CAPM
The CAPM predicts that alpha is zero (but in practice it may be nonzero)

Arbitrage pricing theory (APT) is built directly on a tactor model For the theory
to be useful, it is important that the undeilying factor model be a good representation
in the sense that the error terms are uncorrelated with each other and with the factors
In that case, the ewror terms can be diversified away by forming combinations ol a
large number of assets

The result of APT is that the coelficients of the undeilying factor model must
satisfy a linear 1elation In the special case wheie the undeilying factor model has
the single {actor equal to the excess return on the market portfolio, the CAPM theory
states that & = 0. This is a special case ol APT, which states that the constant a in the
expression for the teturn of an asset is a linear combination ol the factor loadings of
that asset Again, the difficult pait ol applying APT is the determination of appropriate
factors

It is tempting to assume that the parameter values necessary to implement mean—
variance theory—the expected 1etuins, variances, and covaiiances for a Markowitz
Tormutation, or the @,"s and b,;’s for a factor model iepresentation—can be estimated
from histotical tetutns data Although some parameter values can be estimated this
way, others cannot In particuta, Tor stocks the variances and covariances can be
estimated to within reasonable accuracy by using about | yem of weekly or daily
returns data However, the expected rates ol retum (the means) are subject to a bluiring
phenomenon and thetefore cannot be estimated to within workable accuracy, even if
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EXERCISES

a record of 10 years of returns is employed This bluiting phenomenon applies to the
estimation of the a coefficients in factor models as well

The statistical analysis ol estimates bused on historical data tells us that we
must supplement such estimates of expected returns with estimates obtained by other
methods This conclusion is not altogether surpiising It asserts that active port{olio
management (as opposed to a passive strategy of investing onty in the market portfolio
and the risk-free asset) cannot be relegated to a pure computer analysis of historical
data Some additional intelligence is required Il this intelligence can be cast into the
form of estimates, with associated variances, these estimates can be logicatly combined
with the estimates based on historical data to produce refined estimates with smatler
errors An additional estimate of this type is provided by the CAPM formula itself

The Markowitz mean~variance formulation of portfolio theory and the subse-
quent theories of CAPM, factor models, and APT provide an elegant foundation for
single-period investment analysis These developments have elaborated the benefits
ol diversification and decpened out understanding ol risk in a market environment
These theories have also provided approaches that can be implemented Indeed, this
whole area has had a profound influence on the practice of portfolio management:
index funds now abound, betas are computed and widely discussed in the financiat
community, large quadratic programming programs have been wiitten to solve the
Markowitz problem, numerous factor modets have been constructed and tested, and
trittions of dollars have been managed with at least some guidance from these ideas
and methods

But mean—variance theory is not a universal investment panacea The assumption
that ail investors focus exclusively on mean and variance is questionable, it is haid to
estimate the required parameter values, it seems untikety (as required of the equitibrium
argument) that everyone has the same estimates ol the parameter values, and the
approach must be modified in a multiperiod {ramewoik Each of these difficultics can
be oveicome to some extent by extending the model, living with approximations, or
tooking deeper into the properties of the assets under consideration A great deal of
innovative effort has been so devoted But ultimately, to make significant progicss,
we must expand the fundamental tools of analysis beyond mean-variance We must
formulate a theory that, built on the insights ol the mean~variance approach, treats
uncettainty more explicitly and is directed at multiperiod situations

1. (A simple portfolio) Someone who believes that the collection of att stocks satisfies a
single-factor model with the maiket portfolio serving as the factor gives you information
on thiee stocks which make up a porttolio (See Table 8 6) In addition, you know that the
mazket portfolio has an expected 1ate of return of 12% and a standad deviation of 18%
The risk-free rate is 5%

(a) What is the portfolio’s expected rate of return?
(b) Assuming the factor model is accurate, what is the stapdard deviaton of 1his rate of
return?
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TABLE 8.6
Simple Portfolio

Stock Beta Standard deviation of random error term  Weight in portfolio

A 110 70% 20%
B 080 23% 30%
C 100 1 0% 30%

. (APT factors) Two stocks are believed to satisfy the two-factor model

no=a+2i4
rr= a3 H4f2

1n addition, there is a risk-free asset with a rate of return of 10% 1t is known that 7y = {5%
and 7, = 20% What are the values ol Aq, A, and A, for this model?

. (Principal components @) Suppose there are  random variables xy, xa, Ly, and let 'V be

the corresponding covariance matrix  An eigenvector of Vis a vector v = (0, vy,  , 9,)
such that Vv == Av for some A (called an eigenvalue of V) The random vaiable vy +
Xy + + v,x, is a principal component. The first principal component is the one
corresponding to the largest eigeavalue of V, the second to the second largest, and so
lorth

A good candidate for the faetor in a one-factor model of u asset returns is the first
principal companent extracted {rom the n returns themselves; that is, by using the principal
eigenvector of the covariance matrix of the returns Find the first principal component for
the data ol Example 8 2 Does this factor (when normalized) resemble the return on the
market portfolio? [Nore For this part, you need an eigenveetor calculator as available in
most matrix operations packages |

. {Variance estimate) Let 7, lot i = 1,2, , 11, be independent samples of a return + of

mean 7 and variance o* Define the estimates

1<

=D

Show that E(+?) = o*

. {(Are more data helplul?o)  Suppose a stock’s rate ol return has annual mean and variance

ol 7 and a® To estimate these quantities, we divide 1 year into n equal periods and record
the return for each period Let 7, and o7 be the mean and the variance far the rate of
return for each period Specifically, assume that 7, = 7/n and o7 =a*/n I r;‘,, and 67 mre
the estimates ol these, then 7 = 7, and 6 = né; Let a(7) and 0(62) be the standard
deviations of these estimates

(@) Show that a(7) is independent o n
(b) Show how (&) depends on 1 (Assume the tetwns are normal random variables )
Answer the guestion posed as the title to this exercise
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TABLE B.7
Record of Rates of Return
Month Percent rate of return | Month Percent rate of return
{ 10 13 42
2 5 14 45
3 42 15 -25
4 -27 16 21
5 -2 0 17 -7
6 35 18 37
7 -3 1 19 32
8 41 20 -24
9 17 21 27
10 t 22 29
11 -24 23 -19
12 32 24 i1

6. (A record) A record of annual percentage rates of return of the stock § is shown in
Table 8 7

(a) Estimate the arithmetic mean rate of return, expressed in percent per year

(b} Estimate the arithunetic standard deviation of these returns, again as percent per year

(¢) Estimate the accuiacy of the estimates found in pants (@) and (b)

(d) How do you think the answers to (¢) would change if you had 2 years of weekly data
instead of monthly data? (See Exercise 5 )

~

. (Clever, but no cigaro)  Gavin Jones figured out a clever way to get 24 samples of monthly
returns in just over one year instead of only 12 samples; he takes overlapping samples;
that is, the first sample covers Jan 1 to Feb 1, and the second sample covers Jan 15 to
Feb 135, and so forth He figures that the error in his estimate of 7, the mean monthly
return, will be reduced by this method Analyze Gavin’s idea How does the variance of
his estimate compare with that of the usual method of using 12 nonoverfapping monthly
returns?

-3

. (General tiltingo) A general model for information abont expected returns can be ex-
pressed in vector—-matrix form as

p=Pr+e
In the model P is an m x n matrix, T is an »-dimensional vector, and p and e are
m-~dimensional vectors The vector p is a set of obsetvation values and e is a vector of

errors having zero mean The error vector has a covariance matrix Q The best (minimum-
variance) estimate of ¥ is
F=(PTQ7'P)'P'Q'p (812)
(¢} Suppose there is a single asset and just one measurement of the form p = F-+¢ Show
that according to (8 12), we have 7 = p
(b) Suppose there are two uncorrelated measurements with values p; and py, having
variances o and of Show that
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(¢} Consider Example 8 5 There are measurements of the form

Tyo=prtea
Fr= prtoe
= pitoes
Fi= pte

Fuo= o+ Bifu
Fao= oy Bafy
Fy o= 1y + By far
Fa =1y + Bifar

where the ¢,’s are uncorrelated, but where cov(e,, fy) = ’lSni2 Using the data of the
example, and assuming the B,’s are known exactly, find the best estimates of the 7,’s
[Note You should only need to invert 2 x 2 matrices |

The factor analysis approach to structuring a family of returns is quite well developed A good
survey is contained in [1] Also see [2] The APT was devised by Ross [3] For a practical
application see [4] For introductory presentations of factor models and the APT consult the
finance textbooks listed as references for Chapter 2 The analysis of errors in the estimation of
return parameters from historical data has long been available, but is not widely employed See
[5] for a good treatment A detailed example of tilting applied to global asset management is
contained in [6]
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GENERAL PRINCIPLES

9.1 INTRODUCTION

Fundamentally, there are two ways to evaluate a tandom cash flow: (1) directly, using
measures such as expected value and variance; and (2) inditectly, by reducing the
flow to a combination of other flows which already have been evaluated This chapter
focuses on these two approaches, showing how they apply to single-peifod investment
problems—and showing how they work together to produce strong and useiul pricing
relationships

This chapter is more abstract than the previous chapters and serves primacily as
preparation for the study of general multiperiod problems in Parts 3 and 4 The readel
may wish to skip ahead to Chapter 10 (or even Chapter 11) sincc most of the material
in Part 3 can be understood without studying this chapter One strategy is to study the
first part of this chapter—the first five sections, which cover expected utility theory
Then later, when approaching Part 4, the reader can come back to the second part
of this chapter to study general pricing theory Other 1eaders may wish to study this
chapter in sequence, for it is a logical culmination of the singlc-period framework

9.2 UTILITY FUNCTIONS

228

Suppose that, sitting here today, you have a number of different investment opportu-
nitics that could influence your wealth at the end of the year Once you decide how
to allocate your money among the alicrnatives, your future wealth is governed by
corresponding random variables 1f the outcomes fiom all alternatives weie certain,
it would be casy to rank the choices—you would select the one that produced the
greatest wealth In the general random case, however, the choice is not so obvious
You need a procedure for ranking random wealth levels A utility function provides
such a procedure

Formally, a utility function is a function U defined on the real numbers (rep-
tesenting possible wealth levels) and giving a real value Once a utility function is
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defined, all alternative random wealth levels are ranked by evaluating their expected
utility values Specifically, you compare two outcome random wealth variables v and
v by comparing the conesponding values E[U(v)] and E[U (v)}; the larger value is
pieferred

The specific utility function used varies among individuals, depending on thei
individual risk tolerance and their individual financial environment The simplest wiility
{unction is the linear one U{x) = v An individual using this uiility function ranks
random wealth levels by their expected values This utility function (and an individual
who employs it) is said to be risk neutral since, as will become clear later, no account
lor risk is made Other utility functions do account for 1isk

The one general restiiction that is placed on the form of the utility function is
that it is an ineseasing continwous function That is, if v and v are (nonrandom) real
values with v > v, then U(x) > U(y) Other than this restriction, the utility function
can, at least in theory, take any form In practice, however, certain standard types are
popular Hele are some of the most commonly used utility functions (see Figure 9 I):

1. Exponential
U(x) = —e™

for some parameter ¢ > 0 Note that this utility has negative values This negativ-
ity does not miatter, since only the jelgrive values aie important The function is
increasing toward zero

2. Logarithimic
U(x) = In(x)

Note that this lunction is defincd only fot v > 0 It has a severe penalty for
x =~ 0 In fact, ii there is auy positive probability of obtaining an outcome of 0,
thie expected utility will be —oo

Ulx) FIGURE 9.1 Some popular utilily functions. Util-
Power ity functions should increase with wealth, since

greater wealth is preferred to less wealth Func-

tions with simple analytic forms are convenient for

Logarithniic representation and analysis

Quadratic

Exponential
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3. Power
Ux) = by?
for some parameter b < [, b # 0 This family includes (for & = 1) the risk-neutral
utility
4. Quadratic
Uy) = x — ba?

for some parameter & > 0 Note that this function is increasing only for x < [/(2b)

We shall discuss how an invesior might select an appropriate utility function
after we examine a few more properties of utility functions and study some examples
of their use

Example 9.1 (The venture capitalist) Sybil, a venture capitalist, is considering two
possible investment alternatives for the coming year Her first alternative is to buy
Treasury bills, which will give her a wealth of $6M for sure The second alternative
has three possible outcomes. They will produce wealth levels $10M, $5M, and $IM
with corresponding piobabilities of 2, 4, and 4 She decides to use the power utility
U(x) = x'? 10 evaluate these alternatives (where x is in millions of dollars)

The first alternative has an expected utility of +/6 = 2.45 The second has an
expected utility of 2x VI0+ 4 x5+ 4x+/1= 2x3 16+ 4x224+ 4=1093
Hence the first alternative is preferred to the second

There is good justification for using the expected value of a utility function
as a basis for decision making. Indeed, the approach can be derived from a set of
reasonable axioms that describe rational behavior ! Overall, this method has the merit
of simplicity, good flexibility due to the possibility of selecting a variety of utility
functions, and strong theoretical justification

Equivalent Utility Functions

Since a utility function is used to provide a ranking among alternatives, its actual
numerical value (its cardinal value) has no real meaning All that matters is how it
ranks alternatives when an expected utility is computed 1t seems clear that a utility
function can be modified in certain elementary ways without changing the rankings
that it provides We investigate this property here

First, it is clear that the addition of a constant to a utility function does not affect
its rankings That is, if we use a utility function U (x) and then define the alternative

! There are several axiomatic frameworks that lead 10 1he conclusion that rational investors use utility
functions The carliest set is the von Nenmana-Morgensiem axioms Another important set is the Savage
axioms (See the references ai the end of the chapier )
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function V (x) = U (v)+b, this new function provides exactly the same rankings as the
original This follows from the linearity of the expected value opcration Specificully,
E[V{x}] = E[U(x) + b] = E[U(v)] + & Hence the new cxpected wility values are
equal to the old values plus the constant 5 This addition does not change the rankings
of various aliernatives

In a similar faghion it can be seen that the use of the functiont V(v) = gU(v)
for a constant a > 0 does not change the anking because E[V (v)] = E[laU(v)] =
aE[U(x)]

In gencial, given a wility function U (v), any function of the form

Vvy=al(x)+b [CR)]

with @ > 0 is a utility function equivalent to U(x) Equivalent utility functions give
identical 1ankings [It can be shown that the nansformation (9 1) is the only tansior-
mation that leaves the 1ankings of all random outcomes the sumc ] As an example,
the utility function ¥ (v) = In(cx®) with @ > 0 is equivalent to the Jogarithmic utility
tunction U(x) = Inx because In(cv?) =alnv +1nc

In practice, we 1ecognize that a utility function can be changed to an equivalent
one, and we may use this fact to scale a utility function conveniently

9.3 RISK AVERSION

The main purpose of a utility function is to provide a systematic way to rank alterna-
tives that captutes the principle of tisk aversion This is accomplished whenever the
utility function is concave We spell out thig definition formally:

Concave utility and risk aversion A function U defived on an interval [a, b) of teal
nunbers is said to be concave if for auv ¢ with 0 < @ < 1V and anv x and v in [a, b|
there holds

Ulex + (I = eyv| z Uy + (1 —a)U (V) 92

A atitity fincrion U is said to be risk averse on [a, b} it it is concave on la. b I U is
concave evervwhieie, it is said to be risk averse.

This definition is illustated in Figure 92 The figure shows a utility function
that is concave To check the concavity we take two arbittary points v and v as shown,
and any ¢, 0 <@ <1 The point v' = ev+ (] —e)vis a weighted averuge ol v and
y, and hence v' is between v and v The value of the function at this point is greater
than the value at v* of the suaight linc connecting the function values at U(v) and
U{v) In general, the condition for concavity is that the staight line drawn between
two points on the function must lie below (or on) the function itself In simple termg,
an increasing concave function has a slope that flattens for incicasing values

The same figure can bc used to show how concavity of the utility function is
related 1o risk aversion Suppose that we have two alternatives for future wealth The
first is that we obtain either v or v, each with a probability of % The second is that
we obtain %\‘ + %\v with certainty Suppose our utility function is the one shown in
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9] FIGUREY2 Concavity and risk aversion. The
straight line connecting x and y lies below the
function at any intermediate point As a special
case, a sure value of x* = ﬁx + Ly is preferred
to a 50-50 chance of x or'y

o —————
o e

Figure 9 2 The expected wtility of the first altemative (the 50-50 chance) is equal to
the value of the straight line at the point x* = {x + 1y, because this is the weighting
of the two wiility values The expected utility of the second option (the riskless one)
is equal 1o the value of the function at the point x* = %x + %v This value is greater
than that of the frst alternative when the utility function is concave Hence the sure
wealth of v + %y is preferred to a 50-50 chance of x or y Both alternatives have
the same eipected value, but the one without risk is preferred

A special case is the iisk-neutral utility function U(x) = x [and its equivalent
forms V (x) = ax +b with a > 0] This function is concave according to the preceding
definition, but it is a limiting case Strictly speaking, this function represents risk
aversion of zero Frequently we reseive the phrase 1isk aver se for the case where U is
snictly concave, which means that there is strict inequality in (9.2) whenever x # y

Example 9.2 (A coin toss)  As a specific example suppose that you face two options
The first is based on a toss of a coin—heads, you win $10; tails, you win nothing
The second option is that you can have an amount M for certain Your utility function
for money is x — .04x Let us evaluate these two alternatives The first has expected
wility E[U (M) = %(10 - 04 x 10%) + %O =3 The second alternative has expected
utility M — 04M>. If M = 5, for example, then this value is 4, which is greater
than the valuc of the first alternative This means that you would favor the second
alternative; that is, you would prefer to have $5 for sure rather than a 50-50 chance
of getting $10 or nothing

We can go a step further and determine what value of M would give the same
utility as the first option We solve M — 04M> = 3 This gives M = $3 49 Hence
you would be indifferent between getting $3 49 for sure and having a 50-50 chance
of getting $10 or 0

Derivatives
We can refate important properties of a utility function to its derivatives First, U(v)

is increasing with tespect to x if U'(¥) > 0 Second, U/(x) is suictly concave with
respect to A if U”(x) < O For example, consider the exponential utility function
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U(x) = —e™ We find U(x) = ae™ > 0, so U is increasing Also, U”(x) =
~a%e™" < 0, so U is concave

Risk Aversion Coefficients

The degree of risk aveision exhibited by a utility function is refated to the magnitude
of the bend in the function—the stronger the bend, the greater the risk aversion This
notion can be quantified in terms of the second derivative of the utility function

The degree of risk aversion is formally defined by the Arrow-Pratt absolute
risk aversion cocefficient, which is

U”(v)
U'(x)

The term U'(x) appews in the denominator to normalize the coefficient With this
normatization a(v) is the same for aff equivalent uiility functions Basically, the co-
efficient function a(v) shows how 1isk aversion changes with the weaith levef For
many indjviduals, risk aversion decieases as their wealth increases, reflecting the fact
that they are willing to take more tisk when they are financially secure

As a specific example consider again the exponential utility function U(x) =
~e7% We have U’(v) = ae™ and U”(v) = —a“e™" Therefoie a(x) = a In this
case the risk aversion coelficient is constant for alf v If we make the same cafculation
for the equivalent utility function U(v) == | — be™**, we flnd that U’(v) = bae™*
and U”(v) = —ba’e™ So again a(v) = a

As another example, consider the logarithmic utifity function U{x) = In v Here
U’(v) = I/x and U"(v) = —1/v* Therefore a(v) = {/v; and in this case, risk
aversion decieases as weafth increases

a(v) =

Certainty Equivalent

Although the actual value of the cxpected utifity of a random wealth variable is
meaningless except in comparison with that of another alternative, there is a derived
measure with units that do have intuitive meaning This measure is the certainty
equivalent.’

The certainty equivalent of a 1andom weafth variabie v s defined to be the
amount of a cettain (that js, risk-free) weafth that has a utility level equal to the
expected utifity of v In other woids, the certainty equivalent C of a random wealth
vatjable v is that value C satistying

() =E[U)]

The certainty equivatent of a random variable is the same for afl equivalent utility
functions and is measured in units of wealth

*This general coneept ol eertainty equivalent is indirectly related to the concept with the same name used
in Section 77
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U FIGURE 9.3 Certainty equivatent. The centainty
equivalent is always less than the expecied value
for a risk-averse investor Reprinted with permis-
sion of Fidelity Investments
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As an example, consider the coin toss example discussed earlier Our computa-
tion at the end of the example found that the certainty equivalent of the 50-50 chance
of winning $10 or $0 is $3 49 because that is the value that, i obtained with certainty,
would have the same utility as the reward based on the outcome of the coin toss

For a concave utility function it is always tiue that the certainty equivalent of
a tandom outcome x is less than or equal to the expected value; that is, C < E(x)
Indeed, this inequality is another (equivalent) way to define risk aversjon

The certainty equivalent is illustrated in Figure 9 3 for the case of two outcomes
x| and 2. The certainty equivalent is found by moving horizontally leftward from
the point where the line between U (xy) and U (v») intersects the vertical line drawn
at E(x)

9.4 SPECIFICATION OF UTILITY FUNCTIONS*

Theie are systematic procedures for assigning an appropriate utifity function to an
investor, some of which are quite elaborate We outline a few general approaches in
simple form

Direct Measurement of Utility

One way to measure an individual’s utility functjon is to ask the individual to assign
certainty equivalents to various risky alteinatives One particularly elegant way to
organize this process is to select two fixed wealth values A and B as reference points
A lottery is then proposed that has outcome A with probability p and outcome B with
probability 1 — p. For vatious values of p the investor is asked how much certain
wealth C he or she would accept in place of the lottery C will vary as p changes
Note that the values A, B, and C are values for total wealth, not just increments based
on a bet A lottery with probability p has an expected value of ¢ = pA + (1~ p)B
However, a risk-averse investor would accept less than this amount to avoid the risk
of the lottery Ience C < ¢
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C Utx)

A B Expected A B X
value

(a) (b)

FIGURE 9.4 Experimental determination of utility function. (a) For lotleries that pay either A or 8 and have expected
value e, a pason is asked To state the certainty equivalent C (b) Inverting this relation gives the ufilily function

The values of C reported by the investor for varfous p’s are plotted in Fig-
ure 94(a) The value of C is placed above the corresponding ¢ A curve is drawn
through these points, giving a function C(e) To define a utility function from this
diagram, we normalize by setting U(A) = A and U(B) = B (which is legitinate
because a utility function has two degrees of scaling freedom) With this normaliza-
tion, the expected utility of the lottery is pU(A) + (1 — p)U(B) = pA + (1 — p)B,
which is exactly the samne as the expected value ¢ Therefore since C is defined so
that U(C') is the expected utility of the lottery, we have the relation U(C) == e. Hence
C = U~!(e), and thus the curve defined by C(e) is the inverse of the utility function
The utility function is obtained by flipping the axes to obtain the inverse function, as
shown in Figure 9 4(b)?

Example 9.3 (The venture capitalist) Sybil, a moderately successful venture capi-
talist, is anxious to make her utility function explicit A consultant asks her to consider
lotteries with outcomes of either $1M or $9M She is asked to follow the direct pro-
cedure as the probability p of receiving $1M varies For a 50-50 chance of the two
outcomes, the expected value is $5M, but she assigns a certainty equivalent of $4M
Other values she assigns are shown in Table 9.1

The utility function is also shown in Table 9 {, since U(C) = ¢ (We just read
from the bottom row up to the next row to evaluate U) For example, U(4) = 5
However, the values of € in the table axe not all whole numbers, so the table is not in
the form that one would most desire A new table of utility values could be constructed

311 different values of A and B are used a new wtility function is obtained, which is equivalent to the
original asie; that i it is fust 4 lincur transformation of the original one (See Exercise 5)
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TABLE 9.1
Expected Utility Values and Certainty Equivalents

pli0 1 2 3 45 6 71 8 9
¢|9 82 74 66 58 5 42 34 26 18 |
Ci9 784 676 576 484 4 324 256 196 144

by interpolating in Table 9 | For example (aithough perhaps not obviously),

_34200~196) +26(256~200)

v 256~ 196

265

Parameter Families

Another simple method of assigning a utility function is to select a parameterized
family of functions and then deteimine a suitable set of paramete: values

This technique is often carried out by assuming that the utility function is of the
exponential form U(x) = —¢~" [t is then only necessary to determine the parameter
a, which is the risk avession coefficient for this utility function This parameter can be
determined by evaluating a single fottery in certainty equivalent tetms For example,
we might ask an investor how much he or she would accept in place of a lottery that
offers a 50-50 chance of winning $! million or $100,000 Suppose the investor felt
that this was equivalent to a certain wealth of $400,000 We then set

_e-—-l()ﬁ 000a - Se—’ 000 000a 5(3_]00'000"

We can solve this (by an iterative procedure) to obtain a = 1/$623,426.

Many people prefer to use a logarithmic or power utility function, since these
functions have the property that risk aversion decreases with weaith Indeed, for the
logarithmic utility, the risk aversion coefficient is a(a) = /v, and for the power
utility function U{a) = px¥ the cocfficient is a(x) = (1 — y)/x There are also
good arguments based on the theory of Chapter 15, which suggest that these are
appropriate utility functions for investors concerned with long-term growth of their
wealth

A compromise, or composite, approach that is commonty used is to recognize
that while utility is a function of total wealth, most investment decisions involve rei-
atively small increments to that wealth Hence if a9 is the initial wealth and w is
the increment, the proper function is U (xp + w) This is approximated by evaluating
increments directly with an exponential utility function e~ However, if we as-
sume that the true utility function is In x, then we use a = 1/xy in the exponential
approximation

Example 9.4 (Curve fitting) The tabular results of Example 9 3 (for the venture
capitatist Sybil) can be expressed compactly by fitting a curve to the results If we
assume a power utility function, it will have the form U(x) == ax¥ + ¢ Qur normal-
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ization requires

a4c =1

a9 ¢ =9

Thus @ == 8/(9" —1) and ¢ == (9" ~9}/(9¥ —1) Therefore it only remains to determine
y We can find the best value to fit the values matching U(C) to ¢ in Table 91 We
find (using a spreadsheet optimizer) that, in fact, ¥y = % provides an excellent fit
Hence we set U(x) = 4/x — 3; o1 2s an equivalent form, V(x) = /X

Questionnaire Method

The risk aversion characteristics of an individual depend on the individual’s feelings
about risk, his or her cuirent financial situation (such as net wotth), the prospects
for financial gains o1 requirements (such as college expenses), and the individual’s
age One way, therefore, to attempt to deduce the appropriate risk factor and utility
function for wealth increments is to administer a questionnaire such as the one shown
in Figure 95, prepared by Fidelity Investments, Inc This gives a good qualitative
evaluation, and the results can be used to assign a specific function if desired

In the questionnaire, note that five items (numbers 1, 6, 7, 8, 9) concern the
investor’s situation, five others (numbers 2, 4, 5, 1, 12) concern the investor’s in-
vestment approach (mainly characterizing the level of comfoit for risk), one item
characterizes the market, and one item asks about the value of a managed fund This
questionnaire therefore reflects the notion that risk tolerance is detenmined both by
internal feelings toward risk and by an investor's financial environment

9.5 UTILITY FUNCTIONS AND THE MEAN-VARIANCE CRITERION”

The mean-variance criterion used in the Markowitz portfolio problem can be recon-
ciled with the expected utility approach in either of two ways: (1) using a quadratic
utility function, or (2) making the assumption that the random variables that charac-
terize retums are normal (Qaussian) 1andom variables These two special cases are
examined heie

Quadratic Utility

The quadiatic utility lunction can be defined as U(x) = ax — %I;\'J, where ¢ >
0 and b = 0 This function is shown in Figure 9 6

This utility function is really meaningful only in the range x < a/b, for it is
in this range that the function is increasing Note also that for b > 0 the function is
strictly concave everywhere and thus exhibits risk aversion

We assume that all random variables of interest lie in the {easible 1ange x < a/b;
that is, within the meaningfu} iange of the quadratic utility function
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U FIGURE 9.6 Quadratic utility function. This
function is meaningiul as a utility function only
for x < a/b
)
alb X

Suppose that a portfolio has a random wealth value of vy Using the expected
utility criterion we evaluate the portfolio using the value

E[U ()] = E(ay — ;by?)

[

aB(y) — %I)E(vl)
aE(y) - %b[E(v)]2 - %I) var(y)

The optimal portfolio is the one that niaximizes this value with respect to all feasible
choices of the random wealth variable y

This can be seen to be equivalent to a mean-variance approach First, for con-
venjence, suppose that the initial wealth is I Then y corresponds exactly to the return
R. Suppose also that the solution has an expected value E(y) == M Then clearly, y
must have minimum variance with respect to all feasible v's with E(y) == M = | +-m
(where m is the mean 1ate of retuin) Since y = R, it follows that the solution must
comespond to a mean-variance efficient point

Different mean-variance efficient points are obtained by selecting different val-
ues for the patameters ¢ and b Likewise, if the initial weatth is not 1, a difterent
factor is intioduced (See Exercise 5 )

[

Normal Returns

When all returns are normal random variables, the mean-variance criterion is also
equivalent to the expected utility approach for any risk-averse utility function To
deduce this, select a utility function U Consider a random wealth variable y that is
a normal random variable with mean value M and standaid deviation ¢ Since the
probability distribution is completely defined by M and g, it follows that the expected
utility is a function of M and o; that is,
E[UWi= f(M,0)

(It may be impossible to determine the function f in closed form, but that does not
matter ) If U is risk averse, then f(M, o) will be increasing with respect to M and

decreasing with respect to ¢ Now suppose that the returng of all assets are normal
random varjables Then (and this is the key property) any linear combination of these
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assets is a normal random variable, with some mean and standard deviation (See
Appendix A ) Hence any portfolio of these assets will have a return that is a normal
random variable The portfolio problem is therefore equivalent to the selection of that
combination of assets that maximizes the function f{(M, o) with 1espect to all teasible
combinations For a 1isk-averse utility this again implies that the variance should be
minimized for any given value of the mean In other words, the solution must be
mean-vatiance efficient Therefore the mean-variance criterion is appropriate when
all returns are nonnal tandom vaiiableg

9.6 LINEAR PRICING

We now turn attention to a fundamental property of security piicing—namely, that
of linearity We shall find that this propeity has profound implications and by itself
explains much of the theory developed in previous chapters (The remaining sections
of the chapter might be best read after completing Part 3)

We formalize the definition ol a security as a random payoff vatiable, say, ¢
The payotf is revealed and obtained at the end of the period. (The payoif can be
thought of as a dividend, which justifies the use of the letter d ) Associated with a
secutity is a price P As an example, we can imagine a security that pays d = $10
if it rains tomorrow or d == —$10 il it is sunny, with zero initial price (This would
correspond to a $10 bet that it will 1ain ) Or we could consider a share of IBM stock
whose value at the end of a year is unknown The payoff d is that random value The
price is the cument price of a share of IBM

Type A Arbitrage

Linear pricing of secusities follows from an assumption (hat the most basic form
of arbitiage is not possible We define this basic form of arbitiage as follows If
an investment ptoduces an immediate positive reward with no {uture payoff (either
positive or negative), that investment is said to be a type A arbitrage,

In othet words, i you invest in a type A arbitrage, you obtain money imme-
diately and never have to pay anything You invest in a secutity that pays zero with
certainty but has a negative price It seems quite teasonable to assume that such things
do not exist

To see that lincat pricing {ollows from the assumption that there is no possibility
of type A arbitrage, suppose that d i$ a security with ptice P Consider the security 2d
that always pays exactly twice what ¢ pays Suppose that its ptice were P’ < 2P Then
we could buy this double security at the teduced price, and then break it apart and sell
the two halves at price P for each hall We would obtin a net profit of 2P ~ P" and
then have no {urther obligation, since we sold what we bought We have an immediate
profit, and hence have found a type A atbitrage This argument can be tevetsed to
show that the price of the double secutity cannot be greater than 2P The argument
also can be extended to show that for any teal number o the price of ¢d must be o P
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Likewise, it d, and d are secutities with prices Py and Ps, the price of the
secutity ¢| + ¢z must be Py + P, For if the price of d| + d; were P’ < P 4- P, we
could purchase the combined security for P’, then break it into d| and ¢/ and seil these
for Py and Ps, tespectively As 2 tesuit we would obtaitt a profit of Py 4 P, — P* > 0
As befote, this argument can be teversed if P’ > Py + P; Hence the price of d, + d
must be P; + P, In general, therefore, the price of ad|, + Bd2 must be equal to
@ Py + AP, This is linear pricing.

In addition to the absence of type A arbitiage, the preceding argument assumes
an ideal functioning of the market: it assumes that sccurities can be atbitrarily divided
into two pieces, and it assumes that there are no transactions costs In practice these
requirements are not met perfectly, but when dealing with large numbers of shares of
traded securities in highly liquid matkets, they are closely met

Portfolios

Suppose now that there are n securities d),dz, ,d, A portiolio of these securities
is represented by an n-dimensional vectot 8 = (6, 6,, ,6,) The ith component 8,
tepresents the antount of secutity ¢ in the poitfolio The payot! of the portiolio is the
random vatiable

"
o = Z O;d,
==

Under the agsumption of no type A atbitrage, the price of the patfolio 8 is found by
finearity Thus the total price is

“
P=3"6P
i=1
which is a more general expression ol linear pricing
Recall that the CAPM formula in pricing form is linear

Type B Arbitrage

Anotler form of arbitzage can be identified It an investment has nonpositive cost but
has a positive probability of yielding a positive payoff and no probability of yielding
a negative payoff, that investment is said to be a type B arbitrage.

In other wotds, a type B arbittage is a situation where an individuai pays nothing
(ot & negative amount) and has a chance of getting something An example would be
a tree lottery ticket—you pay nothing for the ticket, but have a chance of winning a
prize Clearly, such tickets are rare in securities matkets

The two types of arbitrage are distinguished only for clarity of the concepts
involved In further developments we shall usuaily assume that neithet type A nor

*Lincar pricing #tsa fotlaws fram the Inw of ane price; if dy = da then Py = Py




242 Chapter 9 GENERAL PRINCIPLES

type B is possible, and we shall just say that there is no arbitrage possibility. However,
we have shown that ruling out type A is all that is needed to establish linear pricing
Ruling out type B as well allows ns to develop stronger relations, as shown in the
next section

9.7 PORTFOLIO CHOICE

=7

We ate now prepared to put many of the earlier sections of this chapter together and
consider the pottfolio problem of an investor who uses an expected utility criterion to
rank alternatives

If x is a random variable, we write x > 0 to indicate that the variable is never
tess than zero We write 1 > 0 to indicate that the varfable is never less than zero and
it is sttictly positive with some positive probability

Suppose that an investor has a strictly increasing utility function U and an
initial wealth W Thete are n securities d|,d», ,d, The investor wishes to form a
portfolio to maximize ie expected utility of final wealth, say, x We let the portfolio
be defined by 6 = (6),62, , 8,), which gives the amounts of the various securities

The investor’s problem is

maximize E[U(v)] 9 3a)
13

subject to ) 6id, = ¢ 930
f=|

x>0 (9 3¢)

DGR sW (9 3d)
i=|

This problem states that the investor must select a portfolio with total cost no greater
than the initial wealth W (the last constraint), that the final wealth x is defined by
the porttolio choice (the first constraint), that this final wealth must be nonnegative
in every possible outcome (the second constraint), and that the investor wishes to
maximize the expected utility of this final wealth

We now show how this problem is connected to the arbitrage concepts

Porifolio choice theorem Suppose thar U(x) is eontinuous and inereases toward
infinity as x — oo Suppose also that there is a portfolio 8° such thar Y!_, 6%; > 0
Then the optimal portfolio problem (9 3a) has a solution if and only if there is no
arbitrage possibility .

Proof: We shall only prove the only if portion of the theorem Suppose that
therc is a type A arbitrage produced by a portfolio 8 = (64, 6,, , 8,) Using
this portfolio, it is possible to obtain additional initial wealth without affecting
the finat payoff. Hence arbitrary amounts of the portfolio 8° can be purchased.
This implies that E[U (x)] does not have a maximum, because given a feasible
portfolio, that portfolio can be supplemented by arbitrary amounts of 6° to
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increase E[U (v)] If there is a type B arbittage, it is possible to obtain (at zero
of negative cost) an asset that has payoff ¥ > 0 (with nonzeto probability
of being positive) We can acquire arbitrarily latge amounts of this asset to
increase E[U (v)] arbitrarily Hence if there is a solution, there can be no type
A or type B arbitrage

We can go further than the preceding result on the existence of a solution and
actually characterize the solution We assume that there are no arbitrage opportunities
and hence there is an optimal portfolio, which we denote by 8% We also assume
that the corresponding payoff x* = Y, 61d, satisfies x* > 0 We can immediately
deduce that the inequaiity Y ;.. 6, P, < W will be met with equality at the solution;
otherwise some positive fraction of the portiolio 8° (or 8*) could be added to improve
the result

To derive the equations satisfied by the solution, we substitute x = Z:.':, 6,d, in
the objective and ignore the constraint ¥ > 0 since we have assumed that it is satisfied
by strict inequality The problem therefore beconies

n
maximize E [U <Z (),d,):|
i=1

n
subject to Z(),P, =W
i=t
By introducing a Lagrange multiplier A for the constraint, and using v* = Z:':( 6td,
tor the payoff of the optimal portfolio, the necessary conditions are found by ditfer-
entiating the Lagtangian (see Appendix B)

L =E[U <§(),d,):| - X <§(),P,~ —W)

wilh respect to each 6; This gives
E[U'(x")d,| = AP, 94

tor i = 1,2, ,n This represents n equations The original budget constraint
L‘ 6, P, = W is one more equation Altogether, therefore, thete are n 4 | equa-

tions for the # + | unknowns 8¢, 6,, . ,8, and X It can be shown that A > 0

These equations are ver v important because they serve two toles First, and niost
obviously, they give enough equations to actually solve the optimal portiolio prob-
lem An example of such a solution is given soon in Example 9 5 Second, since these
equations are valid if there ate no arbitrage opportunities, they provide a valuable char-
acterization of ptices under the assumption of no arbitrage This use of the equations
ts explained in the next section

If there is a risk-free asset with total return R, then (9.4) must apply when
di = R and P, =1 Thus,

r=E[U'(WM]R
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L
A

Substituting this value of A in (9 4) yields
ELU ()] _
RE[U'(M]

Because of the importance of these equations, we now highlight them:

i -

Portfolio pricing equation If x* = 3! 6}d, is a sofution 1o the optimal po: ifolio
problent (9 3a), then

E[U "l =2P ()]
fori=1,2, ,n,wherte X > 0 If there is a risk-fiee asser witlh renun R, then
E[U' (x*)d,
[U'(x )('J=P,- 96
REU'(x")]

fori=12, ,n

Example 9.5 (A film venture) An investot is considering the possibility of investing
in a venture to produce an entertainment film He has lemrned that such ventures
are quite risky In this particular case he has leamed that there are essentially three
possible outcomes, as shown in Table 9 2: (1) with probability 3 his investment will
be multiplied by a factor of 3, (2) with probability 4 the factor will be I, and (3) with
probability 3 he will lose the emtire investment One of these outcomes witl occur
in 2 years He also has the oppottunity to earn 20% risk free over this petiod He
wants to know whether he should invest money in the film venture; and if so, how
much?

This is a simplification of a fairly rcalistic situation The expected return is
3x34 4x 4+ 3x0 =13, which is somewhat better than what can be obtained tisk
free How much would veu invest in such a venture? Think about it for a moment

The investor decides to use U (1) = In v as a utility function. This is an excelient
general choice (as will be explained in Chapter [5) His problem is to select amounts
6, and 6, of the two available secuiities, the film venture and the risk-free opportunity,

TABLE 9.2
The Film Venture

Return | Probability

High success 30 03
Moderate success 10 04
Failure | 00 03

Risk Iree 12 10

There ase thiee possible owtcomes with asso-
ciated 1ol reqarny and probabilities shown
There is also a risk-free opportunity with toral
return 12
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each of which has a unit price of I Hence his problem is to select (8}, 62) to solve
maximize | 3in(38;, + 1 262) + 41in(6; + 1 261) + 3in(l 26,)]
subject to 6 + 6> = W
The necessary conditions from (9 5), or by direct calculation, are
9 4
R L S
39,4+ 1268, 6, +126:
36 48 36
ST e e e
30,4120, 6 +120, 126,
These two equalions, together with the constraint 8; + 62 = W, can be solved for
the unknowns 6y, 62, and A (A quadratic equation must be solved ) The tesult is
6y = 089W, 6; = 911W,and A = t/W In other words, the investor should commit
8 9% of his wealth to this venture; the rest should be placed in the risk-free security

A

Example 9.6 (Residual rights) While pondering the possibility of investing in the
film venture of the previous example, an investor discovers that it is also possible to
invest in film residuals, which have a large payoff if the film is highly successful
Each dollar invested in residual rights produces $6 if the venture has high success and
zero in the other two cases Now what should the investor do?

He must solve the portfolio optimization problem again with this new informa-
tion There are now three securities: the original film venture, the risk-free alteinative,
and residual rights He will purchase these in amounts 6y, 6, and 63, respectively The
necessary equations are

9 4
W 126766 T 510 =4
36 L4 36
30, 4 126+ 66, | 6+ 126 T 126
1.8
= A

36; 4+ 1 26, + 663
In addition there is the wealth coustzaint 8; 4+ 62 + 63 = W These equations have
solution 8; == ~10W,8) = I 5W.0; = 5W, and A = /W In other words, the
investor should short the ordinary film venture by an amount equal to his total wealth
in order to invest in the other two alternatives

9.8 LOG-OPTIMAL PRICING*

The porttolio pricing formula

E[U'(x")d,] = AP, i=1,2, ,n on
of the previous section is a general result with many important ramifications It can be
tiansformed to produce a variety of convenieut special pricing formulas This section
presents one especially elegant version
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]
B

The main idea ot these pricing relations is to tum the equation around to give an
expression for the prices P; Remember that the prices were already known, and we
used them to find the optimal +* Now we are going to use the optimal x* to recover
the prices That is all there is to it

We shall choose U(x) = Inx and W = | as a special case to investigate
The final wealth variable x* is then the one thal is associated with the portfolio that
maximizes the expected logarithm of final wealth In this special case we denole this
v* by R*, since R* is the return that is optimal for the logarithmic utility We refer
to R* as the log-optimal return.

Since d In v/dv = 1/x, the pricing equation (9 7) becomes

d;
E (F) = AP, 98
for all i Since this is valid for evely security i/, it is, by linearity, valid for the
log-optimal portfolio itself This portfolio has price 1, and therefore we find that

R*
I=E (—) EPY
R‘
Thus we have found the value ot A for this case
If thete is a risk-free asset, the porttolio pricing equation (9 7) is valid for it as
well The risk-free asset has a payoff identically equal to I and price 1/R, where R
is the total risk-free return Hence we find
E(I/R™) = 1/R

Thelefore we know that the expected value of 1/R* is equal to 1/R
Using the value of X = 1, the pricing equation (9 8) becomes

d;
nee(z)

Since this is true for any security I, it s, by linearity, also true for any portfolio Hence
we have the tollowing general pricing result:

Log-optimal pricing The piice P of any security (o1 porifolio) with dividend d is
o
P=E(— 99
(%) ©9)
where R* is the retin on the log-optimal portfolio

Isn’t this a simple and easily remembered result? The formula looks very similar
to the expression P = d /R that would hold in the case where d is deterministic In
the random case we just substitute R* for R and put an expected value in front If

happens to be deterministic, this more general 1esult reduces to the simple one because
E(l/R*) = I/R

Example 9.7 (Film variations) Suppose that a new security is proposed with payolfs
that depend only on the possible outcomes of the film venture Foi example, one might
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propose an investment that paid back something even if the venture was a failure A
general secwity of this type will have payoffs ¢', ¢?, and ¢, corresponding to high
success, moderate success, and failure, 1espectively We can find the appropriate price
of such a security by using the log-optimal portfolio that we calculated in Example 9 6

Note that we cannot use the simple log-optimal portfolio of the first film venture
example, because that example only considered the film ventute and the risk-free
security If a new security were a combination of those two, then we could use the
simple log-optimal portfolio for pricing But if the new security is a general one, we
must use the log-optimal portfolio of the second example, since it includes a complete
set of three secutities for the three possibilitics Any new secutity will be a combination
of these three

The log-optimal portfolio has the following 1eturn:

High Success Moderate Success Failure

R* 18 8 18

These tetutns are calculated from the 6;’s found in the residual 1ights example For
example, under high success R* = ~10x3+15x12+ 5x6=18
The value of a secuiity with payofts d*, d?, d* is E(d/R*), which is
d! d* o?
Pz 3 4 4 3
18 + 8 + 18
You can ty this on the three securities we have used before; their prices should all

turn out to be 1. For example, for (he original venture, P = ;3[3—8 + 4% = % % =

We shall teturn to this log-optimal piicing equation in Chapter 15 For the
moment we may regad it simply as a special version of the general pricing equation—
the version obtained by using In v as (he utility function

Remember what is happening here The prices of the original securities were
used to find x* Now we use x* to find those prices again However, since piicing is
linear, we can find the price of any security that is a linear combination of the original
ones by the same formula

What about a new security ¢ that is not a linear combination of the original
ones? We could enter it into the pricing equation as well, but the price obtained this
way may not be correct The formula is valid only for the securities used to derive it,
ot for a linear combination of those original securities

9.9 FINITE STATE MODELS

Suppose that there are a finite numbet of possible states that desciibe the possible
outcomes of a specific investment situation (see Figure 97) At the initial time it is
known only that one of (hese states will occur At the end of the period, one specific
state will be revealed Sometimes states describe certain physical phenomena For
example, we might define two weather states for tomorrow: sunny and rainy We
do not know today which of these will occur, but tomorrow this uncertainty will be
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States FIGURE 9.7 States. States represeni uncertainty in a
simple but effective manner

Initial
point

resolved. Or, as another example, the states may correspond Lo economic events, as in
the film venture example, which has the three possible states of high success, moderate
success, and failure Normally we index the possible states by numbers {1, 2,. ., S}

States define uncertainty in a very basic manner It is not even necessary lo
introduce probabilities of the states, although this will be done later Indeed, one of
the main points of this section is that a great deal can be said without reference to
probabilities In an umportant seuse, probabilities are irrelevant for pricing relations

A security is defined within the conlext of states as a set of payoffs—one payoff
for each possible state (again without reference to probabilities) Hence a security is
represented by a vector of the form d = (d',d?, ,d’) We use the notation { )
to denote vectors whose components are state payoffs In this case, the component
d*,s =1,2, 8§, represents the payoff that is obtained if state 5 occurs As before,
associated with a security is a price P Owr earlier example, at the beginning of
Section 9 6, of a securily that pays $10 if it rains tomorrow and ~§10 if it is sunny
(with zero price), woiks here as well; and it is not necessary to specify probabilities
This secuity is represented as (10, —10)

State Prices

A special form of security is one that has a payoff in only one stale Indeed, we can
define the S elementary state securities e, = (0,0,. .,0,1,0, ,0), where the |
is the component s for s = 1,2, ,§ If such a security exists, we denote ils price
by v

When a coniplete sel of stale secuiities exists (one for each state), it is easy to
determine the price of any other security The security d = {d',d?, ,d°) can be

expressed as a combination of the elementary state securities as d = 3., d’e,, and
hence by the linearity of pricing, the price of ¢ must be
S
P= Zd‘\//, (9 10}
vasl

If the elementary state securities do not exisl, it may be possible lo construct
them artificially by combining securities that do exist For example, in a two-slate
world, if {1, 1) and {1, ~1) exist, then one-half the sum of these two securities is
equivalent to the first elementary state security (1, 0)
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Positive State Prices

If a complete sct of elementary securities exists o1 can be constwcted as a combination
of existing securilies, it is important that their prices be positive Otherwise there would
be an arbitrage opportunity To see this, suppose an elementaty state security e, had
a zero or negalive price That security would then present the possibility of obtaining
something (a payoft of 1 if the stale s occurs) for nonpositive cost This is type
B arbitrage So if elementary state securities actually exist ot can be constiucted as
combinations of othei securities, their prices must be positive to avoid arbitrage

Actually, the condition of no arbitrage possibility is equivalent Lo the existence
of positive state prices as established by the following theorem:

Positive state prices theorem A set of positive state piices exists if and only if there
are no arbitrage oppormnities

Proof: Suppose fizst that thete ate positive state prices Then it is clear that no
arbitiage is possible. To sec this, suppose a security ¢/ can be constructed with
d >0 We have d = <{/’, a2, (/S) with d* = 0 foreach s = 1,2, 8§
The price of df is P == ZL[ ¥,d*, which since ¥, > O tor all s, gives P > 0
Indeed P > Oif d # 0 and P = 0 if d = 0 Hence there is no arbiuage
possibility

To prove the converse, we assume that theie are no arbitrage oppor-
tunities, and we make use of the tesult on the portfolio choice problem of
Section 97 This proof requires some additional assumptions (A wore gen-
eral proof is outlined in Exercise 12 ) We assume thete is a portfolio 8" such
that i, 8%d, > O We assign positive probabilities p,, s = 1,2, .., S, to
the states atbitarily, with Z;‘___[ p. = 1, and we select a strictly increasing
utility function U Since there is no arbitrage, there is, by the portfolio choice
theotem of Section 9 8, a solution to the optimal portfolio choice problem
We assume that the optimal payoff has v* > 0 The necessury conditions
(9 5) show that for any security ¢ with price P,

E[U'(v*)d] = AP @11

where v* is the (tandom) payoff of the optimal portfolio and A > 0 is the
Lagiange multiplier

Il we expand this equation to show the details of the expected value
opetation, we find

1S
P o= 3 Z/},U'(\‘*)‘d‘
=1
where U'(x*)* is the value of U’(x") in state s
Now we define
_aUWYy

2
i 912)

v
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We see that ¥, > 0 because p, > 0, U'(x*)’ > 0, and A > 0 We also have

s
P = Z v d'
=1
showing that the y»,’s are state prices They are all positive

Note that the theorem says that such positive prices exist—it does not say that
they are unique If there are mote states than securities, there may be many different
ways to assign state prices that are consistent with the pices of the existing securities
The theorem only says that for one of these ways the state prices are posilive

Example 9.8 (The plain film venture) Consider again the original film ventute
Thete are three states, but only two secuiities: the venture itself and the riskless
security Hence state prices are not unique

We can find a set of positive state prices by using (9 12) and the values of the
6;’s and A == 1 found in Example 95 (with W = 1) We have

3

PR} J
Y= T

L S PP
Vo= 0+ 126,

3

= = 274

¥ = 135,

These state prices can be used only lo price combinations of the original two
securities They could not be applied, for example, to the purchase of residual rights
To check the price of the original venture we have P =3 x 221 4+ 338 =1, as it
should be

Example 9.9 (Expanded film venture) Now consider the film venture with three
available securilies, as discussed in Example 9 6, which intioduces 1esidual rights
Since there are three states and three securities, the state prices are unique Indeed we
may find the state prices by setling the price of the three secutities to 1, obtaining

W+ Y =1
P20 4+ 1292 4+ 1293 = 1
6y == ]

This system has the solution
\/fl=%, \/f1=%7 ‘/’3=(l,
Theiefore the price of a security with payoff (d*, d2, d?) is

P=1d" 4 3d* + Ld°
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You can compare this with the formula lor P given at the end ol Example 97 It is
exactly the same

Note also that these state prices, although diflerent liom those ol the preceding
example, give the same values for prices ol securities that are combinations of just
the two in the original ilm ventute For example, the price of the basic venture itself
is P= % —+ % =1

9.10 RISK-NEUTRAL PRICING

Suppose thete are positive state prices y,,s = 1,2, | S Then the price of any
secutity d = (d',d?, ,d*) can be found from

S
P Zzl‘\//,
szl

We now normalize these state prices so that they sum to | Hence we let vy =
ZL‘ ¥, and let ¢, = ¥, /Yvo We can then write the pricing formula as

5
P =1 Z(/‘(/‘ 9 13)
(3]
The quantities ¢,, s = 1,2, . , S, can be thought of as (artificial) probabilities, since
they are positive and sum to | Using these as probabilities, we can write the pricing
lormula as

P = W E(d) 9 14)

where E denotes expectation with respect to the artificial probabilities ¢,

The value vy has a useful interpretation Since vrg = ZL‘ ¥r,, we see that ¥
is the price of the security (1,1, 1) that pays I in every state—a risk-free bond
By definition, its price is I/R, where R is the risk-free return Thus we can write the
pricing formula as

P = %fzw) ©915)

This equation states that the price of a security is equal to the discounted expected
value ol its payolt, under the artificial probabilities We term this risk-neutral pricing
since it is exactly the formula that we would use il the ¢,’s were real probabilities
and we used a risk-neutral utility function (that is, the linear utility function) We also
refer to the ¢,’s as risk-neutral probabilities.

This artifice is deceptive in its simplicity; we shall find in the coming chapters
that it has profound consequences In fact a major portion of Part 3 is eluboration of
this simple idea Heve ave thiee ways o find the risk-neutral probabilities ¢,:

(¢} The risk-neutral probabilities can be {ound from positive state prices by multi-
plying those prices by the risk-free wate This is how we defined the risk-neutral
probabilities at the beginning ol this section
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(b) If the positive state prices were found from a portfolio problem and there is a
risk-fiee asset, we can use (9 6) to define
p U’ (x*)
g = =22 (9 16)
Y PUY
This formula will be useful in our later work

(c) If there are n states and at least n independent secusities with known prices, and
no arbitrage possibility, then the risk-neutial probabilities can be found directly
by solving the system of equations

1 M
Po==gdi  i=L2
R\'::l

for the n unknown g,’s

Example 9,10 (The film venture) We found the state prices of the full film ventme
(with three securities) to be
V=g, Vo= 4, V=1
Multiplying these by the risk-fiee rale 1 2, we obtain the risk-neutral probabilities
=2 =16 g=2
Hence the price of a security with payoff {(d', d”, &*) is
_ '+ 6dy + 24
- 12
Here again, this pricing formula is valid only for the original securities or linear

combinalions of those securities The risk-neutral probabilities were derived explicitly
to price the original securities

The 1isk-neutral pricing result can be extended to the general situation that does
not assume that there are a finite number of states (See Exercise 15)

9.11 PRICING ALTERNATIVES*

Let us review some alternative pricing methods Suppose that there is an environment
of n securities for which prices are known, and then a new securily is introduced,
defined by the (random) cash flow ¢/ to be obtained at the end of the period What is
the correct price of that new security? Listed here are five alternative ways we might
assign it a price In each case R is the one-period risk-free return

1. Discounted expected value

_ E(d)
TR

P
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2. CAPM pricing
_ E(d)
TR+ B(Ry ~ R)
wheie B is the beta of the asset with respect to the market, and Ry is the return on

the market portfolio We assume that the market portfolio is equal to the Markowitz.
fund of risky assels

3. Certainty equivalent form of CAPM

p o B —covR, dY(Rar =~ RY o}y

4. Log-optimal pricing

whete R* is the retumn on the log-optimal portfolio
5. Risk-neutral pricing.
E(
p o ED
R

where the expectation E is taken with respect to the risk-neutral probabilities.

Method | is the simplest extension of what is true for the deterministic case
In general, however, the price deteimined this way is too laige (at least for assets
that are positively correfated with all otheis) The price usually must be reduced
Method 2 reduces the answer obtained in | by increasing the denominator This method
essentially increases the discount rate Method 3 reduces the answer obtained in | by
decreasing the numerator, replacing it with a certainty equivaient Method 4 reduces
the answer obtained in | by putting the retuin R* inside the expectation Although
E(I/R*) = 1/R, the resulting price usually will be smaller than that of method |
Method 5 reduces the answer obtained in | by changing the probabiiities used to
calculate the expected value

Methods 25 represent four different ways to modify method { to get a more
appropriate resuit What ae the differences between these four modified methods?
That is, how will the prices obtained by the ditferent formulas differ? Think about it
for a moment The answer, of course, is that if the new security is a linear combination
of the original » securities, all four of the modified methods give identical prices Each
method is a way of expressing linear pricing

If ¢ is not a linear combination of these n securities, the prices assigned by
the different formulas may ditfer, for these formulas are then being applied outside
the domain for which they were deiived Methods 2 and 3 will always yield identical
values Methods 3 and 4 will yield identical values if the log-optimal formula is used
to calculate the risk-neutral probabilities Otherwise they will differ as well

If the cash flow d is completely independent of the i original securities, then
all five methods, including the fust, wilf produce the identical price (Check itt)
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We can obtain additional methods by specifying other utility functions in the
optimal poitfolio problem For the n original securities, the price so obtained is inde-
pendent of the utility function employed However, the methods piesented here seem
to be the most useful

9.12 SUMMARY

This chapter is devoted to general theory, and hence it is somewhat more abstract
than other chapte:s, but the tools presented me quite powerful The chapter should be
teviewed after reading Part 3 and again after reading Part 4

The first part of the chapter presents the basics of expected utility theory Utility
{unctions account for :isk aversion in financial decision making, and piovide a mote
general and morte useful approach than does the mean-variance framewoik In this
new appioach, an uncertain final wealth level is evaluated by computing e expected
value of the utility of the wealth One random wealth level is preferred to another if the
expected utility of the first is greatet than that of the second Often the utility function
is expressed in analytic form Commonly used functions are: exponential, logarithmic,
power, and quadratic A utility function U (v) can be tansformed to V (x) = aU (v)+b
with g > 0, and the new {unction V is equivalent to U for decision-making purposes

It is generally assumed that a utility function is increasing, since more wealth
is preferied to less A ulility function exhibits tisk aversion if it is concave If tie
utility function has derivatives and is both increasing and concave, then U'(x) > 0
and U"(x) < 0.

Coresponding to a random wealth level, theie is a number C, called the certainty
equivalent of that random wealth The certainty equivalent is the minimum (nonran-
dom) amount that an investor with utility function U would accept in place of the
random wealth undet consideration The value C is defined such that U (C) is equal
to the expected utility due to the :andom wealth level

In order to use the utility function approach, an approp:iate utility function must
be selected One way to make this selection is to assess the certain equivalents of
various lotteries, and then work backward to find the undetlying utility tunction that
would assign those certain equivalent values

Fiequently the utility function is assumed to be either the expounential form
—e™*" with a approximately equal to the ieciprocal of total wealth, the logarithmic
form Inx, or a power form yv” with ¥ < | but close to 0 The parameteis of the
function are either fit to lottery responses or deduced from the answers to a seties of
questions about an investor’s financial situation and attitudes toward 1isk

The second part of the chaptel piesents the outline of a general theory ol linear
pricing In perfect markets (without transactions costs and with the possibility of buying
or selling any amount ol each securily), security prices must be linear—meaning that
the price of a bundle of secuzities must equal the sum of the prices of the component
securities in the bundle—otherwise there is an arbittage opportunity

Two types of abitiage are distinguished in the chapter: type A, which rules
out the possibility ot obtaining something to: nothing—right now; and type B, which
tules out the possibility of obtaining a clance for something later—at no cost now
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Ruling out type A arbitrage leads to linea piicing Ruling out both types A an B
implies that the problem of finding the portfolio that maximizes the expected utility
has a well-defined solution

The optimal postfolio problem can be used to solve realistic investment problems
(such as the film venture problem) Furthennore, the necessmy conditions of this
genezal problent can be used in a backward fashion to express a securily price as an
expected value Different choices of utility functions lead to different pricing formuias,
but all of them are equivalent when applied to securities that are linear combinations
of those considered in the original optimal portfolio problem Utility functions that
lead to especially convenient piicing equations include quadratic functions (which lead
to the CAPM formula) and the logatithmic utility function

Insight and practical advantage can be derived from the use of finite state models
In these models it is useful to introduce the concept of state ptices A set ol positive
state prices consistent with the securities under consideration exists if and only if there
are no arbitrage opportunities One way to find a set of positive state prices is to solve
the optimal portfolio problem The state prices are determined directly by the resulting
optimal portiolio

A concept of major significance is that of risk-neutral pricing By introducing
artificial probabilities, the pricing formula can be wiitten as P = E(d)/R, where
R, is the return of the riskless asset and F denotes expectation with respect to the
artificial (risk-neutral) probabilities A set of risk-neutral probabilities can be found by
multiplying the state prices by the total return R of the risk-fiee asset

The pticing process can be visualized in a special space. Starting with a set of
n securities defined by their (random) outcomes d;, define the space S of all linear
combinations of these securities A major cousequence of the no-arbitrage condition
is that there exists another random variable v, not necessarily in S, such that the
ptice of any security J in the space S is E(vd) In particulas, for each /, we have
Pi = E(vd;). Since v is not required to be in S, there are many choices for it One
choice is embodied in the CAPM; and in this case v is in the space S Another choice
is v = 1/R*, where R' is the 1eturn on the log-optimal poitfolio, and in this case
v is often not in S The optimal portfolio problem can be solved using otiier utility
functions to find other v’s If the foninula P = E(vd) is applied to a security o outside
of §, the result will generally be different for different choices of v

It the securities are defined by a finite state model and if there aie as many
(independent) securities as states, then the market is said to be complete In this case
the space S contains all possible tandom vectors (in this model), and hience v must
be in S as well Indeed, v is unique It may be found by solving an optimal portfolio
problein; all utility functions will produce the same v

1. (Certainty equivalent) An investor has utility function U(x) = x'# for salary He has a
new job offer which pays $80,000 with a bonus The bonus will be $0, $10,000, $20,000,
$30,000, $40,000, $50,000, or $60,000, each with equal probability What is the ceitainty
equivalent of this job ofter?
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2. (Wealth independence) Suppose an investor lias exponential utility function U(x) =
—e™*" and an inilial wealth level of W The investor is faced with an opportunity to
invest an amount w < W and obtain a random payoff x Show that his evaluation of this
incremental investnient is independent of W

3. (Risk aversion invariance) Suppose U(x} is a utility funiction with Arrow--Pratt risk aver-
sion coefficient a(x) Let V{x) =c¢ + bU(x) What is the risk aversion coefficient of V?

4. (Relative risk aversion) The Arrow-Pratt relative risk aversion coefficient is
xU"(x)
Ur(x)

Show that the utility functions U(x) = Inv and U{x) = yx¥ have constant relative risk
aversion coeflicients

Jalx)y =

[

. (Equivalency) A young woman uses the first procedure described in Section 9 4 to deduce
her utility function U(x) over the range A < x < B She uses the normalization U(A) =
A, U(B) = B To check her result, she repeats the whole procedure over the range
A <= x < B, where A < A’ < B’ < B The tesult is a utility function V{(x), with
V(Ay = A', V(B')y= B’ If the results are consistent, U and V should be equivalent; that
is, V{¥) = alU(x) + b for some @ > 0 and b Find a and b

6. (HARA0) The HARA (for hyperbolic absolute risk aversion) class of utility functions is
defined by

{—y {43 4
U(x):-—’—( o +b) . b>0
v [

The tunciions are defined for those values of x where the term in parentheses is nonnegative
Show how the patameters y, a, and b can be chosen to obtain the following special cases
{or an equivalent form)

{a) Linem or risk neutral: U(x) = v

(b Quadratic: U(x) == x — %L‘.\‘l

-t

= —¢

(¢} Exponential: U(x
(d) Power: U(x) = ¢x7
(¢) Logarithmic: U(x) = lnx  [Try U() = (1 = )1 (( = 1)/p) ]

Show tlat the Arrow--Pratt risk aversion coefficient is of the form 1/(cx +d)

Try y = —00
[ ]

7. (The venture capitalist) A venture capitalist with a utility function U(x) = /¥ carried
out the procedure of Example 93 Find an analytical expression for C as a function of ¢,
and for e as a function of C Do the values in Table 9 | of the example agree with these
cxpressions?

=

(Cetainty approximation o) There is a useful approximation to the certainty equivalent
tlut is easy to detive A second-order expansion near ¥ == E(x) gives

U 2 U@+ U@ =5 + U@ =T

Hence,

BV & UF) + LU F)var(x)
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On the other hand, it we let ¢ denote the certainty equivalent and assume it is close to X,
we can use the first-order expansion

Uy = U@ + U@)Nc—1)
Using these approximations, show that

o, U
)

var{x)

. (Quadiatic mean-variance) An investor with unit wealth maximizes the expected value

11.

of the utility function U(x) = ax ~ hv*/2 and obtains a mean-variance eflicient porttolio
A friend of his with wealth W and the same wtility {unction does ihe ssne calculation,
but gets a different portfotio retiin Howeves, changing » to &' does yield the same result
What is the value of "7

(Porttolio optimization) Suppose an investor has utility function U There are u risky
assets wits rates of return 1, § = 1, 2, .11, and one yisk-fiee asset with rate of return ¢y

The investor hias initial wealth W, Suppose that the optimal portfolio tor this investor has
(sandons) payoff x* Show that

E[U (s, —1)] =0
forit=1,2, .n

(Money-back gumantee) The promoter of the film venture offers a new invesguent de-
signed to attzact reluctant investors One unit of this new investment bus a payott of $3,000
it the venture iy bighly successful, and it retunds the ariginal invesunent otherwise Assum-
ing that the other tlee investnient alteinatives deseribed in Example 9 6 are also available,
what is the price ol this money-back gumanteed investment?

. (General positive state prices resulto) The following is a geneial result trom matrix

14

theoty: Let A be an mt x 1 1nanix Suppose that the equation Ax = p can achieve nop = ¢
except p =0 Then there is a vector y > 0 with ATy = 0 Use this result to show that it
there is no arbitrage, theie are positive state prices; that is, prove the positive state price
theorem in Section 99 [Hint If there arc § states and N securities, let A be an appropriate
(S + 1) x N matrix |

(Quadratic pricingo) Suppose an investor uses the quadiatic utility function U(v) =
v - Lex? Suppose there are # isky assets and one risk-Irec asset with total return R Let
Ry be the total retun on the optinial portfolio of iisky assets Show that the expected
return of any asset i iy given by the formula

R~ R=p(Ry~ R)

where B, = cov(Ru, R, )/af‘, {Hinr Use Exercise 10 Apply the result to Ry itsell |

(At the nack) At the horse races one Saturday afternoon Gavin Jones studies the racing
torni and concludes that the hoise No Arbinage fas a 25% chance to win and is posted at
4 to | odds (For every dollat Gavin bets, lie receives %5 if 1he hoise wins and nothing if
it loses ) He can either bet on this horse o1 keep his woney in his pocket Gavin decides
that he has a square-oot utility lor money
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(a) What fraction of his inoney should Gavin bet on No Arbitrage?
(b) What is the implied winning payoff of a $1 bet against No Arbitrage?

(General risk-neutral pricing)  We can transform the jog-optimal pricing forinula into a
risk-nentral pricing equation From the log-optimal pricing equation we have

r=e(%)
*

where R* is the return on the log-optimal portfofio We can then define a new expectation

operation E by
- Rx
E(x)=E| —
w=r (%)

This can be regarded as the expectation of an artificial probabilily Note that the usual rules
of expeciation hold Namely:

(a) If x is cenain, then é(.\‘) = x This is because EA(I/R‘) =I/R R R

(b) For any random variables x and v, there holds E(ax + by) = a E(v) + bE(v)

(¢) For any nonnegative 1andom variable v, there holds E(v) > 0

Using this new expeciation operation, with the implied artificial probabilities, show that
the price of any security d is

This is risk newral pricing

systematic use of expected utility as a basis for financial decision making was originated by
Neurann and Morgenstern in [1] Another set of axioms is due to Savage [2] The practical

application of the theory was elaborated in [3} For a comprehensive treatment explicitly aimed
at finance problems, see {4] The presentation of the second half of this chapter, related to linear
pricing, draws heavily on the first chapter of [5] The idea of linear pricing was developed in

161

The use of the log-optimal portfolio to determine prices is explained in [7] The idea of

risk-nentral evaluation emerged from the pioneering approach to options by Black and Scholes
in [8] and was formalized explicitly in [9] The concept was generalized in {10] and now is a
fundmmental part of modern investment scicnee
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DERIVATIVE SECURITIES






FORWARDS, FUTURES,
AND SWAPS

10.1 INTRODUCTION

A derivative security is a security whose payoff is explicitly tied to the value of
some other variable In practice, however, this broad definition is often festricted
to securities whose payoffs are explicitly tied to the price of some other financial
security A hypothetical example of such a derivative security is a certificate that
can be redeemed in 6 months for an amount equal to the price, then, of a share of
IBM stock The certificate is a derivative security since its payoft depends on the
future price of IBM Most real detivatives are fashioned to have important tisk contiol
featuies, and the payolf relation is more subtle than that of the hypothetical certificate
example A more realistic example is a forward eontract to puichase 2,000 pounds
of sugar at 12 cents per pound in 6 weeks. There is no reference to a payoff—the
contract just guarantees the purchase of sugar—but in fact a payoff is implied The
payoff is determined by the price of sugar in 6 weeks If the price of sugar then were,
say, 13 cents pet pound, the contiact would have a value of 1 cent per pound, or
$20, since the owner of the contiact could buy sugar at 12 dents according to the
contract and then turn around and sell that sugai in the sugar market at 13 cents The
contract is a derivative security because its vatue is detived from the price of sugar
Another realistic example is a contiact that gives one the right, but not the obligation,
to purchase 100 shares of GM stock for $60 per shaie in exactly 3 months This is
an option to buy GM The payolf of this option will be determined in 3 months by
the price of GM stock at that time If GM is selling then for $70, the option will be
worth $1,000 because the owner of the option could at that time purchase 100 shares
of GM for $60 per share according to the option contract, and immediately setl those
shates for $70 each As a final example of a derivative security, suppose you take
out a moitgage whose interest rate is adjusted periodically according to a weighted
aveiage of the 1ates on new mortgages offered by major banks Your mortgage is a
derivative security since its value at later times is determined by other financial prices,
namely, prevailing interest rates

263
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As mentioned earlier, the payoff of a derivative security is usually based on
the price of some other financial security In the foregoing examples these were the
price of IBM shares, the price of sugar, the price of GM shares, and the prevailing
interest rates The security that determines the value of a derivative security is called
the underlying security. Howevei, according to the bioad definition, derivatives may
have payoffs that are functions of nonfinancial variables, such as the weather or the
outcome of an election The main point is that the payments derived from a derivative
security are detetministic functions of some other variable whose value wilt be revealed
before or at the time of the payoff

The main types of derivative securities ate forwad contracts, futures contracts,
options, options on fututes, and swaps ' Such secutities play an important role in
everyday commetce, since they provide elfective tools for hedging tisks involving
the underlying variables For example, a business that deals with a lot of sugar—
perhaps a sugar producer, a processor, a marketeer, o1 a commercial user—typically
faces subgtantial risks associated with possible sugar price fluctuations Such users can
control that risk through the use of derivative securities (in this case mainly through
the use of sugar futures contracts) Indeed, the primary function of derivative securities
in a portfolio—}or businesses, institutions, or individuals—is to control risk

This third pait of the text addresses several aspects of derivative securities
First, these chapters explain what these different types of securities are; that is, how
forwards, lutures, swaps, and options are structured Second, these chapters show,
through theory and example, how derivative securities are used to control risk; that
is, how derivatives can enhance the overall structure of a portfolio that contains risky
components. Third, these chapters present the special pricing theory that applies to
derivative securities This is the aspect that receives the most attention in the text.
Finally, an important technical subject presented in this part of the text is concerned
with how to model security price fluctuations. This is the primary topic of the next
chapter This current chapter is devoted to forward and futures contracts, which are
among the simplest and most uselul derivative securities

Before starting this topic, we offei a small warning and a suggestion This chapte:
is not difficult page by page, but it contains many new concepts. You may find that
your progress through the chapter is slower than in other chapters Since the next
three chapters do not depend on this one, one reading strategy is to scan the chapter
briefly and then skip to Chapter 11, returning to this one later However, the study ol
forwards, futures, and swaps is both practical and fascinating, so this chapter should
be studied in depth at some point

10.2 FORWARD CONTRACTS

Forward and futures contracts are closely retated structures, but forward contracts ate
the simpler of the two A forward contract on ¢ commodity is a contract to purchase or

'in addition to the primary types listed hiere, there ure many other derivative securities, such us variable-
rate preferred stock. variable-rate mortgages. prime-rate louns, and LIBOR-based notes New derivative
securities are created and marketed every year by financial institations Fortunately most of these various
financial products can be analyzed by using just a few common principles
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sell a specific amount of the commodity at a specific price and at a specific time in the
{uture For example, a typical {orward contract might be to purchase 100,000 pounds
of sugar at 12 cents per pound on the [5th of March next year The contiact is between
two parties, the buyer and the seller The buyer is said to be long 100,000 pounds of
sugar, and the seller is said to be short. Being long or short a given amount is the
position of the party Forward contiacts for commoditics have existed for thousands of
years, for they are indeed a natural adjunct to commerce Both suppliers and consumers
of large quantities ol a commodity frequently find it advantageous to lock in the price
associated with a future commodity delivery

A f{orward contiact is specified by a legal document, the terms of which bind
the two parties involved to a specific transaction in the future However, a forward
contract on a priced asset, such as sugai, is also a financial instrument, since it has an
intrinsic value determined by the market {or the underlying asset Forward contiacts
have been extended in modein times to include undeilying assets other than physi-
cal commiodities For example, many cotporations use {orward contracts on foreign
curtency or on interest rate instiuments

Most forward contracts specify that all claims are settied at the defined future
date (or dates); both parties must carry out their side of the agreement at that time
Almost atways, the initial payment associated with a forward contiact is zeto Neither
party pays any money to obtain the contract (although a security deposit is sometinies
requited of both paities) The forward price is the price that applies at delivery This
price is negotiated so that the initial payment is zero; that is, the value of the contract
is zero when it is initiated

The open market {or immediate delivery of the underlying asset is called the
spot market. This is distinguished from the forward market, which trades contracts
for luture delivery Duiing the cowse ol a forward contract, the spot market price
may fluctuate Hence, although the initial value of a forward contiact is zero, its later
values will vary as a function of the spot price of the underlying asset (or assets)
Later we shall explore the retation between the cuirent value and the torward price

Forward Interest Rates

We discussed a rather advanced form ol forward contiact in Chapter 4 when studying
the term structure ol interest rates The forward rate was defined as the rate of interest
associated with an agreement to loan money over a specified interval ol time in the
future 1t may not be apparent how to ariange {or sucti a foan using standaird financial
securities; but actually it is quite simiple, as the following example illustrates

Example 10.1 (A T-bill forward) Suppose that you wish to arrange to loan money
for 6 months beginning 3 months from now Suppose that the forward 1ate for that
period is 10% A suitable contract that implements this loan would be an agreement
for a bank to deliver to you, 3 months from now, a 6-month Treasuty bill (that is,
a T-bill with 6 months to 1un from the delivery date) The price would be agreed
upon today lor this delivery, and the Tieasury bill would pay its face value of, say,
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$1,000 at maturity The correct price for a Treasury bill of face value $1,000 wouid
be determined by the {orward rate, which is 10% in annual termis, or 5% for 6 months
Hence the vaiue of the T-bill would be $1,000/1.05 = $952 38, so this is the price
that today you would agree to pay in 3 months when the T-bill is delivered to you
Six months later you receive the $1,000 tace value lence, overall, you have loaned
$952 38 for 6 months, with repayment of $1,000 This agreement exactly parallels
that of other forward contracts, the special leature being that the underlying asset to
be delivered is a T-bill The price assoctated with this contract directly reflects the
forward interest rate

The forward rates can be determined {tom the term structure of interest rates,
which in turn can be determined [rom cunent bond prices These forward rates are
basic to the pricing of forward contracts on afl commodities and assets because they
provide a point of compasison The payoll associated with a given forward contract
on, say, sugar can be compared with one associated with pure lending and bowrowing.
Consistency (or lack of arbitiage opportunities) dictates the (theoretical) forward price,
as we show next

10.3 FORWARD PRICES

As discussed earlier, there ate two prices or values associated with a forwaid contract
The first is the forward price F This is the delivery price of a unit of the undetlying
asset to be delivered at a specific future date It is the delivery price that would be
specified in a forwaid contract wiitten today The second ptice or value of a forward
contract is its cutzent value, which is denoted by f The forward price F is determined
such that f = O initially, so that no money need be exchanged when completing
the contract agreement After the initial time, the value f may vary, depending on
vatiations of the spot price of the underlying asset, the prevailing interest rates, and
other factors Likewise the forward price F of new contacts with delivery terms
identical to that of the original contract will also vary

In this section we detetmine the theoretical forward price F associated with a
{orward contract written at time 7 = 0 to deliver an asset at titme 7 Our analysis
depends on the standard assumptions that theie are no Gansactions costs, and that
assets can be divided arbitrarily Also we assune initially that it is possible to store
the underlying asset without cost and that it is possible to sell the asset short Later we
will allow for storage costs, but still require that it be possible to stoie the underlying
asset for the duration of the contiact This is a good assumption for many assets, such
as gold o1 sugar or T-bills, but perhaps not good for perishable commodities such as
oranges

Suppose that at time ¢ = 0 the underlying asset has spot price S and a forward
contiact is being designed today for delivery at time 7 How can we deteimine the
value of the forwatd contract? The key is to tecognize that a forward contract on a
commodity can be used in conjunction with the spot maiket for that commodity to
borrow or lend money inditectly The interest rate implied by this operation must be
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equal to the normal interest tate; otherwise arbitrage can be set up between the direct
and indirect methods of lending

Specilically, suppose we buy one unit of the commodity at price S on the spot
market and simultancously enter a forward contract to deliver at time 7 one unit at
price F (thatis, we shoit one unit) We store the commodity until 7 and then deliver
it to meet our obligation and obtain F The cash flow sequence associated with these
two matket opetations is (—S, F), which is fully deteimined at + = 0 This must be
consistent with the interest rate between 1 = 0 and 1 =7 Hence,

S =d(0, T)F

where d(0, T) is the discount factor between 0 and T In other words, because storage
is costless, buying the commodity at price S is exactly the same as lending an amount
S of cash for which we will receive an amount F at time 7

We can assert the relation § = (0, T ) F using elementary present value analysis:
the present value of the stream (~§, F) must be zeto However, this type of present
value analysis is based on an assumption of perfect markets, no transactions costs, and
the absence of arbitiage possibilities Next we lormalize the arbitrage argument, not
because it is really necessary here, but to set the stage for later situations where the
present value formula breaks down because of a market imperfection

Forward price formula Suppose an asser can be stored ar zero eost and also sold
shore Suppose the cirent sporprice (a1 = 0) of the asser is S The theo etical forward
price F (for delivervar1 =T)1is

F=8/d0,T) (10 1)

whete d(0, T) Is the discount factor benween O and T

Proof: First suppose to the contrary that F > §/d(0, T) Then we construct
a portfolio as follows: At the present time boriow § amount of cash, buy
one unit of the underlying asset on the spot market at price §, and take a
one-unit shoit position in the {orward market The total cost of this portfolio
is zerto At time J we deliver the asset (which we have stoied), 1eceiving a
cash amount F, and we repay our loan in the amount S/d(0, T) As a iesult
we obtain a positive profit of F — S/d(0, T') for zero net investment This is
an arbitrage, which we assume is impossible The details of these tansactions
aie shown in Table 10 ]

TABLE 10.1

Att=10 Initial cost | Final receipt
Borrow $§ -5 ~S8/d0, T)
Buy | unit and store S 0

Shon | forward 0 F

Toral 0 | FosAo Ty
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TABLE 10 2

Att=10 Initial cost | Final receipt
Lend $§ s S/d(0, T)
Short | unit =S 0

Go long | forwird 0 ~F
Tomal 0 |sua0.T)-F

I F < §/d(0,T), we can construct the reverse portfolio However,
this requires that we short one unit of the asset The shorting is executed by
borrowing the asset from someone who plans to store it during this period,
then sefling the borrowed asset at the spot price, and replacing the borrowed
asset at time 7 The arbitrage portfolio s constiucted by shorting one unit,
lending the proceeds S from time O to 7, and taking a one-unit long position
in the forward market The net cash flow at time zero of this portfofio is zero
At time T we receive §/d(0, T) {rom out loan, pay F to obtain one unit of
the asset, and we retun this unit to the lender who made the short possible

The d

etails are shown in Table 102
Our profit is S/d (0, T)— F (which we might share with the asset lender

for making the short possible)

hold

The
in Figure
Howevei,

Since either inequality leads to an arbitrage opportunity, equalfity must

relationship between the spot price S and the forward price F is illustrated
101 The spot price starts at S(0) and varies randomly, arriving at S(7)
the forward price at time zero is based on extiapolating the cuitent spot

price forward at the prevailing rate of interest

Example

10,2 {Copper forward) A manufactuter of heavy electrical equipment

wishes to take the long side of a forwaid contract for delivery of copper in 9 months
The current price of copper is 84 85 cents per pound, and 9-month T-bills are selling

at 970 87

What is the appropiiate forward price of the copper contract?

FIGURE 10.1 Forward price. The forward
price at ime zero is equal to the projected future
value of cash of amount 5(0)
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If we ignoie storage costs and use the T-biil 1ate, the appropiiate price is
84 85/ 97087 = 87 40 cents per pound

Example 10.3 (Conti time I ling) If there is a constant interest 1ate
+ compounded continuously, the forward rate formula becomes
F=5e"

The discount 1ate (0, 7) used in the forwmd price formula should be the one
consistent with one’s access to the interest rate market Professional tradess of forwards
and futures commonly use the repo rate associated with iepurchase agreements (These
are agreements to sell a secunity and repuichase it a shoit time later for a slightly higher
price ) This repo rate is only slightly higher than the Treasury bill 1ate

Costs of Carry

The preceding analysis assumed that there are no storage costs associated with holding
the underlying asset This is not always the case Holding a physical asset such as
gold entails storage costs, such as vault rental and inswance fees Holding a security
may, alternatively, entail negative costs, representing dividend o1 coupon payments
These costs (o1 incomes) atfect the theoretical forward price

We shall use a disciete-time (multiperiod) model to describe this situation The
delivery date 7 is M petiods {say, months) in the futute We assume that storage
is paid periodicaily, and we measure time accoiding to these periods The carrying
cost is ¢(k) per unit for holding the asset in the period from & to k + | (payable at
the beginning of the period) The forward price of the asset is then determined by
the sttuctuie of the forward interest 1ates applied to the holding costs and thie asset
itself

Forward priee formula with carrying costs  Suppose an assetr has a holding cost of
c(k) per unit in period k, and the asset can be sold short Suppose the initial spot price
is S Then the theorerical forward price is

M=1 .
Fe- ctk) (102)
dO, M) " dik, M)
where d(k, M) is the discount factor from k 10 M Equivalently,
M=1
5=~ d(O ketk) + d(O, M)F (103)
=0

Proof: The simple version of the ptoof is this: Buy one unit of the commod-
ity on the spot matket and enter a forward conttact to deliver one unit at time
T The cash How stream associated with this is (=S—¢(0), —c({), —¢{2), .,
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—c(M — 1), F) The present value of this stream must be zero, and this gives
the stated formula for F We shall also give a detailed proof based on the
no-arbitrage condition

Suppose that F is greater than that given by (10 2) We can set up an
arbitrage as follows Al the initial time, shoit one unit of a forward contract
with forward price F and buy one unit of the asset for price § Simulta-
neously, borrow an amount of cash S and anange to borrow amounts c(k)
each time £ = 0,1, ,M — 1 All of these loans are to be repaid at the
final time M, so each is governed by the corresponding forward interest rate
between k and M The injtial cash flow associated with this plan is zero,
since we immediately borrow enough to pay for the asset Furthermore, the
cash flow during each period is also zero, because we borrow enough to
cover the cartying charge Hence theie is no net cash flow until the final
period

At the final period we deliver the assel as iequited, receive F, and
tepay all loans, which now total §/d(0, M)+ M5} c(k)/d(k, M)y Under out
inequality assumption this will represent an arbitrage profit, so our original
assumption of inequatity must be false The details are shown in Table 103
Assuming short selling is possible, we may reverse this argument to prove
that the opposite inequality is likewise not possible (See Exercise 5 )

The alternative formula (10 3) is obtained from (10 2) by muitiplying through by
d(0, M) and using the fact that d(0, M) = d(0, k)d(k, M) for any & This alternative
formula is probably the simplest to understand, since it is a standard present value
equation We recognize that we can buy the commodity at piice S and deliver it
according to a forward contract at time M in a completely deterministic fashion The
cash flow incurred while holding the commodity will be the carrying charges and the
delivery price The present value of this stream must equal the price §

TABLE 10.3
Details of Arbitrage
Time 0 action Time 0 cost | Time & cost Receipt at time M
Short 1 forward 0 0 F
Borrow $§ -8 0 :M
d(0, M)

Buy 1 unit spor s 0 0

w= o
Borrow ¢ (&)'s forward —(0) —c(k) - ; TG
Pay siorage <(0) (k) 0

M-i

S (k)

Towu! 0 0 Fe——
e a0, M) ;d(k‘M)
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Example 10.4 (Sugar with storage cost) The current price of sugar is 12 cents per
pound We wish to find the forward price of sugar to be defivered in 5 months The
carrying cost of sugar is 1 cent per pound per month, to be paid at the beginning of
the montly, and the interest rate is constant at 9% per annum

The interest rate is 09/12 = 0075 per month The reciprocal of the l-month
discount rate {for any month) is 1.0075. Therefore we find

F = (10075)°( 12) + [(1.0075)% 4 (1 0075)* + (1 0075)°
+ (1 0075)* + 1 0075]( 001)
= 1295 = 12.95 cents

Example 10.5 {A Dond forward) Consider a Treasury bond with a face value of
$10,000, a coupon of 8%, and several years to maturity Currently this bond is selling
for $9,260, and the previous coupon has just been paid What is the forward price
for delivery of this bond in | year? Assume that interest rates for 1 year out are flat
at 9%

We recognize that there will be two coupons before delivery: one in 6 months
and one just prior to delivery Hence using the present value form (10 3) and a 6-month
compounding convention, we have immediately

F + %400 + $400
(1 045)? 1.045
This can be solved [or turned around to the form (10.2)] to give

F = $9,260(1.045)% — $400 ~ $400(1.045) = $9,294.15

$9,260=

(in decimal form, not 32nd’s).

Tight Markets

At any one time it is possible to define several different forward contracts on a given
commodity, each contract having a ditferent delivery date If the commodity is a phys-
ical commodity such as soybean meal, the preceding theory implics that the forward
prices of these various contracts will increase smoothly as the delivery date is in~
creased because the value of F I (102) increases with M In fact, however, this is
frequently nor the case,

Consider, for example, the prices for soybean contracts shown in Table 104
This table? shows that the prices actually decrease with time over a certain range How
do we explain this? Certainly the holding cost for soybean meal is not negative. In
fact, holders of soybean meal are giving up an opportunity to make arbitrage profit

To verify this opportunity, note that someone, say, a farmer with soybean meal
could sell it now {in December) at $188 20 and arrange now to buy it back in March

2These are actually futures market prices, but they can be assumed to be forward prices
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TABLE 10.4
Soybean Meal Forward Prices

Dec 18820 Aug 18530
Jan 18560 Sept 18620
Mar 18400 Oct 18800
May 18370 Dec 18900
July 184 80

The delivery prices do not increase
continuonsly as the delivery date is
increased

at $184 00, thereby making a sure profit and avoiding any holding costs that would
otherwise be incurred Why does the farmer not do this? The reason is that soybean
meal is frequently in short supply; those that hold it do so because they need it to
supply other contracts or for their own use It is true that they could make a small profit
by selling their holdings and purchasing a forward contract, but this small potential
profit is less than the costs incurred by not having soybean meat on hand

Likewise, arbitrageurs are unable to short a forward contract because no one
will lend them soybean meal Hence the theoretical price relationship that assumes
that shorting is possible does not apply

The theoretical relation does hold in one direction as long as storage is possible
This is the case for most assets (including soybean meal) When storage is possible,
the first direction of the proofs of (10 1) and (10 2) applies In other words,

S -1 k)
FS(I(O,M)+kZ(;d(k,M) (104)

must hold if there are no arbitrage opportunities

Shorting, on the other hand, relies on thete being a positive amount of storage
available for bortowing over the period from 0 to 7 Someone, o1 some group, must
plan on having excess stocks over this entire period, no matter how the market changes
It stocks are low, or potentially low, short selling at thie spot price is essentially
infeasible That means that the second direction of the proofs of (10 1) and (10 2)
does not apply Hence only the inequality (104) can be inferred As shown by the
example of soybean meal, this is, in fact, a fairly common situation

The inequality can be converted to an equality by the artifice of defining a
convenienee yield, which measutes the benefit of holding the commodity In the case
of soybean meal, tor example, tlie convenience yield may represent the value of having
meal on hand to keep a farm operating The convenience yield can be thought of as a
negative holding cost, so if incotporated into (10 4), it reduces the right-hand side to
the point of equality One way to incorporate it is to modify (10 4) as

5 Af (k) I

F= —
d0, M) d(k, M) = dk, M)

k=0 k

where y is the convenience yield per period
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10.4 THE VALUE OF A FORWARD CONTRACT

Suppose a forwaid contract was written in the past with a delivery price of Fy At
the present time ¢ the forward price for the same delivery date is F; We would like
to determine the curtent value f, of the initial contract Tlis value is given by the
following statement

X The value of a forward  Suppose a forward connract for delivery at time T in the futire
7 has a delivery price Fy and a curvent forward price Fy The value of the contracy is

fo=(F = Fod, T)

where d(1, T) is the risk-free discownt factor over the period fiont 1 10 T

Proof: Consider forming the following portfolio at time 7: one unit long of a
forward contract with detivery price £, maturing at time 7, and one unit short
of the contract with delivery price Fy The initial cash flow of this portfolio is
fi The final cash flow at time T is Fy— F; This is a completely deterministic
stream, because the short and long delivery requirements cancel The present
value of this portfolio is f; + (Fp — F)d(r, '), and this must be zeto The
stated result follows immediately

10.5 SWAPS*

Motivating most investment problems is a desire to transform: one cash flow stream
into another by appropriate market or technological activity A swap accomplishes this
directly—for a swap is an agreement to exchange one cash flow stieam for anothe:
The attraction of this direct approach is evidenced by the fact that the swap muarket
amounts to hundreds of billions of dollars Swaps are often tailored tor a specific
situation, but the most common is the plain vanilla swap, in which one paity swaps
a series of fixed-level payments tor a series of variable-level payments 1t is this toim
that we consider in this section As we shall see, such swaps can be regarded as a series
of forward contracts, and hence they can be priced using the concepts of forwards

As an example, consider a plain vanilla interest rate swap Party A agrees to
make a series of semiannual payments to party B equal to a fixed rate of interest on a
notional principal (The term notional principal is used because there is no loan This
principal simply sets the level of the payments ) In return, party B makes a series of
semiannual payments to party A based on a floating rate of interest (such as the current
6-month LIBOR rate) and the same notional principal Usually, swaps are netted in
the sense that only the difference of required payments is made by the party that owes
the difference

This swap might be motivated by the tact that party B has loaned money to a
third party C under floating rate terms; but party B would rather have fixed payments
The swap with party A effectively rransforms the floating rate siream to one with fixed
payments
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Real

Fixed payments FIGURE 10.2 Commodity swap. The power
company buys oil on the spot market every
Power company Swap counterparty | month The company amanges a swap with a
Spot payment counterparty (or a swap dealer) to exchange fixed
equivalents payments for spot price payments The net effect
Oil is that the power company has eliminated the
variability of its payments

spof paymenis

Spot oil market

As an example of a commodity swap, consider an electric power company that
must purchase oil every month foi its power generation facility. If it purchases oil on
the spot market, the company will experience randomly fluctuating cash flows caused
by fluctuating spot prices The company may wish to swap this payment stream for
one that is constant It can do this if it can find a counterparty willing to swap This
is shown in Figure 10 2 The swap counterparty agrees to pay the power company the
spot price of oil times a fixed number of barels, and in retutn the power company
pays a fixed piice per barre] for the same number of barrels over the life of the swap.
The variabie cash flow stream is thereby transformed to a fixed stream

Value of a Commaodity Swap

Consider an agreement where party A receives spot price for N units of a commodity
each period while paying a fixed amount X per unit for N units If the agreement
is made for M petiods, the net cash flow stream received by A is (S| — X, 52 — X,
Sy— X, ., Sy~ X) muitiplied by the number of units N, where 5; denotes the spot
price of the commodity at time i.

We can value this stream using the concepts of forward markets At time zero
the forward price of one unit of the commeodity to be received at time i is F; This
means that we are indifferent between receiving S, (which is cuirently uncertain) at /
and receiving F, at i. By discounting back to time zero we conclude that the current
value of receiving S, at time i is d(0, i) F,, where d(0, i) is the discount factor at time
zero for cash received at i

If we apply this argument each period, we find that the total value of the stream is

M
V=3 dO ){F ~ XN (105)
i=1
Hence the value of the swap can be determined from the series of forward prices
Usually X is chosen to make the value zero, so that the swap tepresents an equal
exchange

Example 10.6 (A gold swap) Consider an agreement by an electronics firm to receive
spot value for gold in return for fixed payments, We assume that gold is in ample
supply and can be stored without cost—which implies that the swap formuia takes an
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almost trivial fornt In that case we know that the forward price is F, = Sy/d(0, i)
Therefore (10 5) becomes

M
V= [MSn - d, i)X:| N
i=1
The summation is identical to the value of the coupou payment stream of a bond
Using this fact, it is casy to couvert the value formula to

V= {MS;)—}C—,[B(M, C) + 10040, M)]} N (106)

where B(M, C) denotes the ptice (relative to 100) of a boud of maturity M and coupon
C per period Any value of C can be used (See Exercise 8)

Value of an Interest Rate Swap

Consider a plain vanilla interest 1ate swap in which party A agrees to make payments
of a fixed 1ate ¢ of interest on a notional principal N while receiving floating rate
payments on the same notional principal for M periods The cash flow stream received
by Ais (co —t. ey — 1,62 —1, ey — 1) times the principal N The ¢,’s are the
floating rates

We can value the floating portion of this swap with a special trick deiived
from our knowledge of floating 1ate bonds (Fot a direct proof using forward pricing
concepts, see Exercise 10 ) The floating rate cash flow stream is exactly the same as
that generated by a floating rate bond of principal N and matuiity M, except that
no final principal payment is made We know that the initial value ot a floating rate
bond (including the final principal payment) is par; hence the value of the floating rate
portion of the swap is par minus the present value of the principal received at M In
other words, the value of the floating rate portion of the swap stteain is N —d(0, M)N

The value of the fixed rate portion of the stream is the sum of the discounted
fixed payments, discounted according to the current term structure discount rates
Hence overall, the value of the swap is?

M
Vo [1 —d(0, M) —» Z:l(o.i)} N

=l

The sunmation can be reduced using the method in the gold swap exainple

10.6 BASICS OF FUTURES CONTRACTS

Because forward trading is so useful, it becaine desirable long ago to standaidize the
contracts and trade them on an o1ganized exchange An exchange helps define universal

Mypically account musy be made for other details For example, interest rutes for fixed payments are
usuatly quoted on the busis of 365 days per year whereas for floming rates ibey are quoted om the basis of
360 days per yeur
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ptices and provides convenience and security because individuals do not themselves
need to find an approptiate counterpaity and need not {ace the tisk of counteiparty
default individual contracts are made with the exchange, the exchange itself being the
countetparty for both long and short traders But standardization presents an interesting
chattenge Consider the likely mechanics of lorward contiact trading on an exchange
it is a relatively simple matter to standaidize a set of delivery dates, quantities to be
delivered, quality of delivered goods, and delivery locations (although there are some
subtleties even in these items) But standardization of torward prices is impossible To
appreciate the issiue, suppose that contracts weie issued today at a delivery price of
Fo The exchange would keep track of all such contracts Then tomorrow the {orward
price might change and contracts initiated that day would have a different delivery
price F In [act, the appiopiiate detivery price might change continuousty throughout
the day The thousands of outstanding foiward contiacts could each have a different
delivery price, even though ail other terms were identical This would be a bookkeeping
nightmare

The way that this has been solved is through the biilliant invention of a futures
market as an alternative to a forward market Multiple delivery prices are eliminated
by revising contracts as the price environment changes Consider again the situation
where contracts are initially wiitten at Fy and then the next day the price for new
conttacts is Fy At the second day, the clearinghouse associated with the exchange
revises all the eatlier contracts to the new delivery price Fy To do this, the contract
holders either pay or receive the difference in the two prices, depending on whether
the change in price reflects a loss or a gain Specifically, suppose Fy > Fy and I hold
a one-unit long position with price Fo My contract ptice is then changed to F; and
I teceive F\ — Fy fiom the clearinghouse because I will later have to pay F, rather
than Fy when [ receive delivery of the commodity

The process of adjusting the contract is called marking to market. In more
detait it works tike this: An individual is required to open a margin account with
a broker This account must contain a specificd amount of cash for each futures
contract (usually on the ordei of 5~10% ol the value of the contract) All contract
holders, whether shoit or long, must have such an account These accounts are marked
to market at the end of each tading day If the price of the futures contract (the
price determined on the exchange) incieased that day, then the long paities 1eceive a
profit equal to the price change times the contract quantity This profit is deposited
in theih maigin accounts The shoit partics lose the same amount, and this amount
is deducted from their margin accounts Hence each margin account value fluctuates
from day to day according to the change in the futures piice With this procedure,
every long futures contiact holder has the same contract, as does every short contract
holder At the delivery date, delivery is made at the futures contiact price at that time,
which may be quite different from the tutures price at the time the contract was first
purchased

Actually, delivery of commodities under the terms of a futures contract is quite
rare; over 90% of all parties close out their positions before the delivery date Even
commeicial organizations that need the commodity for production fiequently close out
their long positions and purchase the commodity from their conventional suppliets on
the spot maiket
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GRAINS AND OILSEEDS FIGURE 10.3 Corn futures quotations. Con-

Open High

e tracts for various delivery dates are shown
Lifetime Open  sgurce: The Wall Street journal, November 10,
Low Setlle Ghange High Low Interest 1995

CORN (GBT) 5,000 bu ; cenls per bu

Dec 336 337
Mr96 344 344
May 344% 345
July 342 342
Sept 299 299
Dec 284 284%
Mr97 289% 289%
Jiy 292 293%
Dec 272 273

3264 3274 ~ 3% 339 235% 162,928
333% 334% -~ 3% 344% 249% 215,702
333% 334 ~ 4% 345 259% 36,974
331 331% - 4% 342 254 47,422
294% 295 ~ 1% 300 260 8,173
280% 281 - % 284% 239 23,244
286% 286% -~ 1% 289% 279% 796
290 290 ~ 1% 293% 284 176
271 271% - 273 249% 325

Est voi 100,000; voi Wd 85,650; open int 455,740, + 145

Futures prices are listed in financial newspapess such as Tlie Wall Stieet lowinal
An example listing for corn futures is shown in Figure 103 The heading explains
that a standard contract for cotn is for 5,000 bushels, and that prices are quoted in
cents pet bushel The fist column of the table lists the delivery dates for the various
contracts, with the earliest date being fizst The next columns indicate various prices for
the previous t1ading day: Open, High, Low, Settle, and Change, followed by Lifetiine
High and Low The last column is Open Interest, which is the total number of contracts
outstanding (Both the long and short positions aie counted, so open interest really
reflects twice the number of contracts committed ) Delivery of the commodity may be
made anytime within the specified month

Masgin accounts not only serve as accounts o collect o pay out daily profits,
they also guaiantee that contract holders will not default on their obligations Maigin
accounts usually do not pay interest, so the cash in these accounts is, in etfect, losing
money However, many brokets allow Treasury bills or other Securities, as well as
cash, to serve as margin, so interest can be cained indirectly If the value of a margin
account should drop below a defined maintenance margin level (usuaily about 75%
ot the initial margin requirement), a margin call is issued to the contract holder,
demanding additional margin Otherwise the futwes position will be closed out by
taking an equal and opposite position

Example 10.7 (Margin)  Suppose that Mr Smith takes a long position ol one contract
in corn (5,000 bushels) for March delivery at a price of $2 10 (per bushel) And suppose
the broker requires margin ot $800 with a maintenance margin of $600

T'he next day the piice of this contiact diops to $2 07 This represents a loss of
03x5,000 = $150 The broker will take this amount {iom the margin account, leaving
a balance of $650 The following day the piice chops again to $2 05 This represents
an additional loss ot $100, which is again deducted from the margin account At this
point the margin account is $550, which is below the maintenance level The broke:
calls Mi Smith and tells him that he must deposit at least $50 in his margin account,
o1 his position will be closed out, meaning that Mr Smith will be foiced to give up
his contiact, leaving him with $550 in his account
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10.7 FUTURES PRICES

BN

These is, at any onc time, only one price associated with a futures contract—the
delivery price The value of existing contracts is always zero because they are marked
to market The delivery price will in gencral be difterent from the spot price of the
underlying asset, but the two must bear some relation to each other In fact, as the
maturity date approaches, the futuies price and the spot price must approach each other,
actually converging to the same value This effect, termed convergence, is illustrated
in Figure 10.4.

As a general rule we expect Uat the (theoretical) futures price should have
a close relation to the forward price, the delivery price at which forward contracts
would be written Both are prices for future delivery However, even if we idealize
the mechanics of forwaid and futures trading by assuming no transactions costs and
by assuming that no margin is required (or that margin earns competitive inteest),
there remains a fundamental difference between the cash flow processes associated
with forwards and futures With forwards, there is no cash flow until the final pe-
rlod, where either delivery is niade or the contract is settled in cash according to
the difference between the spot piice and the previously established delivery price
With futures, thete is cash flow eveiy period after the first, the cash flow being de-
rived from the most recent change in futures piice It seems likely that this difference
in cash flow pattern will cause torward and futures prices to differ In fact, how-
ever, under the assumption that interest rates are deterministic and follow expecta-
tions dynamics, as described in Chapter 4, the torward and futures prices must be
identical if aibitrage opportunities are precluded This impoitant result is established
here:

Futwres~forward equivalence Suppose that interest 1ates are known to follow ex-

B pectations dynamics Then the theoretical funues aud forward prices of coriesponding

contiacts are identical

Proof: Let Fy be the initial futures price (but remember that no payment
is made initially) Let Gy be the comresponding foiward price (to be paid at

Price FIGURE 10.4 Convergence of spot and
futures prices. The futures price con-
verges 1o the spot price as tlme ap-
proaches the delivery date

Futures

Spot
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delivery time) Assume that theie aie T 4+ | time points and corresponding
futures prices, as indicated:

o AR Fr="5;
1
o 1 2 T

Let d(j, k) denote the discount rate at time j for a bond of unit face
value maturing at time & (with j < k)

We now consider two stiategies for participation in the futures and
torward markets, respectively

Strategy A

e Attime 0: Go long d(i, 7) futures
e Attime |: Increase position to d(2,7)

o At time k: Inciease position to d(k +1,7)

o At time 7 -~ 1: Inciease position to |
The profit at time & + 1 from the previous period is

(Frpr = F)dk +1,1)

As pait of stiategy A we invest this profit at time & + | in the inteiest iate
mai ket until time 7 It is thereby tianstormed to the final amount

dk+1,7) .
e Fp e Fr) = P — Fy
T I,T)( k1 ‘) k1 k
The total profit iom stiategy A is theretoie
1-1
piofits = Y Fyyy ~ Fy= Fr — Fy= 8§ ~ Fy
k0

Note that at each step before the end, theie is zeio net cash flow because
all profits (or losses) are absorbed in the interest rate matket Hence a zeio
investment produces profits

Strategy B Take a long position in one forwaid contiact This iequires no
initial investment and produces a piofit of
piofitg = Sy — Gy
We can now foim a new stiategy, which is A — B This combined
strategy also requires no cash flow until the final peiiod, at which point it
produces profit of Gy — Fy This is a deterministic amount, and hence niust
be zero it theie is no oppoitunity for arbitrage Hence Gy = Fy
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When inteiest rates are not deteministic, the equivalence may not hold, but the
equivalence is consideied quite accurate for purposes of 1outine analysis The result
is impoitant because it at least partially justifies simplifying an analysis of futures
hedging by considering the corresponding hedge with forward contracts, where the
cash flow occurs only at the delivery or settiement date

Example 10.8 (Wheat contracts) In Januaiy a large producer of commeicial flour
and bread wishes to lock in the price for a large order of wheat The pioducer would
like to buy 500,000 bushels of wheat forwaid for May delivery. Although this pioducer
could probably arrange a special forward contiact, he decides instead to use the tutuies
market, since it is oiganized and more convenient The produce: iecognizes (and
veiifies) that the futuies piice is equal to the forwaid price he could negotiate

The current futures (or forward) price for May delivery is $3 30 per bushel. The
size of a standaid wheat futuies contiact is 5,000 bushels Fence the produce: decides
that he needs 100 contracts.

Details of the tutures market transaction are shown in Table 10 5 For simplicity
this table shows accounting on a monthly basis, rather than on a daily basis

The left part of the table shows the dates and the corresponding hypothetical
prices (in cents) for a futures contract for May delivery The next section, headed
“Forwaird,” shows the result of entering a forward contract for the delivery of 500,000
bushels of wheat in May, {ollowed by the subsequent closing out of that contract so
that delivery is not actually taken. There is no cash flow associated with this contract
until May Then theie is the piofit in May of 22 cents per bushel, or a total of
$110,000

The next section of the table, headed “Futures contracts 1,” shows the accounting
details of entering a 100 contiact long futures position in Januaiy and closing out this
position in May It is assunted that an account is established to hold all profits and
losses It is also assumed that the pievailing interest rate is 12%, or 1% per month,
and that thete are no margin requirements Note that no money is iequired when the

TABLE 18.5
Futures and Forward Transacttons

Forward Futures contracts 1 Futures contracts 2
Date  Price | Profit | Pos. Profit Interest Balance | Pos. Profit Interest Balance
Jan 1 330 $0 | 100 $0 $0 $0 97 $0 $0 $0
Feb 1 340 0| 100 50,000 0 50,000 98 48,500 0 48,500
Mar | 3355 0| 100 75,000 500 125,500 99 73,500 485 122,485
Apr | 345 0! 100 -50,000 1,255 76,755 100 —49,500 1,225 74,210
May | 352 110,000 0 35,000 768 112,523 0 35,000 742 109,952
Total $110.000 $110,000 $107,500

The details of a forward contract. a fived futiies contract. and a futwes contract strategy designed o nme a forward are

shown
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order is placed A piofit of $50,000 is obtained in the second month because the
futures price incieased by 10 cents This profit enters the account The next month’s
balance ieflects the additional piofit and interest of the account The total cash flow is
$110,000, exactly as in the case of the forward contract However, because thie cash
flow occuis at vaiious times, the actual final balance is $112,523 (The iesult is moie
favorable in this case because prices 10se early, but that is not the point )

The third section ol the table, headed “Futures contiacts 2, shows how futures
can be used to duplicate a forward contiact more piecisely, by using the constiuction
in the pioof of the futures-forwaid equivalence 1esult Since interest is 1% a monti,
the discount 1ate incieases by about 1% per month as well Hence in this approach the
pioducer initially goes long 97 contracts and incieases this by 1 contract per month,
finally 1eaching 100 contracts Exactly the same accounting system is used as in the
previous method In this case the iesulting final balance is $109,952, whicli is very
close to the $110,000 figure obtained by a pute foiward contract—the slight difference
being due to rounding of the discount rate to even percentages so that integial numibers
of contiacts could be used

This exaruple illustiates that there is indeed a slight difference between forwaid
and futuies contiact iniplementation if a constant contract level is used In practice,
however, the ditference between using forward and futuies contracts is smail over short
intervals of time, such as a few wonths Furthermote, if intetest rates are deterministic
and follow expectations dynamics, then the difference between using futures aud using
forwards can be reduced to zero within rounding errors caused by the restriction to
integial numbers of contracts

10.8 RELATION TO EXPECTED SPOT PRICE*

At time zero it is logical to form an opinion, o1 expectation, about the spot price of
a comnodity at time 7 Is the curtent futures piice for delivery at time I a good
estimate of the future spot price; that is, is F = E(S7)?

If there were inequality, say, F < E(S7), a speculatol might take a long position
in futures and then at time T purchase the commodity at F according to the contract
and sell the commodity at S7 for an expected profit of E(S7) — F It the inequality
wele in the other ditection, the investor could caimry out the 1everse plan by taking a
short position in futures Flence speculators are likely to respond to any inequality

Hedgers, on the othier hand, participate in futures mainly to reduce the risks
of commeicial operations, not to speculate on commodity piices Hence hedgeis are
unlikely to be influenced by small discrepancies between futures prices and expected
spot prices

Now suppose that there happen to be many moie hedgers that are shott in futwres
than those that are long For the market to balance, speculators must enter the maiket
and take long positions They will do so only if they believe F < E(S7) Conveisely,
if there are more hedgeis that are long in futuies than those that are short, speculators
will take the corresponding shoit position only if they believe F > E(S;)
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The two situations have been given special names If the futures price is below
the expected futuie spot piice, that is normal backwardation. If the futures price is
above the expected {uture spot piice, that is contango.

10.9 THE PERFECT HEDGE

The primary use of futures contiacts is to hedge against 1isk Hedging stiategies can
be simple o1 complex; we shall illustrate some of the main approaches to their design
in the remaindes of this chapter

The simplest hedging stiategy is the perfect hedge, where the risk associated
with a future commitment to deliver oi ieceive an asset is completely eliminated
by taking an equal and opposite position in the futures market Equivalently, the
hedge is constructed to effectively make anticipated future market purchases o sales
immediately This locks in the price of the futures transaction; there is absolutely no
price 1isk Such a strategy is possible only if there is a futures contract that exactly
matches, with respect to the natuie of the asset and the terms of delivery, the obligation
that is being hedged

Example 10.9 (A wheat hedge) Consider again the producer of flour and bread of
Exampie 108 The producer has received a large order for delivery on May 20 at a
specified piice To satisfy this order, the producer will purchase 500,000 bushels of
wiieat on the spot maiket shortly before the order is due The producer has calculated
its profit on the basis of cuirent prices for wheat, but if the wheat price sliould measur-
ably increase, the order may become unprofitable The producer can hedge by taking
an equal and opposite position in wheat futures (That is, the producer is obligated
to supply processed wheat, so it goes opposite the obligation and purchases wheat
Alteinatively, the producer may think of it as purchasing eairly wheat that it must
uitimately puichase )

If we ignote the slight disciepancy between futures and for wards due to differ-
ences in cash flow timing, we can treat the futures contiact just like a forward The
produce: will close out the position in the futures maiket and then puichase wheat in the
spot maiket Since the piice in the spot market will be the same as the closing futures
ptice, the net effect is that the producer pays the original piice of $3 30 per bushel

Example 10.10 (A foreign currency hedge) A US electionics firm has received
an oider to sell equipment to a Gelman customer in 90 days. The piice of the oider is
specified as 500,000 Deutsche mark, which will be paid upon delivery The U.S firmt
faces rigk associated with the excliange 1ate between Deutsche mark and U S doilais

The firm can hedge this foreign exchange risk with four Deutsche mark contracts
(125,000 DM per contiact) with a 90-day matuiity date Since the firm will be receiving
Deutsche mark in 90 days, it hedges by taking an equal and opposite position now-—
that is, it goes short four contiacts (Viewed alternatively, after receiving Deutsche
mark the finm will want to sell them, so it sells them early by going short )
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10.10 THE MINIMUM-VARIANCE HEDGE
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B

It is not always possible to form a perfect hedge with futures contracts There may be
no contiact involving the exact asset whose value must be hedged, the delivery dates
of the available contracts may not match the asset obligation date, the aniount of the
asset obligated may not be an integial multiple ol the contiact size, there may be a
lack of liquidity in the futuies market, o1 the delivery terms may not coincide with
the those of the obligation In these situations, the original 1isk cannot be eliminated
completely with a futures contract, but usually the risk can be 1educed

One measure of the lack of hedging peifection is the basis, defined as the
mismatch between the spot and futwies prices Specifically,

basis = spot price of asset to be hedged ~ {utures price of contract used

Hf the asset to be hedged is identical to that of the futures contract, then the basis will
be zero at the delivery date However, in general, tor the 1easons mentioned, the final
basis may not be zero as anticipated Usually the final basis is a random quantity, and
this precludes the possibility of a perfect hedge The basis sk calls for alternative
hedging techniques

One common method of hedging in the presence of basis risk is the minimum-
variance hedge The geneial formula for this hedge can be deduced quite readily
Suppose that at time zero the situation to be hedged is described by a cash flow v to
occur at time T For example, il the obligation is to puichase W units of an asset at
time 7, we have v = WS, whete § is the spot piice of the asset at 7 Let F denote
the futures price of the contiact that is used as a hedge, and let /1 denote the futuies
position taken We neglect interest payments on maigin accounts by assuming that all
profits (or losses) in the futures account are settled at T The cash flow at time 7 is
theretore equal to the original obligation plus the profit in the futwies account Hence,

cash flow = v = v+ (F; — Fy)h
We find the variance of the cash flow as
var(y) = E{x — T4 (F; — F 1)} = vai(v) 4+ 2cov(x, Fy)h + var(Fy)i°

This is minimized by setting the derivative with espect to /1 equal to zeto This leads
to the following result:

Mindmum-variance hedging formula  Ihe mininuun-varianee hedge and the 1esulting
yarianee are
cov(v, Fr)

b= 107

vai(v) = var(v) — C—‘)\\,’%(Fﬂl)l (10 8)
A ry
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When the obligation has the foum of a fixed amount W of an asset whose spot
price is Sy, (10 7) becomes

h=~BW (109)
where
_cov{Sy, Fy)
T var(Fy)

This, of couise, reminds us of the general mean—variance formulas of Chapter 7; and
indeed it is closely ielated to them

Example 10.11 (The perfeet hedge) As a special case, suppose that the futnes
comimodity is identical to the spot commodity being hedged In that case F; = &
Suppose that the obligation is W units of the commodity, so that x = WS§7 In
that case cov(x, Fy) = cov(Sy, Fr)W = var(F7)W Theieloie, according to (10 7)
we have /i = —W, and accoiding to (I08) we lind vai(y) = 0 In other words,
the minimum-variance hedge reduces to the perfect hedge when the futuies price is
petfectly corretated with the spot price of the cornmodity being hedged

Example 10.12 (Hedging foreign currency with alternative futures) The BIG
H Corporation (a US corporation) has obtained a large order from a Danish firm
Payment will be in 60 days in the amount of | mitlion Danish kroner. BIG H would
Iike to hedge the exchange tisk, but there is no futures contract for Danish kioner The
vice president for finance of BIG H decides that the company can hedge with German
matks, although DM and kionet do not fotlow each other exactty

He notes that the cunent exchange rates are K = 164 dollar/kioner and M =
625 dollai/DM Hence the exchange rate between maiks and kioner is K/M =
164/ 625 = 262 DM/kioner Thetefore 1eceipt of I miilion Danish kroner is equiv-
alent to the receipt ol 262,000 DM at the current exchange tate He deduces that an
equal and opposite hedge would be to shoit 262,000 DM

An intern working at BIG H suggests that a minimum-variance hedge be con-
stdered as an alternative The intein is given a few days to wotk out the detaits He
does some quick historical studies and estimates that the monthly fluctuations in the
U S exchange rates K and M are correlated with a correlation coefficient of about 8
The standard deviation of these fluctuations is tound to be about 3% of its value per
month for matks and stightly less, 2 5%, for kroner In this problem the v ol (107)
denotes the dollar value of t million Danish kroner in 60 days, and F; is the doltar
value of a Getman mark at that time We may put ¥ = K x | million The intern
therefore estimates beta as

- cov(K, M) _ OkM (e o 025K

= = § X ——
var (M) OKOa O Our 03M



1011 OPTIMAL HEDGING® 285

Hence the minimum-variance hedge is
cov{x, F) _ cov(k, M) x 1,000, 000

ho= — =
' var(F) var(M)

i

25
l:— 8 x 70 x 262 x I,O()(),()OO} = —175,000 DM

The minimum-vatiance hedge is smaller than that implied by a full hedge based on
the exchange ratios; it is reduced by the correlation coefficient and by the ratio of
standaid deviations

We can go a bit further and Rind out how effective this hedge really is, compared
to doing nothing We have v = K x | million Hence cov(x, M) = | million x oy
and ¢, == 1 million x oy Combining these two, we have cov(x, M) = ok 0, /ox
Using the minimum-variance hedging formula, we find

var(y) = var(x) - COV(:# = |:I — (—Uﬂ—)-:l var{y)

i O Opt
Hence,
stdev(v) = (x/l - 8:> stdev(v) = 6 x stdev(v)

Hence the minimum-variance hedge reduces risk by a factor of 6 A hedge with lower
risk would be obtained if a hedging instrument couid be found that was mote highly
correlated with Danish kroner

Example 10.13 (Changing portfolio beta with stock index futures) Mis Smith
owns a laige portfolio that is heavily weighted towaid high technology stocks She
believes that these secutities will perform exceedingly well compated to the market as
a whole over the next several months However, Mis Smith realizes that her portiolio,
which has a beta (with respect to the matket) of 1 4, is exposed to a significant degree
of market risk If the general market declines, her portfolio wiil also decline, even it
her secutities do achieve significant excess return above that predicted by, say, CAPM,
as she believes they will

Mis Smith decides to hedge against this matket tisk She can change the beta
of her portfolio by selling some stock index futures She might decide to construct a
minimum-variance hedge of her $2 miliion portfolio by shorting $2 million x 1 4 =
$2 8 miliion of S&P 500 stock index futures with maturity in 120 days Since the
normal beta of her poitfolio is based on the S&P 500, this beta is the same beta as
that in the gencral equation, (10 9) The overall new beta of her hedged porttolio, after
taking the short position in the stock index futures, is zero

10.11 OPTIMAL HEDGING*

Although the minimum-variance hedge is useful and faiily simple, it can be improved
by viewing the hedging problem from a portfolio perspective Suppose again that there
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is an existing cash flow commitment x at time 7 And supposc that this will be hedged
by fututes contracts in the amount /i, leading to a finai cash flow of x — li(Fy — Fp)
If a utility function is assigned, it is appiopriate to solve the problem®

maxi,mize E{U{x +1i(Fy — F)l} (10 10)
4

This approach fully accounts for the basis risk and is perfectly tailored to the risk
aversion characteristics of the person or institution facing the risk

Example 10.14 (Mean-variance hedging) One obvious choice for the utility func-
tion is the quadratic function

Ux) = x — g.\'z

with b > 0 Then (10 10) leads to a maximization problent involving the means,
varjances, and covariances of the variables Smoother derivations and neater formulas
are obtained, however, by recognizing that this is essentially equivalent to maximizing
the expression

V(v) = E(v) — 1 var{x)

for some positive constant ¢ The function V can be thought of as an aitered mean—
vatiance utility
For meaningful tesults, the magnitude of ; must be determined by the problem
itself One reasonable choice is 7 = 1/(2.%), where £ is a rough estimate of the final
value of E(x) This then weights variance and one-half of {E(x)]* about equaily
Using V(x) as the objective, the optimal hedging pioblem becomes

maximize {E{x + i (Fy ~ Fp)] =1 var(x + 1 Fq)} (101hH
This leads directly, after some algebia, to the solution

/ T~ Fy cov(x, Fy)
1 BN e o e
21 var(Fy) var(Fy)

Note that the second term is cxactly the mininum-variance solution The first term
augments this by accounting {or the expected gain due to futures participation In other
words, the second term is a pure hedging term, whereas the first term accounts {or the
fact that hedging is a form of investment, and the expected return of that investment
should be incorporated into the portlolio

This simple formula illustrates, however, the practical difficulty associated with
optimal hedging It is quite ditficult to obtain meaningful estimates of F7 — Fy In
fact, in many cases a teasonable estimate is that this difference is zei0, so it is under-
standable why many hedgers prefer to use only the minimum-variance portion of the
solution

(10 12)

*Ideally, we should express utility in terms of total wealth; but we niay assume here that the additional
wealth simply changes the definition of U/
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Example 10.15 (The wheat hedge) Consider the producer of flour and bread of
Exampie 108 It is likely that this producer, being a laige player in the maiket, has a
good knowledge of wheat market conditions Suppose that this producer expects the
price of wheat to increase by 5% in 3 months Howevet, the producer recognizes that
the wheat market has approximately 30% volatility (per year), so the producer assigns
a 15% variation to the 3-month forecast (15% = 30%/«&)

Using v == 500,000F; and applying (10 I2), we find

1 e
o= ~—500,000 + o (F7 - Fy)
21 var

rr)
= ~500,000 + ! L i
- ’ A Fyva(F [F) \ Fy

i
= —500,000 + ————mmm x 05

BT RGN
336

= ~500000 + =~

Note that the tetmr —500,000 represents the equal and opposite position of petfect
hedging This is augmented by a speculative tenm, determined by the estimate of
return on the futures price, and by the value of ¢

Using the method of selecting 7 suggested earlier, we have 1 = 1/1,000,000
Hence the final hedge is /1 = —500,000 4 336,000 = —164,000

10.12 HEDGING NONLINEAR RISK*

I our examiples so far the 1isk being hedged was lineat, in the sense that final wealth ¢
was a linear function of an underlying market variable, such as a commodity price. The
general theoty of hedging does not depend on this assumption, and indeed nonlineat
tisks frequently occur For example, immunization of a bond portfolio with T-bills
(see Exercise 15) is a noniinear hedging probiem-—because the change in the value of
a bond portfolio is a nonlinear function of the future T-bill price

Nonlinear risk can arise in complex contiacts For example, suppose a U S
firm is negotiating to sell a commodity to a Japanese company at a futute date for a
price specified in Japanese yen Both parties recognize that the US firm would face
exchange rate risk Hence an agreement might be made where the US firm absorbs
adverse rate changes up to 10%, while beyond that the two companies shaie the impact
equaliy

Nonlinear tisks also arise when the price of a good is influenced by the quantity
being bought o1 sold This situation occurs in farming when the magnitudes of all
farmers’ crops arc mutuaily cortelated, and hence any particular farmer finds that his
harvest size is corvelated to the market price We give a detailed example of this type

Example 10.16 (A corn farmer) A certain commodity, which we call corn, is grown
by many farmers, but the amount of corn harvested by every farmer depends on the
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FIGURE 10.5 Demand for corn. The price of comn varies
from $10 to $0 per bushel, depending on the 1otal quantity
produced

Quantity

300,000

1 million

weather: sunny weather yields more corn than cioudy weather during the growing
season All corn is harvested simultaneously, and the price per bushel is determined
by a market demand function, which is shown in Figure 10 5 This demand function is

P =10 - D/100,000

where D is the demand (which is aiso equai, through supply and demand equality, to
the total crop size) Each farmer’s crop wiil produce an amount of com C which is
random We assume that the amount of corn grown on each farm can vary between
0 and 6,000 bushels, with expecied value C = 3,000 The amounts produced on
different faims are all perfectly coneliated There are a total of 100 farms, and ihus

D == 300,000 The revenue to a farmer will be

2

R:PC:(lO— )C:l()C-‘ (10 13)

c?
100,000 1,000
This shows thal the revenue is a noniinear funciion of the underiying unceriain variable
C Since C is random, each farmer faces nonlinear 1isk

Can a farmer hedge this risk in advance by participating in the futures markei
for corn? Try 1o think this through before we present the analysis Since the farmer is
uitimately going to sell his corn harvest at the (risky) spot price, it might be prudent to
sell some corn now at a known price in the futures matket Indeed, if the farmet knew
exactly how much corn he would produce, and only the price were uncertain, he could
implement an equal and opposite policy by shosting this amount in the corn futures
market Pethaps in this actual situation where both amoun: and price ate uncestain, he
should short some lesser amount What do you think?

The way to find the best hedge is to work out the relationships beiween revenae,
production, and the futwes position We assume for simplicity that inleresi rales are
zero If cach farm produces the expected value of € = 3,000, then D = 300,000 and
we find P == $7 per bushel Hence $7 represenis a nominal anticipated ptice Let us
assume that $7 is also the cunent fulures price P, We want o determine the besi
futuzes participation
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Let /i be the futues market position With this position the farmer’s tevenue
will be
R= PC+ (P~ Py

Substituting for P in tetms of C, we find

¢t  C-~C
e f e )

1,000 1,000
This is the equation that the taimer should consider One simplc way to study this
equation is to display it in a spreadsheet array, as shown in Table 10 6 This 1able has
the farm’s production of corn across the columns, and the futures position (in hundreds
of bushels) running along the tows The entries are the cotresponding revenues For
example, noie that if the final production is 3,000 bushels (ihe expecied value), then
the revenue is $21,000, independent of the fuiures position This is because the finai
price will be $7, which is equal to the current futures price; hence the futures contract
makes no profit ot loss

R = {0C

TABLE 10.6
Revenue from Production and Hedging
Corn production (in 100’s of bushels)
Futures
position 10 15 20 25 30 35 40 45 50
50 19000 20250 21000 2250 21000 20250 {9000 17250 15000
45 18000 19500 20500 21000 21000 20500 19500 18000 16000
40 17000 18750 20000 20750 21000 20750 20000 {8750 17000
35 16000 18000 19500 20500 21000 21000 20500 19500 18000
30 15000 17250 19000 20250 21000 21250 21000 20250 19000
25 14000 {6500 {8500 20000 21000 21500 21500 21000 20000
20 13000 15750 18000 19750 21000 21750 22000 21750 21000
i5 12000 15000 173500 19500 21000 22000 22500 22500 22000
10 11000 14250 17000 192350 21000 22250 23000 23250 23000
5 10000 13500 16500 19000 21000 22500 23500 24000 24000
¢] 9000 12750 16000 8750 21000 22750 24000 24750 25000
-5 8000 {2000 15500 18500 21000 23000 24500 25500 26000
-~ 10 7000 11250 15000 {8250 21000 23250 25000 36250 27000
~1i5 GOOO 10500 14500 {8000 21000 23500 23500 27000 28000
-20 s00 97350 14000 17750 21000 23750 26000 27750 29000
~25 4000 9000 {3500 {7500 21000 24000 26500 28500 30000
-30 3000 8250 13000 17250 21000 24250 27000 29250 31000
~33 2000 7500 §2500 17000 21000 24500 27500 30000 32000
~40 100¢ 6750 12000 16750 21000 24750 28000 30750 33000
—43 0 6000 {i500 G500 21000 325000 28500 31500 34000
~50 ~1000 5250 11000 16250 21000 25250 29000 32250 35000

Revenue can be calantated for vanouws fitnres positions amd prochection ontcomcs wsing a spreadibeet
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FIGURE 10.6 Farm revenue and hedging. The best fu-
tures position is obtained when the slope of its payoff is

____________ equal to and opposite the slope of the revenue

Farm revenue

Profit from 4,000 futures

3,000 C

The equal and opposite hedge would corzespond to a futures position of —3,000
(or —30 in the table) Note that this is actually a very risky position-much moie so
than the zero position—{or the revenue vinies widely fiom $3,000 to $31,000 What
is the least 1isky position? We find that position by scanning the rows, looking for the
row with the least variation It is the row maked 40, corresponding to a position of
+4,000 Wow! The optimal position has a sign opposite to that which we might have
expected, and a magnitude much greate: than the expected value of the crop *

How can we undeistand the nature of this solution? The original 1evenue function
(10 13), is shown in Figure 10 6 Also shown in the Hgure is the profit from a +4,000
futures position as a function of the amount of corn grown Note that the profit from
the futures contract decreases as more corn is grown This is because as more corn
is grown, the final spot price of coin decreases The revenue incieases as imoie corn
is produced (although eventuaily the revenue curve bends downwaid) At the nominal
vaiue of C == 3,000, the slopes ol the two functions ate exactly opposite—the slope
of the revenue curve is 4 and the slope of the futures profit line is —4 The two slopes
cancel, meaning that the net revenue curve is flat at the nominal point This is the best
linear approximation to the nonlinear hedging problem

Here is one way to think about the situation, to resolve the appatent conundium
The farmer has a natural hedge against price movements If the price of corn should
go down, the farmer’s revenue from corn will go up because of his increased harvest,
instead of down as it would if the harvest were unaffected This natural hedge is, in
fact, of greater magnitude than an equal and opposite hedge, which would keep net
tevenue constant. Hence the farmier must counteract the natural hedge by taking a
positive position in the futures market

It can be shown that this position is indeed optimal for any concave increasing utility function if the
probabitities of different-size harvests are symmetric (See Exercise 16)
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10.13 SUMMARY

EXERCISES

gase=

A forward contiact is a contract to buy o1 sell an asset at a fixed date in the future
The intrinsic value of a forward contract may vary from day to day, but theie are
no cash flows until the delivery date A futures contract is similai, except that it is
marked to market daily, with profits or fosses flowing to a magin account so that the
contract continues to have zero value The piice of a forward contiact, in the absence
of carrying costs and assuming that the conunodity can be shorted, is just F = S/d,
where S is the current value of the asset and « is the discount 1ate that applies tor the
interval of time until delivery In other words, F is the future vaiue of the current spot
price S If there are carrying costs, F is the future value of these costs plus the future
value of S If shorting is not possible, as is frequently the case, the forward price is
restricted only to be less than §/d

If interest rates follow expectation dynaniics, the prices of a forward contiact
and a corresponding {utures contract are identical, even though their cash flow pat-
terns are slightly different For analysis puiposes, a futures contract can therefore be
approximated by the corresponding forward contiact

Forwards and futures are used to hedge risk in commercial transactions The
simplest type of hedge is the perfect, or equai and opposite, hedge, where an obligation
to buy or sell a commodity in a future spot market is essentially executed eaily at
a known price by entering a futures contract for the same quantity If theie is no
hedging instrument available that matches the commodity of the obligation exactly,
a minimum-variance hedge can be constiucted using instiuments that are coirelated
with the obligation A relatively high correlation is required, however, to pioduce a
significant hedging effect

More sophisticated hedging is obtained by taking an optimal portfolio view-
point, maximizing expected utility subject to the constraints implied by obligations
and market conditions This approach has the advantage that it can handie essentially
any situation, even those where the decisions affect portfolio value nonlinearly, but it
has the disadvantage that detailed information is required In any case, futures market
participation is an important aspect of many hedging operations

1. (Gold futures) The current price of gold is $412 per ounce The storage casl is $2 per
ounce per year, payable quarterly in advance Assuming a constant interest rate of 9% com-
pounded quarterly, what is the theoretical forward price ot gold tor delfivery in 9 months?

2. (Proportional carrying charges o) Suppose that a forward contrae) on an asset is written
at time zero and there are M periods until delivery Suppose that the carrying charge in
period & is ¢ S(k), where S(k) is the spot price of the asset in period & Show that the
torward price is

o i —q)‘”S
Tdo, M)
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[Hint Consider a porttolio that pays all carrying costs by seiling a fraction of the asset
as required Let the number of units of the asset held at time & be x (k) and find x(M) in
terms of x{0) }

. (Silver conmact) At the beginning of April one year, the sitver forward prices (in cents

per troy ounce) were as follows:

Apr 40650

July 41664
Sept 42348

Dec 43384

(Assume that contracts settle at the end of the given month ) The carrying cost of siiver
is about 20 cents per ounce per year, paid at the beginning of cach month Estimate the
interest rate at that time

. (Continuous-time carrying charges) Suppose that a continuous-time compounding frame-

work is used with a fixed interest rate 7 Suppose that the carrying charge per unit of time
is proportional to the spot price; that is, the charge is ¢ S(z) Show that the theoretical
forward price of a contract with defivery date 7 is

Fom ST

{Hint Use Exercise 2]

. {Carrying cost proof) Complete the second half of the proof of the “forward price formula

with carrying cost” in Section 103 To construct the arbitrage, go long one unit of a
forward and short one unit spot To execute the short, it is necessary to borrow the asset
rom someone, say, Mr X As part of our arrangement with Mr X we ask that he give us
the carrying costs as they would normally oceur, sinee he would have to pay them if we
did not borrow the asset We then invest these cash flows At the final time we buy one
unit as obligated by our forward and repay Mr X Show the detaiis of this aigument

. {Foreign curtency alternative)  Consider the situation of Example {0 10 Rather thau short-

ing a futures contract, the US firm could borrow 500/(! + 1) Dentsche mark (where 7
is the 90-day interest rate in Germany), sell these marks into doifass, invest the doliars in
T-bilis, and then later repay the Deutschie mark loan with the payment received for the
German order Discuss how this procedure is refated to the original one

(A bond forward) A certain 10-year bond is currently selting for $920 A friend of yours
owns a forward contract on this bond that has a delivery date in { year and a delivery price
of $940 The bond pays coupons of $80 every 6 months, with one due 6 months from now
and another just before maturity of the forward The current interest rates for 6 months and
I year (compounded semiannually) are 7% aud 8%, respectively (annual rates compounded
every 6 months) What is the cunent value of the forward contiact?

. (Simple formulay Derive the formula (10 6) by converting a cash flow of a bond to that

oi the fixed portion of the swap
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. (Equity swapo) Mi A Gaylord manages a pension fund and believes that his stock

selection ability is excellent However, lic is worried because the warket could go down
He considers entering an equity swap where eacl quarter i, up to quarter M, he pays
counterparty B the previous quarter’s total rate of retiun ¢, on the S&P 500 index times
some notional principal and receives payments at a fixed rate 7 ou the same principal The
total rate of return includes dividends Specifically, 1 41, = (S, +d,)/S,-(, where S, and
d, are the values of the index at § and the dividends received fiom | — [ to {, respectively
Derive the vulue of such a swap by the following steps:

(@) Let V,_((5, -+ d,) devote the value at time ¥ — [ of receiving §, + ¢, at time | Argue
that V,_((S, +dy = S, aud find V,_ ¢

(b) Find Vo0 )

{0y Find Y Vo0

() Find the vaiue ol the swap

(Forward vaniilay The floating rate portion of a plain vanilla iutercst rate swap with
yealy paymeuts and a notional principai ol one unit las cash flows at the eud of each yem
defining a stream starting at time | of {¢q. ¢, ¢, . cy-1), where ¢, is the actual short
rate at the beginning of year i Using the concepts of {orwards, argue that the vatue at time
zero of ¢, to be received at time | 1 is (0, + 1)1, where 17, is the short rate for time
i implied by the current (tme zero) term structure and (0, f + 1) is the implied discount
factor to time | + | The vatue ol the stream is therefore Z,ﬁ‘;‘,‘d(o‘ i+ ), Show that
this rednces to the tormuta for V at the end of Section 105

(Specific vanrilta) Suppose the current term structure of interest mtes is ( 070, 073, 077,
081, 084, 088) A piain vanilla interest rate swap will make payments at the end of each
year equat to the floating short rate that was posted at the beginning of that year A G-year
swap having a notional principat of $t0 million is being configuied

(a) What is the vatue of the floating rate portion of the swap?
() What rate of interest for the fixed pornion of the swip would make the two sides of
the swap equal?

(Detivation) Derive the niean-variance hedge formuta given by (10 12)

(Grapeftuit hedge) Farmer D Jones has a erop of grapefruit that will be ready for harvest
and sate ay 150,000 pounds of grapefruit juice in 3 months Jones is worried about possible
price changes, 50 he is considering hedging There is no futures contract for grapefruit juice,
but there is a futures contract for orange juice His son, Gavin, recentty studied minimun-
variance hedging and suggests it as a possible approach Currently the spot prices are
$t 20 per pound (or orange juive and $t 50 per pound for grapefruit juice The standard
deviation of the prices of orange juice and grapefruit juice is about 20% per year, and the
corretation coefficient between them is about 7 What is the minimum-variance hedge for
farmer Jones, and how effective is this hedge as compared 10 no hedge?

. (Opposite hedge variance) Assume that cash flow is given by v = Sy W  (Fy — Fp)lr

Let (13 == var(Sy), GZF == var(Fy ), and oy, == cov(Sy, Fy)

(a) In an equal and opposite hedge, /# is taken to be an opposite equivatent dotiar value of
the hedging instrument Therefore # == —kW, where & is the price ratio between the



294

Chapter 10

FORWARDS, FUTURES, AND SWAPS

asset and the hedging instument Express the standard deviation of y with the equal
and opposite hedge in the form

oy = Woy x B

(That is, find B )
(b) Apply this 1o Example 10 {2 and compare with the minimum-variance hedge

15. (Immunization as hedging ¢} A pension fund has just paid some of its liabitities, and as a

result of this transaction the fund is no fonger fully immunized The fund manager decides
that instead of ehanging the portfolio, the firm should hedge its position using a futures
contract on a Treasury bond The fund manager wants to hedge against parallel changes to
the spot rate curve Use the following set of information to determine the numerical values
of the hedging position:

® Yearly spot rate sequence: 05, 053, 056, 058, 06, 061

o [iabilities: $1 miilion in | year, $2 million in 2 years, and $1 mitlion in 3 years

® Current bond portfolio: $4 253 miilion in par value of zero-coupon bonds maturing in
2 years (Use the continuous-time formulas for diseounting: ™" )

& The hedge is to be constructed using futures contracts on zero-coupon bonds maturing
in G years, with a contract delivery date in I year

16. (Symmetric probability o) Suppose the wealth that is to be received at a time 7 in the

future has the form
W=a+hv 4 cx®

where a is a constant and x is a random variabie The value of the variable /4 can be
selected by the investor Suppose that the investor has a utility function that is increasing
and strictly concave Suppose also that the probability distribution of x is symmetric; that
is, v and —x have the same distribution ft follows that E{v) = 0 and that the investor
cannot influence (he expected value of weaith

(@) Show that the optimal choice is /iy = 0

() Apply this result to the corn farm probiem to show that the optimal futures position

is +4,000

17. {Double symimetric probability ¢) Suppose that revenue has the form

R = Avy +Bx —hy

where # can be chosen and x and y dre random variabies The distribution of x and y is
symmetric about (0, 0); that is, —x, —v has the same distribution as v, v Show that the
choice of / that minimizes the variance of R is

It = Bo,[or

18. (A general farm problemo) Suppose that, as in the corn farm example, the farm has

random production and the finai spot price i governed by the same demand function
However, the crop of the farm is not perfectly correlated to total demand, but o¢p and o
are known The current futures price is aiso equal to the expected final spot price Show
that the minimum-variance hedging position is

-3
b= 100,000 [ = 4 1928
100 73
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Check the solution for the special cases (a) D == 100C and (b) ocp == 0 {Hint Use
Exercise 17}

There are several books devoted to futures markets; for exampie, [1-3] An excellent book,
similar in level to this textbook, is [4] The futures-torward equivatence result was proved in
[5] for the case of a constant interest rate See [6] for a discussion of hedging tcchniques, and
{71 for the usc of interest 1ate futurcs shmilar to that of Exercise 15
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MODELS OF ASSET
DYNAMICS

rue multiperiod investments fluctuate in value, distribute random dividends, ex-

ist in an environment of variable interest rates, and are subject to a continuing

variety of other uncertainties This chapter initiates the study of such invest-
ments by showing how to model asset price fluctuations conveniently and realistically
This chapter therefote contains no investment principles as such Rather it introduces
the mathematical models that form the foundation for the analyses developed in later
chaptets

Two primary mode] types are used to tepresent asset dynamics: binomial lattices
and Tto processes Binomial lattices are analytically simpler than Ito processes, and
they provide an excellent basis for computational wotk associated with investment
problems For these reasons it is best to study binomial lattice models first The
important investment concepts can all be expressed in terms of these models, and
many real investment problems can be formulated and solved using the binomial
lattice framework Indeed, roughly 80% of the material in later chapters is presented
in terms of binomial lattice models

Ito ptocesses are more realistic than binomial lattice models in the sense that
they have a continuum of possible stock prices at each period, not just two Ito process
models also allow some problems to be solved analytically, as well as coniputationally
They also provide the foundation for coustructing binomial lattice models in a clear and
consistent manner For these reasons Ito process models are fundamental to dynamic
problems For a complete undesstanding of investment principles, it is imporiant to
understand these models

The organization of this chapter is based on the preceding viewpoint concerning
the roles of different models The first section presents the binomial lattice model di-
tectly With this background most of the material in later chapters can be studied
Therefore you may wish to read only this first section and then skip to the next
chapter
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The remaining sections consider models that have a continuum of price values
These models are developed progressively from disciete-time models to continuous-
time models based on Ito processes

11.1 BINOMIAL LATTICE MODEL

To define a binomial lattice model, a basic period length is established (such as
1 week) According to the model, i the price is known at the beginning of a pe-
riod, the price at the beginning of the next period is one of only two possible vatues
Usually these two possibilities are defined to be multipies of the price at the previ-
ous period——a multiple # (for up) and a muitiple ¢ (for down) Both » and d are
positive, with « > | and (usually) d < t Hence il the price at the beginning of a
petiod is S, it will be either «S o d$ at the next petiod The probabilities of these
possibilities are p and | — p, 1espectively, for some given probability p, 0 < p < |
That is, if the cunent price is S, there is a probability p that the new price will be
nS and a probabifity 1 — p that it will be 4§ This model continues on for several
periods

The general form of such a lattice is shown in Figure 11.1 The stock price can be
visualized ag moving front node to node in a tightwaid direction The probability of an
upward movement from any node is p and the probability of a downward movement
is 1 — p A lattice is the appropriate structure in this case, rather than a tice, because
an up movement {ollowed by a down is identical to a down followed by an up Both
produce ud times the price

The mode! may at fust seem too simple because it permits only two possible
values at the next period But if the period length is small, many values are possible
aftey several short steps

Sut FIGURE 11.1 Binomial fattice stock model. At each
step the slock price S either increases 1o uS or de-
creases 10 dS

Suld

Suct

S5+
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To specify the model completely, we must select values for # and d and the
probability p. These should be chosen in such a way that the true stochastic nature of
the stock is captured as faithiully as possible, as will be discussed

Because the mode] is multiplicative in nature (the new value being uS or d5,
with u > 0, d > 0), the price will never become negative 1t is therefore possible to
consider the logarithm of piice as a fundamental variable For reasons discussed in
later sections, use of the logarithm is in fact very helpful and leads to simple formulas
for selecting the parameters

Accotdingly, we define v as the expected yearly growth rate ! Specifically,

v = E[In(S7 /5p)]
where 5 is the initial stock price and Sy is the price at the end of | year
Likewise, we define ¢ as the yearly standard deviation Specifically,
o = vur[ln(ST/Sg)]
If a period leugth of Ar is chosen, which is small compared to 1, the parameters
of the binomial lattice can be selected as

r=3+3 (VS

o-/B arn

it = e

d = e=oVBI

With this choice, the binomial mode] will closely match the values of v and o
(as shown later); that is, the expected growth rate of In § in the binomial model will
be nearly v, and the variance of that rate will be nearly o®. The closeness of the match
improves if Ar is made smaller, becoming exact as Ar goes to zero

Example 11.1 (A volatile stock) Consider a stock with the parameters v = 15% and
o = 30% We wish to make a binomial model based on weekly periods According
to (11.1), we set

W= e OV ) 04248, d = 1/u = 95925

1 15 /1
[)zz(l-}—% §_’:>= 534669

The lattice for this example is shown in Figute 11 2, assuming S(0) == [00

and

We shall retumn to the binomial lattice later in this chapter after studying models
that allow a continuum of prices The binomial model will be found to be a natural
approximation to these models

Lif the process were deterministic, then v = In(S7/5) implies §; = $e*’ . which shows that v is the
exponential growth rate
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- 11811  FIGURE 11.2 Lattice for Example 11.1. The pa-

rameters are chosen so that the expected growth
rate of the logarithm of price and the variance of
that growth rate match the known corresponding
values for the asset

108 67

9202

8467

11.2 THE ADDITIVE MODEL

We now study models with the property that price can range over a continuum First
we shall consider discrete-time models, beginning with the additive model of this
section, and then latet we shall consider continuous-time models defined by Ito pto-
cesses

Let us focus on N 4- | time points, indexed by k, k = 0,1,2, | N We also
focus on a particular asset that is characterized by a price at each time The price at
time k is denoted by S(k) Our model will recognize that the price in any one time is
dependent to some extent on previous prices.

The simplest model! is the additive model,

Stk + 1) == aS(k) +uk) (112)
for k = 0,1,2, , N In this equation « is a constant (usually @ > 1) and the
quantities #(k), k = 0,1, , N — 1, are random variables The «(k)’s can be thought

ot as “shocks™ or “disturbances” that cause the price to fluctuate To operate or run
this model, an initial price S(0) is specified; then once the random variable #(0) is
given, S(1) can be determined The process then repeats progressively in a stepwise
fashion, determining 5(2), $(3), , S(N)

The key ingredient of this model is the sequence of random variables «(k), k =
1,2, . N We assume that these are mutually statistically independent

Note that the price at any time depends only on the price at the most recent
previous time and the random disturbance It does not explicily depend on other
previous prices
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It is instructive to solve explicitly for a few of the prices from (112) By direct
substitution we have

S(1) = aS(0) + u(0)
S(2) = aS(1) +u(l)
a?S(0) + au(0) + u(l)

By simple induction it can be seen that for general £,

i

i

S(k) = a*S(O0) + " ') + P+ Futk -1 13
Hence S(k) is a*S(0) plus the sum of k random variables
Frequently we assume that the randont variables u(k), & = 0,1,2, . , N~ 1,

are independent normal random vartables with a common variance o* Then, since a
linear combination of normal random variables is also normal (see Appendix A), it
follows from (11 3) that S(k) is itself a normal random variable

1f the expected values of all the «(k)'s are zero, then the expected value of
S(k) is

E[S(k)] = a* S(0)

When a > 1, this model has the property that the expected value of the price increases
geometrically (that is, according to a*) Indeed, the constant a is the growth rate factor
of the model

The additive mode] is structurally simple and easy to work with The expected
value of ptice grows geometrically, and all prices are normal random variables. How-
ever, the model is seriously flawed because it lacks realism Normal random variables
can take on negative values, which means that the prices in this mode] might be neg-
ative as well; but real stock prices are never negative Furthermore, if a stock were
to begin at a piice of, say, §1 with a o of, say, $ 50 and then drift upward to a price
of $100, it seems very unlikely that the o would remain at $ 50 1t is more likely
that the standard deviation would be proportional to the price For these reasons the
additive mode] ts not a good general mode! of asset dynamics The model is useful for
localized analyses, over short periods of time (perhaps up to a few months for com-
nion stocks), and it is a usetul building block for other models, but it cannot be used
alone as an ongoing tnodel representing long- or intermediate-term fluctuations For
this reason we tmust consider a better alternative, which is the multiplicative model]
(However, our understanding of the additive mode] will be important for that mote
advanced mode] )

11.3 THE MULTIPLICATIVE MODEL

The multiplicative model has the fonn
Sk + 1) = ulk)S(k) (IT 4)
fot £ = 0,1, N —1 Here again the quantities «(k), k = 0,1,2, N -1, are
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mutually independent random variables The variable u (k) defines the selarive change
in price between times k and k£ 4+ 1 Thig relative change is S(k 4 1)/S(k), which is
independent of the overall magnitude of S(k) 1t is also independent of the units of
price For example, if we change units ftom U S doltars to Getman marks, the refative
price change is still «(k)

The muhtipticative mode} takes a tamiliat form it we take the natutal logatithm
of both sides of the equation This yields

InSk+ 1) = In Sk) + Inuk) (115)

for k = 0,1,2, \ N — 1 Heuce in this form the model is of the additive type with
respect to the logarithm of the price, rather than the price itself Therefote we can use
our knowledge of the additive mode! to analyze the muftiplicative mode!

1t is now natwal to specify the random disturbances directly in terms of the
In«(ky's In particular we let

wik) = Inu(k)

for k = 0, 1,2, ,N — 1, and we specify that these w(k)’s be notmal 1andom
vatiables. We assume that they are mutualty independent and that each has expected
value W(k) = v and variance o?

We can express the original multiplicative disturbances as

w(ky = "k (e

for k = 0,1,2, ,N — 1 Each of the variables u(k) is said to be a lognormal
random variable since its logarithm is in fact a normal random variable

Notice that now tliere is no problem with negative values Although the normal
variable w(k) may be negative, the cotresponding u(k) given by (116) is always
positive Since the random factor by which a price is multiplied is #(k), it follows that
prices remain positive in this model

Lognormal Prices
The successive prices of the multiplicative model can be casily found to be
S(ky = (k- Dutk -2y «(0)S(0)

Taking the natural logarithm of this equation we find

A1 k-1
Sty =l SOy + Y Inagi) = In SO + Y w(i)
i=0 fel}

The term In S(0) is a constant, and the w(i)’s are each normal random variables
Since the sum of normal random variables is itself a normal random variahle (see
Appendix A), it follows that In S(k) is normal In other words, alt prices are lognormal
under the muhtiplicative model
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I each w(/) has expected value W(i) = v and variance o2, and all are mutually
independent, then we find

l

E[In S(k}j = 1n 5(0) 4 vk 11 7a)

var[ln S(k)] = ko? (11.7b)

i

Hence both the expected value and the variance increase linearly with &

Real Stock Distributions

At this point it is natural to ask how well this theoretical mode fits actual stock price
behavior Are real stock prices lognotmal?

The answer is that, based on an analysis of past stock price records, the price
distributions of most stocks ate actually quite close to lognormal To verify this, we
select a nominal period length of, say, 1 week and record the differences in S(k +1) —
In S(k) for many values of k; that is, we record the weekly changes in the logarithm of
the prices for many weeks We then construct a histogram of these values and compare
it with that of a normatl distribution of the same variance Typically, the measured
distribution is quite close to being normal, except that the observed distribution often
is slightly smaller near the mean and ltarger at extremely large values (either positive
or negative large values) This slight change in shape is picturesquely termed fat
tails. (Sce Figure 11 3 %) The observed distribution is larger in the tails than a normat

35 ¢ Number of samples
301

25+

20}*

-7 5% -0 0 a Log return 7 5%

FIGURE 11.3 Observed distribulion of the logarithm of return. The distribution has “fatter tails”
than a normal distribution of the same variance

*The figure shows 1 listogram of American Airlines weekly log stock returns for the 10-year period of
1982-1992 Shown superimpused is the normal distribution with thie same (sumple} mein and standard
deviation Along witl fat tails there is invariubly a “skinny middie »
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distribution This implies that large price changes tend to occur somewhat more fre-
quently than would be predicted by a normal distribution of the same variance For
most applications (but not all} this slight discrepancy is not important

11.4 TYPICAL PARAMETER VALUES*

The return of a stock over the period between k and k+1 is S(k+1)/S(k), which undet
the multiplicative model is equal to u(k) The value of w(k) == Inu(k) is therefore the
logarithm of the return The mean value of w(k) is denoted by v and the variance of
w(k) by o Typical values of these parameters for assets such as common stocks can
be inferred from our knowledge of cortesponding values for returns Thus for stocks,
typical values of v = E[w(k)] and o == stdev [w(k)] might be

v = 12%, o =15%

when the length of a period is | year If the period length is Iess than a year, these
values scale downward;? that is, if the period length is p part of a year, then

v, = pu, o, = /po

The values can be estimated from historical records in the standard fashion (but
with caution as to the validity of these estimates, as raised in Chapter 8) 1f we have
N 4 1 time points of data, spanning N periods, the estimate of the single-period v is

Lo r TS+ b 1=
b= > in [W] P> fin S(k + 1) — In S(k)]

1 S(N)
e I [ —=
N S(0)
Hence alt that matters is the ratio of the last to the first price
The standard estimate of o” is

N—1 L 2
R, Zl'“[S(HU}_Q}
N-t& S(k)

As with the estimation of return parameters, the error in these estimates can be
characterized by thenr variances For v this variance is

var () = o” /N
and for ¢? it is [assuming w(k) is normal]
var(6?) =20 /(N = 1)

3Using tog returns, the scuting is exacily proportionat There is no error due to compounding as with returns
(without the tog} (See Exerise 2}
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Hence fot the values assumed eartier, namely, v == .12 and o = 15, we find
that 10 years of data is required to reduce the standard deviation of the estimate* of
v to 05 (which is still a sizable fraction of the true value) On the other hand, with
only 1 year of weekly dat we can obtain a fairly good estimate® of o”.

11.5 LOGNORMAL RANDOM VARIABLES

If u is a Jognormal tandom variable, then the variable w = Inu is normal In this
case we found that the prices in the multiplicative model are all lognormal ran-
dom variables Itis therefose usetul to study a few impottant properties of such random
variables

The general shape of the probability distiibution of a lognormal random vari-
able is shown in Figure 114 Note that the variable is always nonnegative and the
distribution is somewhat skewed

Suppose that w is normal and has expected value W and variance o What is
the expected value of u = e¥? A quick guess might be i = ¢®, but this is wrong.
Actually 7 is greater than shis by the factor €3%°; that is,

T = (118)

This result can be intuitively undeistood by noling that as o is increased, the lognormal
distribution will spread out Il cannot spread downward below zero, but it can spread
upwaid unboundedly Hence the mean value incicases as o incieases

The extia term 4o is actually fairly small for low-volatility stocks For example,
consider a stock with a yemly W == I2 and a yearly o of IS The correction term is

FIGURE 11.4 Lognormal distribution. The tognormat dis-
tribution is nonzero only for ¥ > 0

0 X
@ o 13
= = e = e = 05
@ VN 0 36
2 3 2 29t 297 So? 2
Spare?) = (52)? var(a?) = T2 X 2my _ (52)" x 207 207 o ety L Y200
var(a”) = (52)7 var(ay) TN T G 37 Hence a(5%) i B
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%03 == ()225, which is small compared to @ For stocks with high volatility, however,
the correction can be significant

11.6 RANDOM WALKS AND WIENER PROCESSES

In Section 117 we will shorten the period length in a multiplicative model and take
the limit as this length goes to zero This will produce a model in continuous time
In preparation for that step, we introduce special random functions of time, called
random walks and Wiener processes

Suppose that we have N petiods of length Ar We define the additive process
z by

i

) = ) + )V At (19
gy =+ Ar (11 10)

for £ = 0,1,2, ,N This process is termed a random walk. In these equations
€(1;) is a normal random variable with mean 0 and variance l-—a standardized nor-
mal random variable. These random variables are mutually uncorelated; that is,
E[e(s)e(1)] = 0 tor j # k The process is started by setting z{tp) = 0 Thereafter a
particular realized path wanders around according to the happenstance of the random
variables e(1;) [The reason for using /A7 in (11 9) will become clear shortly ] A
particular path of a random walk is shown in Figure 115

Of special interest are the difference 1andom variables (1) — z(1)) for j < k
We can write such a difference as

1
)~ oty = Z (v At
i=

This is a notmal random variable because it is the sum of normal random vaiiables
We find immediately that

Elz(t) = 2] =0

F FIGURE 11.5 Possible random walk The move-
ments are determined by normal random vari-
ables
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Also, using the independence of the e(#)’s, we find

= 2
var[z(1) ~ 2(;)] = E liZE(h)\/A_Ij|

=y

k=1
=E {Z 5(1;)2A1i|

i=j

m (k= AL = of -

Hence the vatiance of z(1;) —z(¢;) is exactly equal to the time difference 1 —1; between
the points This calculafion also shows why /Ar was used in the definition of the
random walk so that As would appear in the variance

It should be clear that the ditference variables associated with two different
time intervals are uncorrelated if the two intervals are nonoverlapping That is, if
By < tgy < ip <, then z(,) —2(4,) is uncortelated with z(5,) — 2(#,) because each
of these differences is made up of different €'s, which are themselves uncorrelated

A Wiener _process is obtained by taking the limit of the random walk process
(119) as At —_0 In symbolic form we write the equations governing a Wiener
plocess as

: dz = e()Vdr (Han

whetie each €(1) is a standardized normal random variable The random variables € (')
and e(¢") are uncorclated whenever 1’ # 1"

This desciiption of a Wiener piocess is not rigorous because we have no assur-
ance that the limiting operations are defined; but it provides a good intuitive descrip-
tion An alternative definition of a Wiener process can be made by simply listing the
required properties In this approach we say a process z(f) is a Wiener process (or,
alternatively, Brownian wnotion) if it satisfies the following:

1. For any s <t the quantity z(r) — z(s) is a normal random variable with mean zero
and variance ¢

2, For any 0 < 1y < 12 <13 < 1y, the random variables z(s2) — z(¢1) and z{(z4) — z(13)
ate uncortelated

3. z(tg) = 0 with probability |

These properties parallel the properties of the random walk process given earlier

1t is fun to try to visualize the outcome of a Wiener process A sketch of a
possible path is shown in Figure 11 6 Remember that given z() at time ¢, the value
of z(s) at time s > ¢ is, on average, the same as z{z) but will vary from that according
to a standard deviation equal to /s — 1
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FIGURE 11.6 Path of a Wiener process. A
2z Wiener process moves continuously but is not
differentiable

i,

A Wiener process is not differentiable with respect to time We can roughly
verify this by noting that for 1 < s,

E[:(A)-z(l)}'_ Rt A -

[ T -0 s -1t

as s — 1

It is, however, useful to have a word fot the term dz/ds since this expression
appears in many stochastic equations A common word used, arising from the systems
engineering field (the field that motivated Wiener’s work), is white noise. It is really
fun to try to visualize white noise One depiction is presented in Figure 117

Generalized Wiener Processes and [to Processes

The Wiener process (ot Brownian motion) is the fundamental building block for a
whole collection of more general processes These generalizations are obtained by
inserting white noise in an ordinary differential equation

The simplest extensioun of this kind is the generalized Wiener process, which
is of the form

de(t) = adt +bdz (HE12)
cizfcit FIGURE 11.7 Fanlasizing while noise. White

noise is the derivative of a Wiener process, but
that derivative coes not exist in the nonnal sense



308

Chapter 11

MODELS OF ASSET DYNAMICS

where x(1) is a random variable fot each ¢, 7 is a Wiener process, and a and b are
constants

A genetalized Wiener process is especially important because it has an analytic
solution (which can be found by integrating both sides) Specifically,

x{t) = x(0) + at + bz(1) (1L13)

An Ito process is somewhat more general still Such a process is described by
an ecjuation of the form

dx(t) = a(x,1)dr + b{x, 1)dz (Lh {4y

As before, z denotes a Wiener process Now, however, the coetficients a(x,r) and
b{x, 1) may depend on x and 1, and a general solution canuot be written in an analytic
form. A special form of Ito process is used frequently to describe the behavior of
financial assets, as discussed in the next section

11.7 A STOCK PRICE PROCESS

We now have the tools necessaty to cxtend the multiplicative model of stock prices
to a continuous-time model Recall that the multiplicative model is

In Sk + 1) — In S() = w(k)

where the w(k)'s are uncotrelated notmal random variables The continuous-time ver-
sion of this equation is

dinS() =vdr +ods (11 15)

where v and o > 0 are constants and = is a standaid Wiener process The whole right-
hand side of the cquation can be regarded as playing the role of the random variable
w{k) in the discrete-time model This side can be thought of as a constant plus a normal
random variable with zeto mean, and hence, overall it is a normal 1andom variable
(Although all terms in the equation are differentials o1 multiples of differentials and
thus do not themselves have magnitude in the usual sense, it is helpful 1o think of
dr and dz ag being “small” like Ar and Az ) The term vdr is, accordingly, the mean
value of the right-hand side This mean value is propoitional to dr, consistent with
the fact that in the logarithin version of the multiplicative miodel the mean value of
the change in In S is proportional to the length of one period The standard deviation
of the :ight-hand side is o times the standard deviation of dz Hence it is of orde: of
magnitude U\/d—l, which is consistent with the fact that in the logarithm version of
the multiplicative model the standard deviation of the change in In S is proportional
to the square root of the length of one period, as reflected by (11 7a) and (11 7b)

Since equation (11 15) is expressed in terms of In 5(z), it is actually a generalized
Wiener process Hence we can solve it explicitly using (11 13) as

In S(r) = InS(0) + 11 + o z(r) (t1 16)

This shows that E{ln S(1)] = E{ln S(0)]+ vz, and hence E{ln S(1)} grows linearly with
+ Because the expected logaiithm of this process increases linearly with 7, just as a
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continuously compounded bank account, this process is termed geomnetric Brownian
motion.

Lognormal Prices

Like the discrete-time multiplicative miodel, the geometic Browniun motion process
described by (11 15) is a lognormal process This can be seen easily from the solution
(11 16) The right-hand side of that equation is a normal random variable with expected
vatue In §(0) + 17 and standard deviation o /1

We conclude that the price S(r) itself has a lognormal disuibution We can
express this formally by In S(r) ~ N(In $(0) + vr, 0*1), whete N(m, 0%) denotes the
normal distribution with mean m and variance o*

Although we can write $(z) = exp[ln S(z)] = S(0) explvs + oz(1)], it does nor
follow that the expected vatue of S{z) is §{0)e¢" The mean value must instead be
determined by equation (11 8), the general formula that applies 1o lognormal variables
Hence,

ELS(r)] = S(0)et+im
It we define u = v+ 40%, we have
E[S{1)] = S(0)e"*
The standaid deviation of S(¢) is also given by a general relation for lognormat

variables In the case of the standmd deviation, the required calculation is a bit more
complex The formula is (see Exeicise 5)

sidev[S{1)] = S(O)e"'*;'“!'(a“:' - l)]/2

Standard Ito Form

We have defined the random process for S(z) in termg of In S(r) rather than directly
in terms of S(r) The use of In S(z) tacilitated the development, and it highlights the
fact that the process is a stiaightforwmid generalization of the multiplicative modet
that leads to lognormal distributions It is, however, useful to expiess the process in
terms of S(z) iselt

In oudinary calculus we know that
ds(r)
S(1)
Hence we might be tempted to substitute dS(¢)/S(r) for din §(z) in the basic equation
[Eq (!l I5)], obtaining dS(r)/S(t) = vdr + o d; This would be almost conect, but
there is a cotrection tem that wust be applied when changing vatiables in lto processes
(because Wiener processes are not ordinary functions and do not follow the ules of
ordinaty calculus) The appropriate Ito process in terms of S(r) is

das(ry
NGO

din{S(r)] =

i
(p+;al)dz+ad; (FE1T)
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Note that the correction term %al is exactly the same as needed in the expression for
the expected value of a lognormal random variable. Putting p = v + 407, we may
write the equation in the standard Ito form for price dynamics, .
ds(r)
50 = pdt +odz. (11 18)
The tetm dS(r)/S(t) can be thought of as the differential return of the stock; hence
in this form the differential return has a simple form
The comrection term required when transforming the equation from In S@7) to
S(1) is a special instance of a general uansformation equation defined by Ito’s lemma,
which applies to variables defined by Ito processes Ito’s lemma is discussed in the
next section
Note that if the equation in standard form is written with § in the denominator, as
in (11 17), it is an equation for dS/S This term can be interpreted as the instantaneous

rate of retun on the stock. Hence the standard form is often referred to s an equﬁiibn

" For the instantaneous return

Example 11.2 (Bond price dynamics) Let P(r) denote the price of a bond that pays
$1 at time ¢ = T, with no other payments Assume that interest rates are constant at
1 The price of this bond satisfies

dP(1)

e 222 (1

P@)
which is a deterministic Ito equation, paralleling the equation for stock prices The
solution to this equation is P(r) = P(0)e"" Using P(T) = 1, we find that P(1) =

er(I-T)

We now summarize the relations between S(¢) and In S(7):
Relations for geometric Brownian motion  Suppose the geomen ic Brownian motion
process S(t) is governed by
dS{1) = uS(tYdr + o S(1)dz

where z is a standard Wiener process Define v = p — Yo Then S(1) is lognormal
and

E{In{S(1)/S(0)]} = vr
stdev{In[S(1)/SO)]] = o7
E{S(1)/S(0)] = &
sidev{S(N/S(O)] = e (& — 1)!7
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Simulation

A continuous-time price process can be simulated by taking a series of small time
periods and then stepping the process forward period by period There are two natural
ways to do this, and they are #nor exactly equivalent

First, consider the process in standard form defined by (11 18) We take a basic
period length Ar and set S{1p) = So, a given initial price at 1 = 1y The corresponding
simulation equation is

S(teer) — S(i) = pS()AL + 0 SV AL

where the €(1:)’s are uncorrelated normal random variables of mean 0 and standard
deviation | This leads to

Slee) .—.[| +um+aeuk)«/E]suk) (11 19)

which is a multiplicative model, but the 1andom coefficient is normal rather than log-
normal, so this simulation method does not produce the lognormal price distributions
that are characteristic of the underlying lto process (in either of its forms)

A second approach is to use the log (or multiplicative) form (11 15) In discrete
form this is

InS{tp) ~ InS(n) = v At + oe)vV Al
This leads to
S(tear) = L,nAl+ae(u)\/A_1S(’k) (1120)

which is also a multiplicative model, but now the random coefficient is lognormal
The two methods are different, but it can be shown that their differences tend to
cancel in the long run Hence in practice, either method is about as good as the other

Exampie 11.3 (Simulation by two methods) Consider a stock with an initial price
of $10 and having v = 15% and 0 = 40% We take the basic time intetval to be
I week (Ar = 1/52), and we simulate the stock behavior for 1 year Both methods
described in this subsection were applied using the same random e’s, which were
generated fiom a noimal distiibution of mean O and standard deviation | Table 11|
gives the results The first column shows the random variables dz = e+/Ar for that
week. The second column lists the corresponding multiplicative factors The value P
is the simulated price using the standard method as represented by (11 19) The fourth
column shows the appropiiate exponential factors for the second method, (11 20) The
value P is the simulated price using that method Note that even at the fiist step the
results are not identical Howevet, overall the results are fairly close
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TABLE 11.1
Simulation of Price Dynamics

Week dz U+ odz P v+ odz Py

0 10 0000 100000
1 06476 00802 10 0802 00648 100650
2 -~ 19945 - 00664 100132 -~ 00818 99830
3 -~ 83883  ~ 04211 95916 -~ 04365 95567
4 49609 03194 98980 03040 98517
5 ~ 33892 -~ 01438 97557 ~01592 96961
6 139485 08180 105536 08026 105064
7 61869 03874 109625 03720 109046
8 40201 02672 112554 02518 111827
9 ~ 71118 -~ 03503 108612 03656 107812
10 16937 01382 110113 01228 109144
5 119678 07081 117910 06927 116973
12 ~ 14408 00357 117489 - 00511 116377
13 80590 04913 123261 04759 122049
26 | ~123335 ~06399 131428 06553 129157
39 68140 04222 17 6850 04068 17 3668
52 69955 04323 151230 04169 14.7564

The price process is simulaied by two methods Although they differ siep
by step, the overall resully are sinitar

11.8 ITO’S LEMMA*

N

We saw that the two Ito equations—ifor S{z) and for In §{s)—are different, and that
the difference is not exactly what would be expected from the application of ordinary
caleylus to the transformation of variables from S(7) to In §(¢}; an additional term %03
is required This extra term arises because the random variables have order +/dr, und
hence their squares produce first-order, rather than second-order, efiects There is a
syslematic method for making such transtormations in general, and this is encapsulated
in Ito’s lemma:

Ito’s lemma  Suppose that the 1andom process x is defined by the Ito process

dx(r) =a{x, )dr + b{x, 1) dz (112D
where z is a standmd Wiener process Suppose also that the process y(1) is defined by
vty = FQ,1) Then y(1) satisfies the Ito equation
ﬂ‘: 19°F ,

oF
2050V ar + L ag 122
't T ) LA (122

9F
dy(1) = (——u +
where z is the same Wiener process as in Eq (11 21)

Proof: Ordinary calculus would give a formula similar to (11 22), but with-
out the term with %
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We shall sketch a rough pioof of the full formula We expand v with
respect to a change Av In the expansion we keep terms up to first order in
Ar, but since Ax is of order Az, this means that we must expand to second
order in Ax We find

+A F(x,t +0FA + aFm+ s alF(AA)’
! U— A —AY — hediymmarat e
VA=t o T
L9%F
2 9x?

) aF aF 5
Fx, 0+ a—\_—(a At+bA)+ (T’—AI + (a At +bAZYy
The quadratic expression in the last term must be treated in a special way
When expanded, it becomes a?(Ar)® + 2ab At Az + b*(Az)* The first two
terms of this expression are of order higher than I in Ay, so they can be
dropped The term H*(Az)* is all that remains However, Az has expected
value zero and variance Az, and hence this last term is of order At and cannot
be dropped Indeed, it can be shown that, in the limit as Az goes to zero, the
term (Az)? is nonstochastic and is equal to As Substitution of this into the
previous expansion leads to

aF  19*F , aF

dF
D Ay = Fx L L N VLN,
VA (“’)+(ax“+az+2ax2’) e

Taking the limit and using y = F(x, 1) yields Ito’s equation, (11 22)

Example 11.4 (Stock dynamics) Suppose that S(r) is governed by the geometric
Biownian motion

dS =pSdr+oS8d:

Let us use [to’s lemma to find the equation governing the process F(S(1)) = InS(r)
We have the identifications ¢ = pS and b = 0§ We also have 8F /9§ = 1/S
and 9%F /852 = —1/8 Therefore according to (11 22),

a 1h b
din§ = (E ‘Eﬁ)d""gdé

]
(u - ;ol) dr +odz

which agrees with our earlier 1esult

11.9 BINOMIAL LATTICE REVISITED

Let us consider again the binomial lattice model shown in Figure 118 (which is
identical to Figure 11 1) The model is analogous to the multiplicative model discussed
earlier in this chapter, since at each step the price is multiplied by a random variable
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Sut FIGURE 11.8 Binomial lattice stock model At each
step the stock price § either increases to uS or de-
Su? creases to dS

Sutd

Sud?

Sct

In this case, the random variable takes only the two possible values v and d We can
find suitable values for u, ¢, and p by matching the multiplicative model as closely
as possible This is done by matching both the expected value of the logarithm of a
price change and the vaiiance of the logarithm of the price change.’

To cairy out the matching, it is only necessary to ensure that the random variable
S1, which is the price after the first step, has the correct properties since the process
is identical theteafter Taking S(0) = 1, we find by direct calculation that

E(nS)) = plnu+ (I - p)lnd
var (In §y) = p(Inu)* + (1 — p)(ind)y — [plnu + (1 — p)Ind}

]

p(l = p)(nu ~ Indy*
Therefore the appropriate parameter matching equations are

pU +(1—p)D
p(l = p)U ~ Dy

vAL (1123)
oAt (11 24)

]

1

where U = Inu and D = Ind

Notice that thice parameters are to be chosen: U, D, and p; but there are only
two iequitements Theiefore there is one degree of freedom One way to use this
freedom is to set D = ~U (which is equivalent (0 setting ¢ = 1/u) In this case the

SFor the Jattice. the probability ol attaining the various end nodes of the lattice is given by the binomiat
diswribution  Specifically, the probability of reaching the value Suta”™* is (:) P - pyt, where
H
(:) = (-"”‘TF is the binomial coefficient This disiribution approaches (in a cerain sense) a normal
v H o R)IND
distribusien for large # The logarishm of the final prices is of the form & Inu + (0 — k) Ing. which is linear
in & Hence the distribution of the end point prices can be considered to be nearly lognormal
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equations (11 23) and (11 24) ieduce to
2p— DU = v At
4p(l — p)U° = oAl
If we square the first equation and add it to the second, we obtain
U? =0’ At + (v Ar)?

Substituting this in the first equation, we may solve for p directly, and then U = Inu
can be determined The resulting solutions to the parameter matching equations are

o~

P o=

+ J e —
2" /(R AD +]
Inu = Jo2At + (v Ar)? (11 25)
— oAl + (v A1)?

For small Az (11.25) can be approximated as

Ind

1

14

p=1+3(7) Vo

u o= VA (1126
(1 P L,'U\/E

These are the values presented in Section 11 |

11.10 SUMMARY

A simple and versatile model of asset dynamics is the binomial lattice In this model
an asset’s price is assumed to be multiplied either by the factor « or by the factor d, the
choice being made each period accotding to probabilities p and 1-—p, respectively This
model is used extensively in theoretical developments and as a basis for computing
solutions to investment pioblems

Another broad class of models are those where the asset price may take on values
from a continuum of possibilitics The simplest model ot this type is the additive model
If the random inputs of this model are normal random variables, the asset prices are
also normal random variables This model has the disadvantage, however, that prices
may be negative

A better model is the multiplicative model of the form S(k+1) = u(k)S(k) I the
multiplicative inputs (k) are lognormal, then the future prices S(k) are also lognormal
The model can be expiessed in the alternative form as In Sk + 1) — In S(k) = Inu(k)

By letting the period length tend to zeto, the multiplicative model becomes the
Ito process d In S(1) = vdt + o2dz(r), where z is a normalized Wiener process This
special form of an Ito process is called geometiic Brownian motion This model can
be expressed in the alternative (but equivalent) form dS(z) = (S(1)d¢t + a? §(1)dz (1),
where ¢t = v+ %Uz
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Ito processes are useful representations ol asset dynramies An important tool [or

transforming such processes is Ito’s lemma: If x(r) satisfies an Ito process, and y(1)
is defined by y(r) = F(v, ), Ito’s lemma specifies the process satisfied by y(7)

A binomial lattice model can be considered to be an approximation to an Ito

process The parameters of the lattice can be chosen so that the mean and standard
deviation of the logarithm of the return agree in the two models )

1. (Stock lattice) A stock with current vidue S{0) = 100 has an expected growth jate of
its Jogarithm of v = 12% and a volatility of that growth rate of o = 20% Find suitable
parameters of a binomial lattice representing this stock with a basic elementary period of
3 months Draw the lattice and enter the node values for I year What are the probabilities
of attaining the various final nodes?

2. (Time scaling) A stock price S {s governed by the model
In S(k+ 1) = In S(&) + w(k)
where the period length is | month Let v = E[w(®)} and o = varfw(k)] for all k¥ Now
suppose the basic period length is changed to | year Then the model is
InSCK + 1) = In S(K) + W (K)
where edch movement in K Concsp(;n(is tol yca‘r What is the natural definition of W(K)?

Show that E[W(K)] = 12v and var[W(K)} = 120 Heiice parameters scale in proportion
10 time

3. (Arithmetic and geometric means) Suppose that v, v,  , v, are positive numbers The
mithmetic mean and the geometr jc mean of these numbers are, 1espectively,

- N 1n
vy = Z v; and g = I—[ v
n :
=) i=
() It is always true that v,y > v Prove this inequality for 2 == 2
() M ryy12, o1, are rates of return of a stock in each of # periods, the arithmetic and
geometric mean rates of return are likewise

Vi
P n
r"=ﬁ;“ and lg=<g(l+l;)) -}

Suppose $40 is invested During the first year it increases to $60 and during the second
year it decreases to $48 What uare the arithmetic and geometric mean rates of retirn
over the 2 years?

(¢) When is it appropriate to use these means to describe investment performance?

4. (Complete the square 0) Suppose that u == ¢", where w is normal with expected value i
and variance o® Then

ewe—(m—ﬁﬂz a* dw
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Show that

- H - Ay e, O
lll~—2;—~—-—§;§[w——(ul+ﬂ)] +w+?

Use the fact thar

! = 2
— / eI g )
o

to evaluate T

. (Log vartance o)  Use the method of Exercise 4 to find the variance ot a lognormal variable

in ferms of the parameters ot the underlying normal variable
(Expectations) A stock price is governed by geometric Brownian miotion with = 20
and o == 40 The initial price is ${0) == ! Evaluate the four quaniities
E[in (1], sidev[in S{1)]
E[S(D], stdev[S(1)]

(Applicationt of Ito’s lentma) A stock price S is goveined by

dS = aSdr 4 bSdz
where 2 is 4 standardized Wiener process Find the process ihiat govems

G() = S'7*(n

(Reveise clieck) Gavin Jones was mystified by Ito's femima when he first studied it, so
ke tested it e started with S govemed by

dS = pSdt +oSdz
and tound that Q = In S satisfies

dQ = (u ~ Lo) df + o dz
He ilient applied Ito's lemma to tiis fast equation using the change of vaiiable § = ¢¢
Duplicate his calculations What did he get?
(Two simulations ©) A usetul expansion is
e w4kl 4

Use this to express the exponential in equation (11 20) in Hnear terms of powers of At
up to first order Note that this dilfers from the expression it (11 19), so couclude that ihe
standard form and the multiplicative (or lognormal) form of simulation are difterent even
to first order Show, however, that the expected values of the two expressions ate identical
to first order, and henee, over the long 1un the two methods should produce similar results

(A simulation experiment®) Consider & stock price § govemed by the geometric Brow-
nign motion process

B lod + 30d:
Sy i
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(@) Using At = 1/12 and $(0) = I, simulate several (e, many) years of this process
using either method, and evaluate

; In[S()]

as a function of t Note that it tends to a Himit p What is the theoretical value of this
Hmit?

(5) About how large must ¢ be to obtain two-place accuracy?

(¢) Evaluate

If [ins¢) - piT

as a function of 1 Does this tend to a Hmit? I} so, what is its theoretical vajue?

For a good overview of stock models similar o this chapter, see [1] For greater detail on
stochastic processes see [2], and for general information of how stock prices actuajly behave,
see 1]

There are numerous textbooks on probability theory that discuss the normal distribution
and the lognormal distribution A classic is [4] The book by Wiener [5] was responsible for
inspiring a great deal of serious theoretical and practical work on issues involving Wiener
processes Ito’s lemma was first published in [6] and later in [7]
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BASIC OPTIONS THEORY

n option is the 1ight, but not the obligation, to buy (or sell) an asset under
specified terms Usually there are a spectfied price and a specified pettod of
time over which the option is valid An example is the option to purchase,
for a price of $200,000, a certain house, say, the one you are now renting, anytime
withtn the next yeat An option that gives the right to purchase something is called a
“call option, whereas au option that gives the tight to sell something is called a put.
Usually an option itsell has a price; frequently we refer to this price as the option
premium, to distinguish it {from the purchase or selling price specified in the terms of
the option The premium may be a small fraction of the price of the opttoned asset
For example, you might pay $15,000 for the option to purchase the house at $200,000
It the option holder actually does buy or sell the asset according to the termg of the
option, the option holder is said to exercise the option The original premium is not
recovered in any case
An option is a derivative securtly whose underlying asset is the asset that can be
bought or sold, such as the house in our example The ultimate financial value of an
option depends on the price of the underlying asset at the time of possible exeicise
For example, if the house is worth $300,000 at the end of the year, the $200,000
option is then worth $100,000, because you could buy the house for $200,000 and
immediately sel! i for $300,000 for a profit of $100,000
Options have a long history in commerce, since they provide excellent mecha-
nigms for controlling risk, or for locking up resources at a tninimal fee The following
story, quoted from Atistotle,! is a favorite of professors who write about investments

There is an anecdote of Thales the Milesixn and his {inancial device, which involves
a principle of universal application, but is attributed to hitn on account ot his reputation
for wisdom He was reproached tor his poverty, which was supposed to show that
phitosophy was of no use According to the stoiy, he knew by his skill in the stais

! Aristotle, Polirics, Book | Chapter 11 Jowett ranstation Quoted in Gastineau (1975)
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while it was yet wiater that there would be & great haivest of olives in the coming
year; 50, having a little money, he gave deposits for the use of all the olive presses
in Chios and Miletus, which lie hired at 4 low price because no one bid against him
Wlhen the harvest time came, and many wanted them all at once and of a sudden, he
fet them out at any rate which he pleased, and made a quantity of money Thus le
showed the world that philosophers can easily be rich if they like

Another classic example is associated with the Dutch #dip mania in about 1600.
Tulips weie prized for their beauty, and this led to vigorous speculation and escalation
of prices Put options were used by growers lo guarantee a price for their bulbs, and
call options were used by dealers to assure future prices The market was not regulated
in any way and finally crashed in 1636, leaving options with a bad reputation

Options are now avatlable on a wide assortment of financial instiuments (such as
stocks and bonds) through regulated exchanges However, options on physical assets
ate stilt very important In addition, there are many implied or hidden options in othet
financial situations An example is the option to extract oil from an oil well or leave
it in the ground until a better time, or the option to accept a mortgage guarantee or
renegotiate These situations can be fruitfully analyzed using the theoty of options
explained in this chapter

12.1 OPTION CONCEPTS

The specifications of an option include, first, a clear desciiption of what can be bought
(for a calt) or sofd (for a put) For options on stock, each option is usually for 100
shares of a specified stock Thus a call option on IBM is the option to buy 100 shares
of IBM Second, the exercise piice, or strike price, must be specified This is the
price at which the asset can be purehased upon cxercise of the option For IBM stock
the exercise price might be $70, which means that each share can be bought at $70
Third, the period of time for which the option is valid must be specified—defined
by the expiration date Hence an option may be valid for a day, a week, or several
months There are two ptimary conventions regarding acceptable exercise dates before
expiration An American option allows excrcise at any time belore and including the
expiration date A European option allows exercise only on the expiration date The
teims American and Emropean refer to the different ways most stock options are
structured in America and in Ewrope, but the words have become standard for the
two different types of structures, no matter where they are issued Thete are some
European-style options in Ameiica Foi example, il the option to buy a house in one
year states that the sale must be made in exactly one year and not sooner, the house
option can be referred to as a European option

These four features—the description of the asset, whether a call ot a put, the
exercise price, and the expilation date (including whether American o1 European in
style)—specify the details of an option A final, but somewhat scparate, featwe is
the price of the option itsell—the premiwm If an option is individually tailored, this
premium price is established as pmt of the original negotiation and is part of the
contract If the option is traded on an exchange, the premium is established by the
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- FIGURE 12,1 Options quotations on Gen-
Calt Put eral Motors stock (December 15, 1995). The

= {jrst column shows lhe closing price of the

Option/strike  Exp. Vol. Llast Vol. last stock The other columns give information
about available options Source: The Wail

GM 35 Dec 529 2} Street Journal, December 15 1994
371 35 Jan 93 3% 90§
37% 35 Mar 36 4% 49 |
37% 35 Jum 31 5%
A &
37% 40 Dec 24 L 549 24
37; 40 Jan 407 4 284 2
37% 40 Mar 746 13 40 3
7 1) 7
373 40 Jun 91 2§ 135 33
37% 45 Jan 104 4 4 7
373 45 Mar 30 4
37¢ 45 Jun 110 13 15 7
373 50 Jun 94 4

market through supply and demand, and this premium will vary according to trading
activity

There are two sides to any option: the paity that giants the option is said to write
an option, whereas the party that obtains the option is said to puichase it The party
purchasing an option faces no risk of loss other than the original purchase premium
However, the paity that writes the option may face a large loss, since this party must
buy or sell this asset at the specified terns if the option is excicised In the case of an
exercised call option, il the wiiter does not already own the asset, he must purchase
it in order to deliver it at the specified strike price, which may be much higher than
the curtent manket price Likewise, in the case of an exercised put option, the writer
must accept the asset for the strike price, which could be much lower than the cuirent
market price

Options on many stocks are traded on an exchange In this case individual option
trades are made through a broker who trades on the exchange The exchange clearing-
house guaiantees the performance of all parties Because of the risk associated with
options, an option wiiter is requited to post margin (a security deposit) guaranteeing
performance *

Exchange-traded options are listed in the financial press A listing of GM (Gen-
etal Motors) options is shown in Figure 12 f There are several different options
available for GM stock Some are calls and some are puts, and they have a variety
of strike piices and expiration dates In the figure, the fiist column shows the symbol
for the undeilying stock and the closing piice of the stock itself The second column
shows the exercise (o1 strike) price of the option The third column shows the month in

2 The initial margin level is oftert 505 of the stock vatue of tite aption with a maintenunce level of 25
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which the option expires The exact expiration date during that month is the Saturday
following the third Friday The fourth and filth columns give data on a call, showing
the volume traded on the day reported and the last reported price for that option The
final two columns give the anatogous information for the put All prices are quoted
on a per-share basis, although a single option contract is for 100 shaies

As with futures contracts, options on financial securities are 1arely exercised, with
the underlying security being bought or sold Instead, if the price of the security moves
in a favorable direction, the option price (the premium) will increase accordingly, and
most option holders will elect to sell their options before maturity

There are many details with regard to options trading, governing special situa-
tions such as stock splits, dividends, position limnits, and specific margin requirements
These must be checked before engaging in serious trading of options However, the
present overview is sufficient for understanding the basic mechanics of options

12.2 THE NATURE OF OPTION VALUES

A primary objective of this chapter is to show how to determine the value of an
option on a financial security Such a determination is a fascinating and creative ap-
plication of the fundamental principles that we have studied so far Hence options
theory is important pa:tly because options themselves are important financial instru-
ments, but also partly because options thcory shows how the tundamental principles
of investment science can be taken to a new level—a level where dynamic structure
is fundamental. In this section wc examine in a qualitative manmner the nature of op-
tion prices This will prepare us for the deeper analysis that follows in subsequent
sections
Suppose that you own a call option on a stock with a strike price of K Suppose
that on the expiration date the price of the underlying stock is § What is the value
of the option at that time? It is easy to see that if S < K, then the option value is
zero This is because under the terms of the option, you could exercise the option and
purchase the stock for K, but by not exercising the option you could buy the stock on
the open market for the lower price of § Hence you would not exercise the option
The option is worthless On the other hand, if § > K, then the option does have value
By exercising the option you could buy the stock at a price K and then sell that stock
on the market for the larger price S Your profit would be S — K, which is therefore
the value of the option We handle both cases together by writing the value of the catt
at expiration as
C=max(0, S - K) (12 1)

which means that C is equal to the maximum of the values 0 o1 S — K We therefoie
have an explicit formula for the value of a call option at expiration as a function of
the price of the underlying security S This function is shown in Figure 12 2(a) The
figure shows that for S < K, the value is zero, but for S > K, the value of the option
increases linearly with the price, on a one-for—-one basis

The result is reversed for a put option A put option gives one the right, but
not the obligation, to sell an asset at a given stiike price Suppose you own a put
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K S K S

(a) Calf option (b) Put option
FIGURE 122 Value of option at expiration. A cali has value if S > K A put has value if § < K

option on a stock with a strike price of K In this case il the price S of the stock
at expiration satisfies S > K, then this option is worthless By exercising the option
you could sell the stock for a price K, whereas in the open market you could selt
the stock for the greater price § Hence you would not exercise the option On the
other hand, if the price of the stock is less than the strike price, the put option does
have value You could buy the stock on the market for a price S and then exeicise
the option to scll that same stock for a greatet price K Youw profit would be K — S,
which is therefore the vajue of the option The general formula for the value of a put
at expiration is

P = max (0, K — S) 122y

This function is illustrated in Figure 12 2(b) Note that the value of a put is bounded,
whereas the payoff of a call is unbounded Conversely, when writing a call, the po-
tential for loss is unbounded

We say that a call option is in the money, at the money, or out of the money,
depending on whether $ > Kk, S = K, o1 § < K, respectively The terminology
applies at any time; but at expiration the lerms describe the nature of the option value
Puts have the reverse terminology, since the payofts at exeicise are positive if S < K

Time Value of Options

The preceding analysis focused on the value of an option at expiration This value is
detived trom the basic structure of an option However, even European options (which
cannot be exercised except at expiration) have value at earlier times, since they provide
the potential for future exercise Consider, for example, an option on GM stock with
a strike price of $40 and 3 months to expiration Suppose the curtent price of GM
stock is $37 88 (This situation is approximately that of Figure 121 represented by
the Mairch 40 call ) 1t is clear that there is a chance that the price of GM stock
might increase to over $40 within 3 months It would then be possible to exercise
the option and obtain a profit Hence this option has value even though it is currently
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FIGURE 12.3 Option price curve with vari-
C 6 months ous times to expiration. At a given stock price
S, the value of a call option increases as the
time to expiration increases
3 months
K S

out of the money (In the example repiesented by the figure, the 40 call is selling for
$163)

When there is a positive time to expiration, the value of a call option as a
function of the stock price is a siooth curve tathet than the decidedly kinked curve
that applies at expiration This smooth curve can be determined by estimation, using
data of actual option prices Such estimation shows that the option price curve fot any
given expiration period looks sotnething like the ctives shown in Figute 12 3 In this
figure the heavy kinked line represents the value of a call at expiration The higher
curves conespond to different times to expiration The first curve is for a call with
3 months to expiration, whereas the next higher one is for 6 months The curves get
higher with increasing length to expitation, since additional time provides a greater
chance for the stock to iise in value, increasing the final payoff However, the effect
of additional time is diminished when the stock price is either much smaller or much
greater thau the stiike price X' When the stock price S is much lower than K, tere
is little chance that § will rise above K, so tlie option value 1emains close to zero
When S is much greater than K, there is liule advantage in owning the option over
owning the stock itself

A major objective of his chiapter is to determine a theory for option prices This
theory will imply a specific set of curves, such as the ones shown in Figuie 123

Other Factors Affecting the Value of Options

The volatility of the underlying stock is another factor that iufluetices the value of
an option significantly To see this, inagiue that you owu siilar optious on (wo
different stocks Suppose the prices of the two stocks are both $90, the options have
stiike prices of $100, aud there ate 3 months to expiration Suppose, however, that
one of these stocks is vety volatile and the other is quite placid Which option las
mote value? It is clear that the stock with the higl volatility has the gieatest chance
of risitug above $90 in the short period remaining to expiration, and hence its option
is the more valuable of the two We expect therefore that the value of a call option
incieases with volatility, and we shall verify this fn our theoretical development
What other factors might tufluence the value of an option? One is the pievailing
interest tate (o1 term stiucture pattern) Purchasing a call option is in some way a
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method of purchasing the stock at a reduced price Hence onc saves interest expense
We expect therefore that option prices depend on interest rates

Another factor that would scem to be important is the growth rate of the stock It
seems plausible that higher values of growth would imply larger values for the option
However, perhaps suiptisingly, the growth rate does not influence the theoretical value
of an option The reason for this will become clear when the theoretical formula is
developed

12.3 OPTION COMBINATIONS AND PUT-CALL PARITY

It is common to invest in combinations of options in ordet to implement special
hedging or speculative sttategies The payoft curve of such a combination may have
any number of connected stiaight-line segments This overall payoff cuive is formed
by combining the payolt tunctions defined by calls, puts, and the undetlying stock
itself The process is best illustzated by an example and a corresponding graph

Example 12.1 (A butterfly spread) One of the most interesting combinations of
options is the butterfly spread It is illustrated in Figwe 12 4 The spread is constiucted
by buying two calls, one with strike price Ky and another with strike price K3, and
by selling two units of a call with strike price Ka, where K; < K3 < K3 Usually K2
is chosen to be near the current stock price The figure shows with dashed lines the
profir (including the payolf and original cost) associated with each of the components
The overall profit function of the combination is the sum of the individual component
functions This particular combination yields a positive profit if the stock price at
expitation is close to Ka; othetwise the loss is quite small The payolf of this spread
is obtained by lifting the curve up so that the hoiizontal portions touch the axis, the
displacement distance coiresponding to the net cost of the options

FIGURE 12.4 Profit of butterfly spread. This
spread is formed by huying calls with sirike
prices Ki and Ky and writing two units of a
calt at K3 This combination is useful if one be-
lieves that the underlying stock price will stay
in a region near K,
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The main point here is that by forming combinations of options and stock it is
possible to approximate virtually any payoff function by a sequence of straight-line
segments The cost of such a payoff is then just the sum of the costs of the individual
components

Put-Call Parity

For Eutopean options there is a simple theoretical relationship between the prices of
corresponding puts and calls The relationship is found by noting that a combination
of a put, a call, and a risk-free loan has a payof! identical to that of the underlying
stock

The combination can be easily imagined: buy one call, sell one put, and lend an
amount d X The combination of the first two has a payoff that is a straight line at 45°,
passing through K on the horizontal axis By lending ¢,K, we obtain an additional
payoff of K, which lifts the payoff line up so that it is now a 45° line originating
at the origin This final payoff is exactly that of the stock itself, so it must have the
value § of the stock In other words,

C—~P4+dK=3S5.

(See Exercise 3 for more detail }

Put—call parity Let C and P be the prices of a Exvopean call and a Ewiopean put,
botlr with a snike price of K and both defined on the samne stock with price S Put-call
parity states that

C~P+dK =S

where d is the discount factor 1o the expiration date

Example 12.2 (Parity almost) Consider the GM options of Figure 12 1, and focus
on the two 35 March options (with 3 months to expiration) These have C = 425
and P = 1 00, respectively The interest rate for this period is about 5 5%, so over
3 months we have d == 1/(1 + 055/4) = 986. Thus,

C~P+dK=425~10+ 986 x3500=3778

This is a close, but not exact, match with the actual stock price of $37 88 There are
several possible explanations for the mismatch One of the most important is that the
stock quotes and option quotes do not come from the same sources The stock price
is the closing price on the stock exchange, whereas the option prices are from the last
traded options on the options exchanges; the last trades can occur at different times
Dividends also can influence the parity relation, as discussed in Exercise 2
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12.4 EARLY EXERCISE

An American option offers the possibility of eatly exeicise, that is, exercise before the
expiiation date of the option We prove in this section that for call options on a stock
that pays no dividends prior to cxpitation, early exercise is never optimal, provided
that prices are such that no arbittage is possible

The 1esult can be seen intuitively as follows Suppose that we ate holding a call
option dt time r and expiration is at time 7 > ¢ If the current stock price S(r) is
less than the suike price K, we would not exercise the option, since we would lose
money If, on the other hand, the stock price is greater than K, we might be empted
to exercise However, il we do so we will have to pay K now to obtain the stock If
we hold the option a litde longer and then exercise, we will still obtain the stock lor a
price of K, but we will have earned additional interest on the exercise money K -—-in
fact, if the stock declines below K in this waiting period, we will not exercise and be
happy that we did not do so ealies

12.5 SINGLE-PERIOD BINOMIAL OPTIONS THEORY

We now turn to the issue of caleulating the theoretical value of an option—an area
of work that is called options pricing theory. There are scveial approaches to this
probiem, based on different assumptions about the market, about the dynamics of
stock price behavios, and about individual preferences The most important theoties
are based on the no arbitiage principle, which can be applied when the dynamics of
the underlying stock take certain forms The simplest of these theosies is based on
the binomial model of stock price fluctuations discussed in Chapter 1 This theory
is widely used in practice because of its simplicity and case of calculation It is a
beautiful culmination of the piinciples discussed in picvious chapters

The basic theoty of binomial options pricing has been hinted at in our carlier
discussions We shall develop it hete in a self-contained manner, but the reades should
notice the connections to eailier sections

We shall first develop the. theory for the single-petiod case A single step of a
binomial process is all that is used Accordingly, we suppose that the initial price of
a stock is § At the end of the period the price will either be 1S with probubility p o
dS with probability I — p We assume 1 > ¢ > 0 Also at every period it is possible
to borrow or lend at a common sisk-free interest 1ate 1+ We let R = 1 4+ To avoid
arbitrage oppoitunitics, we must have

> R>d

To see this, suppose R > 1 > ¢ and 0 < p < I Then the stock perfoims woisc
than the risk-free asset, even in the “up” bianch of the lattice Hence one could shoit
%1 00 of the stock and loan the proceeds, theieby obtaining a profit of eithes R —u
ot R~ d, depending on the outcome state The initial cost is zero, but in citha case
the profit is positive, which is not possible if there ate no atbitrage opportunities A
simitar argument jules out « > o/ > R
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u§ FIGURE 12,5 Three related [attices, The
stock price, the value of a risk-free loan,
s and the value of a call option all move
together on a common lattice, represented
max(us — K, 0} here as three separate {aitices
ds
C
R
max(d$ — K, 0)
1
R

Now suppose also that theze is a call option on this stock with exercise price K
and expiration at the end of the period To find the value of the call option, we use
a no-arbilrage argument by reterring to Figure 12 5. This figure shows the binomial
fattices for the stock price, the value of a risk-free asset, and the value of the option
All three of these lattices have common ares, in the scnse that all move together along
the same arcs If the stock price moves along the upward arc, then the risk-free asset
and the call option both move along their upward arcs as well The risk-free value is
deterministic, but this is treated as if it were a (degenerate) derivative of the stock by
just making the value at the end of each arc the same

Assuming that we know the stock price S, then all values of these one-step
lattices are known except the value of the call C This value will be determined from
the other values

The insight that we use is to note that each of the fattices on the left has only
two possible outcomes By combining various proportions of these two lattices, we
can construct any other pattern of outcomes In particular, we can construct the pattern
corresponding to the outcomes of the option

Let us denote

C, = max (u§ — K, 0) (12.3)
Cy = max (dS - K, () (124
To duplicate these two outcomes, let us purchase x dollars worth of stock and b dollars
worth of the risk-free asset At the next time period, this portfolio will be worth either

ux+ Rb or dx 4+ Rb, depending on which path is taken To match the option outcomes
we therefore requize

it

ux + Rb = Cy (12.5q)
di+ Rb = Cy (12 5b)
To solve these equations we subtract the second from the first, obtaining
= ———C" - il
u—d

From this we easily find
Cy—~ux uCy—~dCy

b= " Raza
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Combining these we find that the value of the portfolio is
Cy~Cy | uCy—dC,
w—d Rt~ d)

1 R—(/C_|u—RC
TR\u-d "Tu=a"

We now use the comparison piinciple (01, equivalently, the no-aibitrage princi-
ple) to assett that the value v+ & must be the value of the call option € The reason
is that the portfolio we constiucted produces exactly the same outcomes as the call
option Ii the cost of this portfolio wete less than the price of the call, we would never
purchase the call Indeed, we could make arbitrage profits by buying this portfolio and
selling the call for an immediate gain and no future consequence If the prices were
unequal in the reverse direction, we could just reverse the argument We conclude
therefore that the price of the call is

le Rv—(/c_'_u——RC
T R\u-d " u=a

The portfolio made up of the stock and the risk-free asset that duplicates the
outcome of the option is otten refeired to an a replicating portfolio. It replicates the
option This replicating idea can be used to find the value of any secuwity defined on
the same lattice; that is, any security that is a derivative of the stock

Thete is a simplified way to vicw equation (12 6) We define the quantity

R—d
g =

x4+ b o=

(12 6)

(127

t—d
From the relation 1 > R > d assumed earlien, it follows that 0 < ¢ < I Hence ¢ can
be considered to be a probability Also (12 6) can be written as [ollows:

Option pricing formula The value of a one-period call option on a stock governed
by a binomial lardce is

1 .
C= E[{’C“ + (1~ q)C] (128)

Note that (12 8) can be interpieted as stating that C is found by taking the ex-
pected value of the option using the probability ¢, and then discounting this value
according to the risk-free 1ate The probability ¢ is theiefore a risk-neutral proba-
bility. This proccdute of valuation wotks lor all securities In fact ¢ can be calculated
by making sute that the risk-neutial formula holds for the underlying stock itself; that
is, we want

S == —I%[(/HS + (1 —g)dS$]

Solving this equation gives (127)
As a suggestive notation, we wiite (12 8) as

az~n=%ﬂﬂﬂl
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Here C(T) and C(T — 1) are the call values at T and T — 1, respectively, and £
denotes expectation with respect to the risk-neutral probabilities ¢ and | — g

An important, and perhaps initially surpiising, feature of the pricing formula
(12 6) is that it is independenr of the probability p of an upward move in the lattice.
This is because no trade-off among probabilistic events is made The value is found
by perfectly matching the outcomes of the option with a combination of stock and the
risk-free asset, Probability never enters this matching calculation.

This derivation of the option pticing formula is really a special case of the risk-
neutral pricing concept discussed in Chapter 9 At this point it would be useful for the
reader to review that earlier section

12.6 MULTIPERIOD OPTIONS

We now extend the solution method to multiperiod options by working backward one
step at a time

A two-stage lattice representing a two-period call option is shown in Figure 12.6
It is assumed as before that the initial price of the stock is §, and this price is modified
by the up and down factors # and d while moving through the lattice The values
shown in the lattice are those of the corresponding call option with strike price K and
expitation time cotresponding to the final point in the lattice The value of the option
is known at the final nodes of the lattice In particular,

Cue = max (1°S ~ K, 0) (12 9a)

Cua = max (udS ~ K, 0) (1290)

Caa = max (d°S ~ K,0) (12 9¢)
We again define the risk-neutral probability as
_R-d
u—d

where R is the one-period return on the risk-fiee asset Then, assuming that we do
not exercise the option eatly (which we already know is optimal, but will demonstrate

C, FIGURE 12.6 Two-period option The value is found by

uy
working backward a step at a time

C Cua

Cara
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again shortly), we can find the values of €, and Cy4 from the single-period calculation
given earlier Specifically,

I
Cy = E[(IC““ + (1~ q)Ciul] (12 10)

| S
Cy = E[q('u:l + (1 -~ q)Cyq] (21ih

Then we find C by another application of the same risk-neutral discounting formula
Hence,

1
C = E[(ICU + (- C]

For a lattice with more periods, a similar procedure is used. The single-period, risk-
free discounting is just repeated at every node of the lattice, starting from the final
period and working backward toward the initial time

Example 12.3 (A 5-month call) Consider a stock with a volatility of its logarithm
of ¢ = 20 The current price of the stock is $62 The stock pays no dividends
A certain call option on this stock has an expiration date 5 months from now and
a strike price of $60 The current rate of interest is 10%, compounded monthly We
wish to determine the theoretical price of this call using the binomial option ap-
proach

First we must determine the parameters for the hinomial modet of the stock price
fluctuations, We shall take the period length to be I month, which means Ar = /12
The parameters are found from Eqs (11 1) to be

u = eoVE = 105943
d = e~V 94390
R =1+ /12 = 100833

i

t

Then the risk-neutral probability is
g = (R~d)/(t —d)= 55770

We now form the binomial lattice corresponding to the stock price at the be-
ginning of each of six successive months (including the current month) This lattice
is shown in Figure 12.7, with the number above a node being the stock price at that
node Note that an up followed by a down always yields a net multiple of 1

Next we calculate the call option price We start at the final time and enter the
expitation values of the call below the final nodes This is the maximum of 0 and
S — K For example, the entry for the top node is 82 75 — 60 = 22,75

The vatues for the previous time ate found by the single-step pricing relation
The value of any node at this time is the discounted expected value of two succes-
sive values at the next time The expected value is calculated using the risk-neutral
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8275 FIGURE 12.7 5-month calf using a bine-
2275 miaf Jattice. The upper numbers are the
stock prices, the lower numbers the op-
tion values The options values are found

by working backward through the fattice
7372

1372

65 68
568

5852

5214
0

46 45
0

probabilities ¢ and I — ¢ For example, the value at the top node is [ 5577 x 22 75 +
(1 — 5577) x 1372]/1 00833 = 18 60
We work toward the left, one period at a time, until finally the initial value is
reached In this case we conclude that the price of the option computed this way is
$5.85
Note that the entire process is independent of the expected growth rate of the
stock This value only enters the binomial model of the stock through the probability p;
but this probability is not used in the option calculation. Instead it is the risk-neutral
probabitity ¢ that is used Note, however, that this independence results {rom using
the small Ar approximation for parameter matching And indeed, in practice this
, “approximation is almost invariably used (even for Ar equal to | yea) If the mote
general matching formula were used, the growth rate would (slightly) influence the
result

No Early Exercise*

In the preceding examnpie we assumed (rightly) that the option would never be exer-
cised early We can prove this ditectly from the binomial equations From the basic
payoff stiucture we see that

Con 2 s — K

Chy > udS—K

Cu 2 d’S - K
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Hence,
Cy 2 (112gS + ud(l — q)S — K |/R
= u[qu + (f - q)d]S/R -~ K/R
> nu§ ~ K
Likewise,
Cy>dS~K

If the option were exercised at the end of the first period of the two-peiiod lattice
shown in Figure {2.6, we would obtain «§ — K o1 dS ~ K, depending on which node
was active at the time These inequalities show that the value of the option at the end
of one period is greater than the amount that would bc obtained by exercise at that
period Hence we should not exercise the option

If the lattice had more periods, these inequalities would extend to the next
forward period as well Hence, in general, by an inductive process it can be shown
that it is never optimal to exercise the option

The argument against early exercisc does not hold for all options; in some
cases an additional operation must be incorporated in the recursive process of value
calculation This is explained in the next section

12.7 MORE GENERAL BINOMIAL PROBLEMS

The binomial tattice method for calculating the value of an option is extremely simple
and highly versatile For this 1eason it has become a common tool in the investment
and financial community The method is simplest when applied to a call option on a
non-dividend-paying stock, as illustrated in the previous section This section shows
how the basic tethod can be extended to more complex situations

Put Options

The method for calculating the values of European put options is analogous to that for
call options The main difference is that the terminal values for the option are different
But once these are specified, the recuisive procedure works in a similar way

For an American put, ealy exercise may be optimal This is easily accounted
for in the recursive process as lollows: At each node, first calculate the value of the
put using the discounted 1isk-neutral formula; then calculate the vatue that would be
obtained by immediate exeicise of the put; finally, select the larger of these two values
as the value of the put at that node

Example 12.4 (A 5-month put} We consider the same stock that was used to evalu-
ate the 5-month call option of Example 12.3, but now we evaluate a 5-month Ametican
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N FIGURE 12.8 Caiculation of a 5-month put op-
6200 6568 6959 7372 7811 8275 (ion price. The put values in the lower portion of

5852 6200 6568 6959 7372 e figure are found by working backward Bold-
5524 5852 6200 6568 face entries indicate points where it is optimal to

Stock price 5214 5524 5852 cexercise the option
4921 5214
4645
156 06f 0i2 000 000 000
279 123 028 000 000
480 245 065 000
Put option 786 476 148
10.79  7.86
13.55

put option with a strike price of K = $60 Recall that the critical parameters were R =
1.008333, ¢ = 55770, u = 105943, and ¢ = 94390 Binomial lattice calculations
can be very conveniently carried out with a spreadshect program Hence we often
show lattices in spreadsheet form rather than as graphical diagrams This allows us
to show larger lattices in a restricted space, and it also indicates more dircctly how
calculations are organized.
The binomial lattice for the stock price is shown in the top portion of Figure 12 8
In this figure an up move is made by moving directly to the right, and a down move
is made by moving to the right and down one step
To calculate the value of the put option, we again work backward, construct-
ing a new lauice below the stock price latice The final values (those of the last
column) are, in this case, the maximum of 0 and X — § We then work toward the
left, one column at a time To find the value of an element we first calculate the
_discounted expected value as before, using the risk-neutral probabilities Now, how-
ever, we must also check whether this value would be exceeded by K — S, which is
what could be obtained by exercising the option at the current point We assign the
larger of the two values to this current node For example, consider the fourth entry
in the second to last column The discounted expected value there is [.5577 x 148 +
(1 — 5577) x 7 86]/1 00833 = 4 266 The exercise value is 60 — 55 24 =476 The
larger of these is 4 76, and that is what is entered in the value lauice If the larger
value is obtained by exercising, we may also wish to indicate this on the lattice,
which in our figure is done by using boldface for the entries corresponding to exercise
points (Alternatively, a separate lattice consisting of (s and I's can be constructed
to indicate the exercise points ) In our example we see that there are several points at
‘which cxercise is optimal The value of the put is the first entry of the lattice, namely,
$1 56

Intuitively, eally exercise of a put may be optimal because the upside profit is
bounded Cleatly, tor example, if the stock price falls to zero, one should exercise
there, since no gieater profit can be achieved A continuity argument can be used to
infer that it is optimal to exeicisc if the stock price gets close to zero
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Dividend and Term Structure Problems*

Many othet problems can be tieated with the binomial jattice model by allowing
the parameters of the model to vary from node to node This docs not change the
basic stiucture of the computational method It merely means that the risk-neutral
probabilities and the discount factor may differ trom period to petiod

One example is the evaluation of a call option on a stock that pays a dividend
If the dividend is proportional to the value of the stock—say, the dividend is §$ and
is paid at time k—then in the stock price lattice we just change the factors « and
d for the period ending at & to u(} —8) and d(1 — 8) If the dividend is known in
advance to be a fixed amount D, then this technique will not work directly, but the
Iattice approach can still be used (See Exercise 5)

The parameteis also vary when the interest rate is not constant In this case the
appropriate single~period rate for a given period (the implied short rate) should be
used This will change the value of R and hence also the value of ¢

o
=

Futures Options”

Are we ready to consider a futures option—that is, an option on a futures contract?
This may at first sound complicated; but we shall find that futures options are quite
simple to analyze, and study of the analysis should help develop a fuller understanding
of the risk-neutral pricing process The best way to study the analysis is to consider
an example

Example 12.5 (A futures contract) Suppose that a certain commodity (which can
be stored without cost and is in ample supply) has a current price of $100, and the price
process is described by 2 monthiy binomial jattice with parameters w = 1 02, d = 99,
and R = 1.01 The actual probabilities are not important for our analysis This lattice,
for 6 months into the tuture, is shown in the upper left-hand corner of Figure 129 We
can immediately cajculate the risk-neutral probabilities to be ¢ = (R ~d)/(u —d) = %
and | — g = %

Let us compute the lattice of the coresponding futures prices for a futures
contract that expires in the sixth month This lattice is shown in the lower left-hand
side of Figure 129 One way to compute this lattice is to use the result of Chapter 10
that the futures price is equal to the current commodity price amplified by interest
rate growth over the remaining period of the contiact Hence the futures piice at time
zeto is $100(1 01)% = $106 15, as shown in the lattice The tutures price for any node
in the lattice can be found by the same technique: just multiply the corresponding
commodity price by the factor of interest rate growth for the remaining time

The futures price can also be found recursively by using the risk-neutral prob-
abilities We know that the final futures price, at month 6, must be identical to the
price of the commodity itself at that time, so we can fill in the last column of the array
with those values Let us denote the futures price at the top of the previous column,
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0 1 2 3 4 5 6 0 1 2 3 4 5 6
10000 10200 10404 10612 10824 11041 11262 416 505 604 712 825 942 1062
9900 10098 10300 10506 10716 10930 250 321 407 507 617 7130
98 01 9997 10197 10401 10609 P4 159 220 302 409
Commodity price 9703 9897 10095 10297 Commodity 028 042 064 097
9606 9798 9994 option 000 000 000
9510 9700 000 000
94 15 000
10826 10934 11042 1151 11262 428 521 6.26 734 842 951 1062
10508 10612 10717 10823 10930 254 327 415 517 623 730
10199 10300 10402 10505 10609 P15 161 222 305 409
9997 10096 10196 10297 Futures 028 042 064 097
9799 9896 9994 option 000 000 000
9605 9700 000 000
94 15 000

FIGURE 12.9 Lattices associated with a commodity. The upper left lattice is the price latlice of a commodity All
other laltices are compuied from it by backward risk-neutral evaluation

at time 5, by F If one took the long side of a one-period contract with this assigned
price, the payof! in the next period would be either 11262— F o1 109 30— F, depend-
ing on which of the two nodes was attained These two values should be multiplied
by ¢ and I — ¢, respectively, and the sum discounted one period to find the initial
value, at time 5, of such a contract But since futures contracts. ate arranged so that the
initial value is zeio, it follows that (11262~ F) + (1 ~ ¢)(109 30 ~ F) = 0, which
gives F = ql1262+4 (1 —¢)109 30 In other words, F is the weighted average of the
next period’s prices; the weighting coefficients are the risk-neutial probabilities We
do not discount the average

This process is continued backward a column at a time, computing the weighted
average (or expected value) using the 1isk-neutial probabilities The final result is again
106 15

Notice that the otiginal commodity price lattice also can be rcconstructed back-
ward by using iisk-neutial pricing Given the final prices, we compute the expected
values using the 1isk-neutral probabilitics, but now we do discount to find the value
at the previous node Working backwaid we fill in the entire Iattice, duplicating the
original figures in the upper left-hand corner

The backward process for calculating the futuzes prices and the backward process
for computing the commodity prices we identical, except that no discounting is applied
in the calculation of futures prices Hence futures prices will be the same as the
commodity prices, but inflated by interest rate giowth

Example 12.6 (Some options) Now let us consider some options related to the
commodity in Example 12 5. First let us consider a call option on the commodity
itself, with a strike price of $102 and expiration in month 6 This is now easy for
us to calculate using binomial lattice methodology, as shown in the upper right-hand
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part of Figure 129 We just fill in the finai column and then work backward with the
risk-neutral discounting process The fair price of the option is $4 16

Next let us consider a cail option on a tutures contract with a strike price of $102
11 this option is exercised, the call writer must deliver a futures contract with a futures
price of $102, but matked to market Suppose the actual futwres price at the time of
exercise is $11042 Then the writer can puirchase the futures contract (at zero cost)
with the futures price $110 42 and deliver this contract together with the difference
of $11042 — $102 00 = $8 42 to the option holder This paymient compensates for
the fact that the writer is delivering a contract at $110 42, instead of at $102 00 as
promised In other words, il the option is exercised, the call holder obtains a current
futures contract and cash equal to the ditference between the current futures price and
the option strike price

We can compute the value of such a call in the same manner as other calls,
as shown in the lattice in the lower right-hand portion of Figure 129 At cach node
we must check whether or not it is desirable to exercise the option This is done by
seeing whether the corresponding futures price minus the strike price is gieater than
the risk-neutral value that would be obtained by holding the option If it is optimal to
exercise the option, we record the option value in boldface The option price is found
to be $4 28 Notice that even though the final payott values are identical for the two
options The futures option has a higher value because the higher inteymediate futures
prices lead to the possibility of early exercise

12.8 EVALUATING REAL INVESTMENT OPPORTUNITIES

Options theory can be used to evaluate investment opportunities that are not pute
financial instruments We shall illustrate this by again consideting our gold mine lease
problems Now, however, the price of gold is assumed to fluctuate randomly, and this
fluctuation must be accounted for in our evaluation of the lease prospect

Example 12.7 (Simplico gold mine) Rccali the Simplico gold mine from Chapter 2
Gold can be extiacted from this mine at a 1ate of up to 10,000 ounces per year at
a cost of $200 per ounce Cuirently the market price of gold is $400 per ounce, but
we 1ecognize that the price of gold fluctuates randomly The term structure of interest
rates is assumed to be flat at 10%  As a convention, we assume that the price obtained
for gold mined in a given year is the price that held at the beginning of the yea;
but ali cash flows occur at the end of the year We wish to determine the value of a
10-year lease of this mine

We represent future gold prices by a binomial lattice Each year the price either
incresses by a factor of 1 2 (with probubility 75) o1 decreases by a factor of 9 (with
probability 25) The resulting lattice is shown in Figuie 12 {0

How do we solve the problem of finding the lease value by the methods de-
veloped for options pricing? The trick is to notice that the gold mine lease can be
regarded as a financial instrument It has a value that fluctuates in time as the price
of gold fluctustes Indeed, the value of the mine lease at any given time can only be
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0 1 2 3 4 5 6 7 8 9 10

4000 4800 5760 6912 8294 9953 11944 14333 17199 20639 24767
3600 4320 5184 6221 7465 8958 10750 12899 15479 18575

3240 3888 4666 5599 6718 8062 9675 11610 13931

2916 3499 4199 5039 6047 7256 8707 10449

2624 3149 3779 4535 5442 6530 7836

Gold price (doliars) 2362 2834 3401 4081 4898 5877
2126 2551 3061 3673 4408

1913 2296 2755 3306

1722 2066 2479

1550  186.0

1395

FIGURE 12 10 Gold price lattice. Each year the price either increases by a factor of 1 2 or decreases
by a factor of 9 The resulting possible values each year are shown in spreadsheet form

a function of the price of gold and the interest rate (which we assume is fixed) In
other words, the lease on the gold mine is a derivative instrument whose undetlying
security is gold Therefore the value of the lease can be entered node by node on the
gold piice lattice

The lease values on the lattice are determined easily for the final nodes, at the
end of the 10 years: the values are zero there because we must return the mine to the
owners At a node representing 1 year to go, the value of the lease is equal to the profit
that can be made from the mine that year, discounted back to the beginning of the
year For example, the value at the top node for year 9 is 10,000(2,063 9~200)/1 | =
16 94 million For an earlier node, the value of the lease is the sum of the profit
that can be made that year and the risk-neutral expected value of the lease in the
next petiod, both discounted back one period The risk-neutral probabilities are ¢ =
1= 9/02~9) = %, and | -g = -li The lease values can therefore be calculated
by backward recursion using these values (At nodes where the price of gold is less
than $200, we do not mine ) The resulting values are indicated in Figure 12.11 We
conclude that the value of the lease is $24,074,548 (showing all the digits)

0 1 2 3

FIGURE 12 11 Simplico goid mine. The value
4 5 6 7 8 9 1 of the lease is found by working backward If

241 278 312 34
179 207 23

129 45

8

Lease value (milfions)

2 365 377 371 341 278 169 00 the price of gold is greater than $200 per ounce,

il is profitable 1o mine; otherwise no mining is
3 252 264 262 243 200 i23 00 undenaken

0 67 179 181 170 41 87 00

8 104 15 120 115 97 61 00
56 67 74 T4 64 441 00
32 40 43 39 26 00

4 20 21 15 00

04 07 07 00

00 01 00

00 00

00
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Muny readers will be able to see from this example that they have a deeper
understanding of investment than they did when they began to study this book Earlier,
in Chapter 2, we discussed the Simplico gold mine under the assumption that the price
of gold would remain constant at $400 over the course of the lease We also assumed
a constant 10% interest rate These assumptions, which are fairly commonly employed
in problems of this type, were probubly not 1egarded as being seriously incongruous
by most readers Now, however, we see thai they are not just a simplification, but an
actual inconsistency If 1he price of gold weie known to be constant, gold would act
as a risk-fiee asse1 with zero 1ate of return This is incompatible with the assumption
that the risk-free rate is 10% Indeed, in our lattice of gold prices we must select «,
d, and R such that i > R > d

Now that we have “mastered” the Simplico gold mine, it is time to move on to
even greater challenges. (It you think you have 1eally mastered the Simplico mine, try
Exercise 8)

Example 12.8 (Complexico gold mine*)*> The Complexico gold mine was discussed
in Chapter 5 In this mine the cost of extraction depends on the amount of gold
remaining Hence if you lease this mine, you must decide how much to mine each
period, taking into account that mining in one period affects future mining costs We
also assume now that the piice of gold fluctuates accoiding to the binomial lattice of
the previous example

The cost of extraction in any year is $500z*/x, where x is the amount of gold
remaining at the beginning of the year and z is the amount of gold extracted in ounces
Initially there are xo = 50,000 ounces of gold in the mine We again assume that the
term structure of interest raes is flat at 10%. Also, the profit {rom mining is determined
on the basiy of the price of gold at the beginning of the period, and in this example
all cash flows occun at the beginning of the period

To solve this problem we must do some pieliminary analysis At the final time
the value of the lease is clearly zero If we are a1 a node representing the end of
year 9, we mus! determine the oplimal amount of gold to mine during the tenth year
Accordingly, we must compute the profit

Vo(vg) = max(gzy — 50073 /x9)
R

where g is the price of gold at that particular node From the calculations of Exam-
ple 55 we know that the maximization gives

gy

2,000
This shows that the value of the lease is proportional to .xg, the amount of gold
remaining We thevefore wiite Vo(vg) = Koxg, where

2

Vo(vg) =

Ky = ——=.
2,000

*This is @ more difficult exanple which should be studied only after you are fairly comfortable with the
smalerial of this chupier
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0 1 2 3 4 5 6 7 8 9 10

3244 3938 4781 5808 7066 8623 10587 13134 16561 21299 00
2725 3299 3986 4807 5784 6944 8317 9950 11980 00
2258 2722 3270 3907 4634 5429 6219 6739 00

1828 2189 2600 3052 3511 3873 3791 00

1436 1695 1970 2225 2373 2132 00

K-value 081 1244 1381 1428 1199 00
769 841 846 675 00

503 495 379 00

287 213 00

120 00
00
FIGURE 12,12 Complexico gold mine solution. The value of the mine is proportional to the amount

of gold remaining in the mine The proportionality factor K is found by backward recursion

We set up a lattice of K values with nodes coiresponding to various gold prices We
put Kip = 0 for all elements in the last column and put the values of Ky in the ninth
column In a simila way, following the analysis of the earlier example, we find that
for a node at time 8,

Vi (xg) = max(gzs — 500z/x5 + d Ry x (xg — 25)]
X3
where
Ry=qKy+ (1 ~q)K;

and where Ky is the value on the node directly to the right, and Kj is the value on
the node just below that This leads to

(& —dRy)xg
= 7000
and Vg(xg) = Kgxg, where
_ g Ryr? .
Ke =00 +Xo/R

Again, there will be a different value of Ky for each node at period 8 We work
backward with this smme formula to complete the lattice shown in Figure 1212,
obtaining Ko = 324 4 The value of the lease s then found as Vy = 50,000 x Ko =
$16,220,000

Real Options

Sometimes options are associated with investment opportunities that are not financial
instruments For example, when operating a factory, a manager may have the option
of hiring additional employees or buying new equipment As another example, if one
acquires a piece of land, one has the option to drill for oil, and then later the option
of extracting oil it oil is found In fact, it is possible to view almost any process that
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allows control as a process with a seiies of ope:ational options These operational
options aie often tesmed real options to cmiphasize that they involve seal activities

"ot real commodities, as opposed to purely financidl commoditics, as in the case, tol
instasice, of stock options The teim teal oprion when applied to a general investment
problem is also used to imply that options theoty can (and should) be used to analyze
the problem

Example 12.9 (A plant manager’s problem) Some manufactuting plants can be
described by a fixed cost per month (for equipment, management, and tent) and a
variable cost (for material, labor, and utilities) that is proportional to the level of
production The total cost is thetefore 7 = F + Vx, where F is the fixed cost, V is
the rate of vaiiable cost, and v is the amount of product produced. The profit of the
plant in a month in which it opeiates at level x is # = px — F — Vx, where p is
the martket price of its product Clearly, if p > V, the firm will operate at v equal to
the maximum capacity of the plant; if p < V, it will not operate Hence the fiim has
a continuing option to opeiate, with a strike price equal to the tate of variable cost
(The Simplico gold mine in Example 12 7 is of this type )

Real options usually can be analyzed by the same methods used to analyze
financial options Specifically, one sets up an apptopriate representation of uncertainty,
usually with e binomial lattice, and wotks backward to find the value This solution
process is really more fundamenta! than its particular application to options, so it
seemns unnecessary and sometimes artificial to force all opportunities for conttol into
options—real o1 otherwise Instead, the seasoned analyst takes problems as they come
and attacks them directly

The Simplico mine can be used to illustiate a complex real option associated
with the timing of an investment

Example 12.10 (Enhaneement of the Simplied mine*) Recall that the Simplico
mine is capable ot producing 10,000 ounces of gold per yem at a cost of $200 per
ounce This mine already consists of a whole series of 1eal options—namely, the
yearly options to cairy out mining operations In fact, the value of the lease can be
expressed as a sum of the values of these individual options (afthough this viewpoint
is not particularly helpful) In this example we wish to consider another option, which
is truly in the spirit of a real option

Suppose that there is a possibility of enhancing the production tate of the Sim-
plico mine by purchasing a new mining machine and making some structural changes
in the mine This enhancement would cost $4 million but would raise the mine ca-
pability by 25% to 12,500 ounces per year, at a total opetating cost of $240 per
ounce

This enhancement alternative is an option, since it need not be cauied out
Furtheimore, it is an option that is available throughout the term of the lease The
enhancement can be undertaken (that is, exercised) at the beginning of any year,
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and once in place it applies to all future years We assume, however, that at the
termination of the lease, the enhancement becomes the property of the original mine
owner

Figure 12.13 shows how to calculate the value of the lease when the enhance-
ment option is available We first calculate the value of the lease assuming that the
enhancement is already in place This calculation is made by constructing the upper
fattice of the figure, using exactly the same technique used for the Simplico mine of
Example 12 7, but with the new capacity and operating cost figures The value of the
mine under these conditions is $27 0 million. This figure does not include the cost of
the enhancement, so if we were to enhance the mine at time zero, the net value of the
fease would be $23.0 million, which is somewhat less than the value of $24 1 found
earlier without the enhancement Hence it is not useful to carry out the enhancement
immediately

To find the value of the enhancement option, we construct another lattice, as
shown in the lower part of the figure Here we use the original parameters for pro-
duction capability and operating cost: 100,000 ounces per year and $200 per ounce
However, at each node, in addition to the usual calculation of value, we see if it would
be useful to jump up to the upper lattice by paying $4 million Specifically, we first
calculate the value at a node in the lower lattice in the normal way using risk-neutral
probabilities Then we compare this value with the value at the corresponding node in
the upper lattice minus $4 million We then put the larger of these two values at the
node in the lower lattice

0 1 2

FIGURE 12.13 Option to enhance mine op-

3 4 5 6 7 8 9 10 eration. The top array is computed just as for

270 318 364 404 435 452 448 414 339 207 00

195 233
135

the Simplico mine, but with parameters of en-
hancement The lower array refers to the top

266 293 310 312 292 241 149 00 one to determine when to carry out the en-
163 187 204 210 200 168 105 00 hancement

86 108 125 134 432 113 72 00
49 65 77 80 72 47 00

Lease value 23 34 41 41 28 00
assuming enflancement 08 t3 18 14 00
in place 01 02 04 00
00 00 00

00 00

00

246 286 326 364 395 412 40.8 374 299 169 0
180 209 235 256 27.0 272 252 201 123 0

129 150 167 ¥79 181 170 141 87 0

88 104 115 120 iS5 97 61 0

56 67 74 T4 64 41 0

Lease with option 3f 40 43 39 26 O
for enhancement 13 20 21 15 0
00 07 07 0

00 01 0

00 0

0
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The figures in boldface type show nodes where it is advantageous to jump to
the upper lattice by carrying out the enhancement Note that these values are exactly
$4 million less than their upper counterparts

The overall value of the lease with the option is given by the value at the first
node, and the $4 million is already taken out Hence the value of the lease witl the
enliancement option is $24 6 million—a slight improvement over the original value of
$24 | million

Linear Pricing

Althougl we generally use risk-neutral pricing to evaluate derivative securities, it is
important to recognize that this evaluation is based on linear pricing; that is, we match
a particular derivative to secutities we know and thien add up the vaiues The following
example hightights the basic simplicity of the method

Example 12.11 (Gavin explains) M D Jones was curious about quantitative work
on Wall Stteet He brought it up with his son Gavin

“What are they calculating with all those fancy computers?”

Gavin said that it was all based on linear pricing “They break a security
into its separate pieces, price each piece, aud then add them up”

“Are you kidding me? I don’t see why you need a supercomputer to do
that

“It gets complicated quickly ” Gavin remiembered something he hiad
worked out when studying options theory “I'll show you an example,” he said,
as he fished in his pocket for a twenty-five cent piece

Holding the coin up, Gavin began, “Consider this proposition: You pay
$1 1 flip this coin If it is heads, you get $3; if it is tails, you get nothing You
can participate at any level you wish, and the payoff scales accordingly ”

M: Jones nodded Gavin continued “The coin flip is like a stock It
has a price, and its outcome is uncertain; but it has a positive expected
value—otherwise nobody would invest in it ”

“That’s simple enough

“Alternatively, as a second proposition, you can just keep your dollat in
your pocket This is equivalent to paying $1 I flip the coin If it is heads, you
get $1; if it is tails you get $1 Clear?”

“Sure ”

“Those are the basic ones Now heie is 4 new proposition to evaluate: 1
flip the coin twice If at least one of the flips is a head, you get $9; otherwise
you get nothing How much is this pioposition worth?”

Mir Jones scratched his head, and after a few seconds said, “1 could work
out the piobabilities

“It has nothing to do with actual probabilities This proposition can be
expiessed as combinations of the other two We just add up the pieces”

“Okay, show me”
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FIGURE 12.14 A proposilion and iis paris Tree (a) is a basic risky proposition; tree (b} is a risk-free opporiunity; and
tree {c) represents a new, more complex proposition The vatue C can be found by breaking it into its parts The final
piece is shown in (d)

Gavin diew four trees on the edge of a newspaper, as shown in
Figure 12 14 He explained that tree (a) is the original proposition; (&) is
keeping money in your pocket, and (c) is the new proposition, with an
unknown price C

If the first flip is heads, the tree from that point has payoff of $9 in each
direction, which looks like nine times the payoff of the pocket alternative It is
worth $9 to be there. If the first flip is tails, the tree from that point looks like
three times the original proposition, so it is worth $3 to be there. Hence the
whole thing is equivalent to tree (d) having payoffs of $9 and $3 “Clear?”

“Very ”

Gavin showed that the payoff of 9 and 3 could be broken into 6 and 0
plus 3 and 3 The fitst of these is twice the original proposition The second is
three times the pocket alternative Hence € =243 = $5 “Okay?”

“Well, T'll be ”

Gavin concluded “That is what those computers are doing. Derivative
securities are evaluated by using hundreds of coin flips to represent the daily
movements of a stock The computers wotk through the big tee just like we
did in this example ”

[As an exercise, it is usetul to determine the risk-neutral probabilities for this
example and work through the risk-neutral vatuation ]

12.9 GENERAL RISK-NEUTRAL PRICING*

A genetal principle of risk-neutral pricing can be inferred from the analysis and meth-
ods of the previous few sections This principle piovides a compact formula for the
price of a derivative secarity under the binomial lattice formulation

Suppose that the price S of an asset is described by a binomial lattice, and
suppose that f is a secwmity whose cash flow at any time & is a function only of the
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node at time k& Then the arbitrage-fiee price of the asset is

N
foa = E (Z de fk) (212
k=0

In this equation the summation represents the discounted cash flow, with the d}’s being
the risk-free discount factors as seen at time 0 The f;’s are the period cash flows,
which depend on the particular node at k that occurs Hence the f;'s are tandom The
expectation E is taken with respect to the risk-neutial probabilities associated with the
lattice of the undetlying asset

Consider a European call option with strike price KX The pricing formula,
Eq (12 12), becomes

€ = L Bimax(s, — &,0)] (1213)
Ry

where Ry is the risk-free return for the whole time to expiration In this case there
is only a single cash flow, max(Sy — K, 0), occurring at the final time We take the
risk-neutial expected value of this and discount it to the present Note that actual
calculation using this formula is best done by working backward from the end We
use the running present value method to back the formula up one stage at a time

In many situations the cash flow stream can be influenced by our actions as well
as by chance For instance, we may have the opportunity to exercise an option before
expiration, decide how much gold to wine, or add enhancements In such cases the
general pricing formula becomes

N
feal = max I:E (deﬂ-)]
k=0

where the maximization is taken with respect to the available actions We have seen in
the examples of this chapter how this maximization can in many cases be cartied out
as part of the backward recursion process, although the size of the lattice sometimes
must be increased This general formula has great power, for it provides a way to
formulate and solve many interesting and important investment problems

12.10 SUMMARY

An option is the right, but not the obligation, to buy (or sell) an asset under specified
terms Options have had a checkered past, but for the past two decades they have
played an tmportant role in finance Used wisely, they can control risk and enhance
the performance of a portfolio Used carelessly, options can greatly increase risk and
lead to substantial losses.

Options terminology includes: call, put, exeicise, strike price, expiration, wiiting
a call, premium, in the money, out of the money, American option, and Euiopean
option

A major topic of options theory is the determination of the correct price (or
premium) of an option This price depends on the price of the underlying asset, the



346 Chapter 12 BASIC OPTIONS THEORY

EXERCISES

S=se=

strike price, the time to expiration, the volatility of the undetlying asset, the cash Aow
generated by the asset (such as dividend payments), and the prevailing interest rate
Although determination of an appropiiate option piice can be difficult, certain relations
can be derived from simple no-arbitiage aguments For example, for Euiopean-style
options there is parity between a put and a call with the same strike price Likewise,
the value of a combination of options (such as in a butterfly spread) must be the same
combination of the prices of the component options

One important result is that it is never optimal to exercise, before expiration, an
American call option on a stock that does not pay a dividend Béfore expiration;

A general way to find the price of an option is to use the binomiai lattice method-
ology The random process of the underlying asset is modeled as a binomial lattice
The value of the option at expiration is entered on the final nodes of a correspond-
ing option lattice The other nodes in the option lattice are computed one at a time
by working backward through the periods For a European-style option (without the
possibility of early exercise) the value at any node in the option lattice is found by
computing the expected value of the value next peiriod using risk-neutral probabilities
This expected value is then discounted by the effect of one period’s interest 1ate. If the
option is an American-style option, the value computed as before must be compared
with the value that could be obtained by exercise at that time, and the greater of the
two compared values is taken to be the final vaiue for that node

The risk-neutral piobabilities aze easy to calculate The risk-neutial probability
for an up move is ¢ = (R — d}/(u —d) The easiest way to derive this formula is
to find the ¢ that makes the price of the underlying security equatl to the discounted
expected vajue of its next period value

The binomial lattice methodology can be used to find the value of other in-
vestments besides options Indeed, it can be used to evaluate any project whose cash
flow stieam is determined by an underlying traded asset Examples include futures on
options, gold mine leases, oil wells, and tiee farms With ingenuity, even complex real
options can be evaluated by constiucting two or mote interrelated binomial lattices

1. (Bull spread) An invesior who is bullish abow a stock (believing that it will rise) may
wish to construct a bull spread for that siock One way to construet such a spread is to
buy a cail with strike price K, and scil a cail with the smme expirmion dme but with a
surike price of K2 > K, Draw the payoif curve for such a spread Js ihie initial cost of the
spread posiiive or negative?

[

. (Pui—call parity)  Suppose over the period [0, 7] a certain stock pays a dividend whose
present value at interest rate 7 is D Show ihat the pui—cali parity relation for Europeun
opiions at ¢ = 0, expiring at 7, is

CH+D+Kd=P+5

where d is tiie discoum facror from O to 7
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3. (Parity formuln) To derive the put-caif parity fornmula, the payoff associated with buy-

=

w

ing one cali option, seliing one put option, and fending ¢K is @ = max(0,5 — K) —
max(0, K — §)+ K Show that = §, and hence derive tiie put-call parity formufa

(Call strikes¢) Consider a family of cail opiions on a non-dividend-paying stock, each
option being identical except for its strike price The vafue of the call with strike price £
is denored by C(K) Prove the following tiree general relations using arbitrage arguments:
(@) K, > Ky implies C(Ky) > C(K2)

(h) Ky > K, implies Ky — Ky = C(K;) - C(Kp)

(¢) Ky > K2 > K, implies

K3 — K2 . K2~ Ky
C(ka) < (m)c(l\l)+ (I\’;—-I\’,)C(M)

. (Fixed dividend®) Suppose that a siock will pay a dividend of amoum D a1 time 1

We wish 10 determine the price of a European call option on this stock using the lauice
method Accordingly, the time intetval [0, I'] covering the life of the opiion is divided into
N imervals, and hence N + 1 time periods are assigned Assume tha the dividend date 7
oceurs somewhere between periods & and A+ 1 One approach 1o the problem would be 10
establish a lattice of stock prices in the usual way, but subiract D from the nodes a1 period
& This produces a wree with nodes that do voy recombine, as shown in Figure 12 15

The problem can be solved this way, but there is another representation thar does
recombine Since the dividend amount is known, we regard #t as a nonrandom component
of the stock price At any time before the dividend we regard the price as having 1wo
componenis: a tandom component §* and a deterministic component equal 10 the present
value of the future dividend The randomn component S* is described by a lattice with
initial value $(0) ~ De™" and with » and d derermined by the volatitily o of 1he stock
The option is evaluated on this lattice The only modification that must be made in ihe
computation is that when valuing the option a1 a node, the stock price used in the valuation
formula is not just S° at tha node, but rather § == §* 4+ De~"""" for t < v Use this
technique 10 find the value of a 6-month call option with S(0) = 50, K = 50, o = 20%,
R == 109, and D == $3 10 be paid in 3% months

FIGURE 1215 Nenrecombining divi-
dend tree.
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(Call inequatity) Consider a European call option on a non-dividend-paying stock The
strike price is K, the time 10 expiration is T, and the price of one unit of a zero-coupon
bond maturing at 7 is B(7) Denote the price of the call by C(5, T) Show that

C(S, T) z max {0, § - KB(IN]

[Hint Consider 1wo porifolios: (¢) purchase one call, (#) puichase one share of stock and
sell K bonds }

. (Perperual call) A perpetual option is one that never expires (Such an option must be

of American style ) Use Exercise 6 10 show that the value of a perpetual call on a non-
dividend-paying stock is C = §

. (A surprise®) Consider a deterministic cash flow stream (xg, x1. x2. , xy) with all pos-

itive flows Let PV(r) denote the present value of this stream at an interest rate 1

(a) 1f 1 decreases, does PV(r) increase or decrease?

(b) Solve the Simplico gold mine problem with 7 == 4% and find that the value of the
lease is $22 | million Can you explain why the value deereased relative to its value
with 7 = 10%?

(My coin) There are two propositions; (a) I flip a coin It it is heads, you are paid $3; if
it is tails, you are paid $0 It costs you $1 to participate in this proposition You may do
50 at any level, or repeatedly, and the payoffs scale accordingly (0) You may keep your
money in your pocket (earning no interest) Here is a third proposition: (¢) I flip the coin
three times If at least two of the flips are heads, you are paid $27; otheywise zero How
much is this proposition worth?

(The happy call) A New York firm is offering a new financial instrument catled a “happy
call " It has a payof{ function at time T equal to max( 55,5 — K), where § is the price
of a stock and K is a fixed strike price You always get something with a happy call Let
P be the price of the stock at time 1 == 0 and let ) and C; be the prices of ordinary calls
with strike prices K and 2K, respectively The fair price of the happy call is of the form

Cu=aP 4+ BC1+yC

Find the constants &, 8, and

(You are a president) It is August 6 You are the president of a small electronics company
The company has some cash reserves that will not be needed for about 3 months, but
interest rates are very low Your chief financial offices (CFO) tells you that a progressive
securities firm has an investrnent that guarantees no losses and altows participation in
upward movements of the stock market In fact, the total rate of return until the third week
of November is to be deterinined by the formula max(0, 25,), where 1 is the rate of return
on the S&P 100 stock index during the 3-month period (ignoring dividends) The CFO
suggests that this conservative iovestmeat might be an ideal alternative to participation in
the interest rate market and agks for your opinion You pick up The Wall Steer fournal
and make a few simple calculations to check whether it is, in {act, & good deal Show these
calculations and the conclusion Use the data in Table 12 1 (Note that 410¢ denotes a call
with strike price 410 )
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TABLE 121

Data for the President
S&P S&P

100 index Options index = 414.74
Nov 410¢ 13 | Treasury bills
Nov 410p 8L | Nov 12: yield = 3 1
Nov 420c 7%
Nov 420p 11

Source: Standard & Poor's a division of the MeGraw-Hilt Compa-
nies Reprinted wilh permission

(Simplico invariance) If the Simplico mine is solved with ali parameters renuining the
samie except that 1 = | 2 is changed to # == | 3, the value of the lease yemains unchanged
to within three decimal places Indeed, quite wide variations in # and d have ainiost no
influence on the lease price Oive an intuitive explanation for this

. (Change of period length®) A stock has volatility o = 30 and a cuerent value of $36 A
put option on this stock has a strike price o $40 and expiration is in 5 months The interest
rate is 8% Find the value of this put using a binonnal lattice with 1-month intervals Repeat
using a lattice with half-month intervals

(Average value Complexico®) Suppose that the price received for gold extracted from
time & to k4 1 is the average of the price of gold at these two times; that is, (g + gi+1)/2
However, costs are incuted at the beginning of the period whereas revenues are received
at the end of the period Find the value of the Complexico mine in this case

(“As you like it” option) Consider the stock of Examples 123 and 124, which has
o = 20 and an initial price of $62 The interest rate is 10%, compounded monthly
Consider a 5-month option with a suike price of $60 This option can be declared after
exacily 3 montls, by the purchaser to be either a European call or a European put Find
the value of this “as you like it” option

. (Tree harvesting®) You me considering an investment in a tree farm Trees grow each
year by the folowing factors:

ch|12345678910
Orowth|26 15 14 13 12 115 It 105 102 1ot

The price of lumnber follows a binomial fattice with 1 = 120 and d = 9 The interest
rate is constant at 10% Jt costs $2 million each year, payable at the beginning of the year,
to lease the lorest lund The initiul value of the trees is $5 mitlion (assuming they were
harvested immediately) You can cut the trees at the end of any year and then not pay rent
after that (For those readers who care, we assume that cut lumber can be stored at no cost )
(a) Argue that il the rent were zero, you would never cut the rrees as fong as they were
growing
(b) With rent of $2 million per year, find the best cutting policy and the value of the
investment opportunity
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ADDITIONAL OPTIONS
TOPICS

13.1 INTRODUCTION

Options theoty plays a major role in the modein theory of finance because it so
clearly highlights the power of the comparison principle, based on the assumption
that there are no arbitrage opportunities The previous chapter piesented the theory in
a simple and practical form, using the binomial lattice framework That material is
by itself sufficient to solve most options problems. There is, however, a continuous-
time version of the theory and extensions of the lattice theory, which lead to new
financial insights, altow consideration of more complex derivative securities, provide
alternative computational methods, and prepare the way for the more complete theory
of investment presented in the following chapters.

13.2 THE BLACK-SCHOLES EQUATION

The famous Black-Scholes option pricing equation initiated the modemn theoy of
finance based on the no-arbitrage principle Its development triggered an enormous
amount of research and revolutionized the practice of finance The equation was de-
veloped undey the assumption that the price Auctuations of the underlying security can
be described by an Ito process, as presented in Chapter {1 The logic behind the equa-
moment two available securities are combined to constiuct a portfolio that \eproduces
the local behavior of the derivative security Historically, the Black-Scholes theory of
options predated the binomial lattice theory by several years, the lattice theory being
a result of simplification

To begin the presentation of the Black-Scholes equation, let the price S of an
undeilying secwity (which we shall refer to as a stock) be governed by a geometiic

351
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Biownian motion process over a time interval [0, T deseribed by
dS = puSdt +0Sdz (13.1

where : is standard Brownian motion (or a Wiener process). Suppose also that there
is a risk-frec asset (a bond) carrying an interest rate of 1 over [0, T] The value B of
this bond satisfies :

dB =1 Bdt (13.2)

Finally consider a security that is derivative to §, which means that its price is a
function of S and ¢ Let f(S, t) denote the price of this security at lime ¢ when the
stock ptice is S We want a (nonrandom) equation for the function f(S, r), which
will give the price of the derivative explicitly This function can be found by solving
the Black-Scholes equation as stated;

Black-Scholes equation  Suppose that the price of a secirity is governed by (13.1)
and the interestrate is1 A derivative of this secirity has a price f(S, t), which satisfies
the partial differ ential equation
a  8f 12
},

ar Tas' St aus

Yy

i}

Yy

= f (133

We present a proof of this result later in this scction, but first let us look at its
significance

As a simple example, consider the stock itself It is (in a trivial way) a derivative
of §, s0 f{(S, t) = § should satisfy the Black-Scholes equation In fact, with this
choice of f we have 8f/0t = 0, 8f/8S5 = 1, 3*//35* = 0 Hence (13 3) becomes
7§ == 1§, which shows that (5, 1) == S is 4 solution

As another simple example, consider the bond It also is (in a uivial way) a
derivative of S, so f (S, 1) = ¢" should satisfy the Black-Scholes equation In fact,
with this choice of f we have 3/dt =1e", 3f/3S =0, 3* f/35*> = 0 Hence (133)
becomes 7e™ == 1™, which shows that, indeed, f(S, ) == ¢" is a solution There are
uncountably more solutions

In general, the Black-Scholes equation can be thought of in two ways First,
suppose that we arbitrarily specify a function f(S, #) and announce that this is the
price of a new security Since we specify the function, we can arrange for it not to
satisfy the Black-Scholes equation What is wrong? If /(S, ¢) does not satisfy the
Biack-Scholes equation, then theie is an arbitrage opportunity lying somewhere among
S, B, and f By a proper combination of these (and the combination may change with
time) it will be possible to extract money, risk free Hence the first way to look at the
Black-Scholes equation is that it establishes a property that must hold for a derivative
security’s price function

The second way to view the equation is that it can be used to actually find the
price function cortesponding to various derivative securities This is done by specifying
appropriate boundary conditions that ate used in conjunction with the Black-Scholes
partial differential equation to solve for the price function For example, specify-
ing f(S, T) = S(T) leads to [ (S, 1) = S(t); specifying /(5, T) = ¢'T leads to
[(S, 1) == ¢" As a nontrivial example, the price C(S, ¢) of a European call option
on a stock that pays no dividends must satisfy the Black-Scholes equation (with C
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playing the role of /) and it must satisfy the boundary conditions

CQ, 0 =0 (13 4y

C(S, Ty = max (§ ~ K, 0) (135)
Likewise, {for a European put with price P(S, t) the boundary conditions are

P(oo, 1) =0 (136)

P(S, Ty = max(K ~ §,0) (137

Other derivative securities may have different forms of boundaty conditions,
which are sufficient to determine the entire function f(§, 7) For example, the bound-
ary conditions for an American cail option and an American put on a non-dividend-
paying stock require, in addition to the conditions mentioned, a condition concerning
the possibility of emly exeicise These are

C(S8, 1) = max(0, § ~ k) (13 8)
P(S, 1y = max(0, K - §) (139)

Of couse, the additional boundary condition for calls is unnecessaty, since an Amet-
ican call on a uon-dividend-paying stock is never exeicised early

Example 13.1 (A perpetual call) Conside: a perpetual call option with stiike price
K There is no tetminal boundaty condition since T = 0o Howevet, the ealy exercise
condition /(S,7) = max(0, § ~ K’} for all ¢+ must be satisfied by the solution / In
addition, we must have f(S,¢) < S {o1 all ¢ since the call must cost less than the
security itsell As an (informed) guess we might try the simple solution / == S Indeed,
we know that this satisfies the Black-Scholes equation The two boundary conditions
ate also satisfied

The solution f(S) == § for the value of a perpetual call does make intuitive
sense If the call is held for a long time, the stock value will alimost cettainly inciease
to a very laige value, so that the exercise price K is insignificant in comparison Hence
il we owned the call we could obtain the stock late: for essentially nothing, duplicating
the position we would have it we initiaily bought the stock

Proof of the Black-Scholes Equation®

How can we derive the Black-Scholes equation? The key idea is the samie idea used
in Chapter 12 to detive the binomial lattice pricing method At any time we foim
a poitfolio with portions of the stock and the bond so that this portfolio exactly
matches the (instantaneous) retuin characteristics of the derivative secuiity The value
of this portfolio must equal the value of the derivative security In a binomial lattice
framework the matching is done period by petiod, telating the value at one time point
to those at the next In the continnous-time framewotk, the matching is done at each
instant, telating the value at one time to the 1ates of change at that time Replication
is used in both cases Here is the proof
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Proof: By Ito’s lemma [Eq (11 22)] we have

2
df = (%ft—+ %us+ %%a?sz) dr + %anz (1310
which is an Ito process for the price of the derivative security This piice
fluctuates randomly along with the stock price S and the Brownian motion ¢

We form a portfolio of S and B that replicates the behavior of the
derivative security In particulai, at each time ¢ we select an amount x, of
the stock and an amount y, of the bond, giving a total portfotio value of
G{1) == x,S(t} + v B{r) We wish to select v, and v, so that G(r) replicates
the derivative secwity value f(S,+) The instantaneous gain in value of this
portfolio due to changes in security prices (the investment gain) is

dG = x,dS + y, dB. (1310
Expanding, we wiite
dG = 5, d§+ y,dB
= x,{puSdt + oSdz} + vy Bdt
= {x, S + yp BYdt + x,05dz (13 12)

Since we want the portfolio gain of G(r) to behave just like the gain of £,
we match the coefficients of df and dz in 13 12 to those of (13 10) To do
this we first match the dz coelficient by setting

8]
PN 3
Y, 3 (1313)

Requiring G = v,§ 4+ wB and G = f, gives

[f(S 0H- %]

Substituting these expressions in (13 12) and matching the coefficient of d¢
in {13 10), we obtain

af s af  Bf L3S 50
Zu8 S,1) = §==- B=— o ~— L5282
aS}L + - I:/( ) S:lr +HS +2()S20' S
Or, ﬁnﬂlly,'
8j+8j +— fazSzzrf (13.14)

a  3s 2 35?2

This is the Bluck—Scholes equation (For an alternate proof based on the bi-

I This is actually o simplified proof Equation (13 11) shonld inctude xS 4 ¥/ B, but it can be shown that
this sum is zero
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nomial pricing framework, see the Appendix of this chapter In that proof the
case where cash flow rates occur at intermediate times is included )

13.3 CALL OPTION FORMULA

N
B

-3 -2 -1

Although it is usually impossible to find an analytic solution to the Black-Scholes
equation, it /s possible to find such a solution for a European call option This analytic
solution is of great practical and theoretical use

The {oimula uses the {unction N(v), the standard cumulative normal proba-
bility distribution. This is the cumulative distribution of a normal random variable
having mean 0 and variance | It can be expressed as

1 B 2
N(v) = ?/7_;/ eV dy (13 15)
£ ~00

The tunction N(v) is iltustrated in Figure 13 1 The value N(x) is the area under
the familiar bell-shaped cuive from —oo to v Particular values are N(~o00) = 0,
N(0) = 1, and N(o0) = 1

The function N(x) cannot be expressed in closed {orm, but there are tables for
its values, and there are accurate approximation formulas (See Exercise 1)

Black-Sclioles call option forinula  Consider a Enropean call option with strike price
K and expiration time T 1f the underlving stock pavs no dividends duaring the time
[0, 7] and if interest is constant and continuwously compounded at o 1ate 1, the Black-
Scholes solution is f(S,1) = C(S, 1), defined by

C(S, 1) = SN(dy) ~ Ke T "IN(d) (13 16)
5+ T Nx)
75
5
25 -

(@ &)

FIGURE 13.1 Normat density and cumufative distribution. (a) The curve is the normal density (1/v/Ime>'? The area
under the curve up 1o the point x gives the value of the cumulative distribution N(x) (b) The cumulative distribution
itself rises smoothly from 0 to 1, but it does not have a closed-form representation
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whete

g = /K + 0 + o2 2UT ~1)

oJT ~1t
W(S/K)Y 4+ = 20T ~1)
dy = wmdy— T ~
: odT =1 A

and where N(\) denotes the standard cunudative normal probability distribution

Let us examine some special cases First suppose f = 7 (meaning the option is
at expiration) Then

+o0 if $>K

d'z(lz:[-oo irS<K

because the d’s depend only on the sign of In(S/K) Therefore, since N(oo) = | and
N(~00) == 0, we find

S~K if §>K

C‘S'”=[0 i S < K

which agrees with the known value at 7.
Next let us consider T == co Then dy == 00 and ¢™"7~" = 0 Thus C(S, 00) =
S, which agrees with the result derived earlier for a perpetual calt

Example 13.2 (A 5-month option) Let us calculate the vatue of the same option
considered in Chapter 12, Example 123 That was a 5-month call option on a stock
with a curient price of $62 and volatility of 20% per year The strike price is $60 and

the interest rate is 10% Using S == 62, K = 60, ¢ = 20, and 7 = .10, we find
In (62/60 12x5/12
di = —'l(—i;%iﬁ—w—x/— = 641287

th = dy — 2/5/12 = 512188

The comnesponding values for the cumulative normat distribution are found by the
approximation in Exercise | to be

Nidy) = 739332, Nidy) = 695740
Hence the vatue for the call option is
C =62 x 739332 — 60 x 95918 x 695740 == $5 798

This is close to the value of $5 85 found by the binomial lattice method

Although a formula exists for a call option on a non-dividend-paying stock,
analogous formulas do not generaltfy exist for other options, including an American
put option The Black-Scholes equation, incorporating the corresponding boundary
conditions, cannot be solved in analytic form
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13.4 RISK-NEUTRAL VALUATION*

In the binomial lattice framewoik, pricing of options and other derivatives was ex-
pressed concisely as discounted tisk-neutral vatuation This concept wotks in the Ito
process framework as well

For the geometiic Brownian motion stock price process

AS(r) = puSdr+oSdz (13 17)
we know from Section t1 7 that
E [S(1)] = S(0)et (13 18)

In a risk-neutral setting, the price of the stock at time zeio is tound from its price at
time f by discounting the risk-neutral expected vatue at the risk-free rate This means
that there should hotd

§(0) = e "E[S()]

It is clear that this formuta would hold if E[S(t)] == §(0)e” From (13 17) and (13 18)
this will be the case if we define the process

dS =15dr + 05 d3 (13 19)

where £ is a standardized Wiener process, and we define E as expectation with respect
to the £ process In other words, starting with a lognormal Ito process with rate u, we
obtain the equivalent risk-neutral process by constructing a similar process but having
rate 7.

This change of equation is analogous to having two binomial lattices for a stock
process: a lattice for the real process and a lattice for the risk-neutral process In the
first lattice the probabilities of moving up or down are p and 1 — p, respectivety
The risk-neutral tattice has the same values as the stock prices on the nodes, but the
probabilities of up and down are changed to ¢ and t — ¢. For the Ito process we have
two processes—Ilike two lattices Because the piobability structures are ditferent, we
use z and £ to distinguish them

Once the risk-neutral probability structure is defined, we can use risk-neutrat
valuation to value any security that is a derivative of S In particular, for a call option
the pricing formula is

C=e¢"E{max[S(T) - K,00}] (13.20)

This is anatogous to (12 13) inn Chapter 12

We know that the risk-neutrat distiibution of S(7) satisfying (13 19) is lognormal
with E {(In[S(7)/S(0N} = + T ~ 46T and var [In[S(7)/S(0)}} = 0T We can use
this distribution to find the indicated expected value in analytic form The result will
be identical 10 the value given by the Black-Scholes equation for a call option price
Specifically, writing out the details of the lognormal distribution, we have
T S
C = (e* - K)e"""" SO =r I +0* T 2R /207 T) dv (1321

V2ncrT Jinn

This is the Black-Scholes formula in integral form
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13.5 DELTA

At any fixed time the value of a derivative secutity is a function of the underlying
asset’s price The sensitivity of this function to changes in the price of the underlying

asset is described by the quantity delta (A) 1f the derivative security’s value is f(S, 1),
then formally delta is

3f (S, n
A=
Delta is frequently expressed in approximation form as
Af
A= A5
The delta of a call option is illustrated in Figure 13 2 It is the slope of the curve
that relates the option price to the stock price
Delta can be used to construct portfolios that hedge against risk As an example,
suppose that an option trader believes that a certain call option is overpriced. The
trader would like to write (that is, sell) the option, taking a very large (negative)
position in the call option. However, doing so would expose the trader to a great deal
of price risk If the underlying stock price should increase, the trader will lose money
on the option even if his assessment of the option value relative to its current price
is well founded The trader may not wish to speculate on the stock itself, but only
to profit from his belief that the option is overpriced The trader can neutralize the
effect of stock price fluctuations by offsetting the sale of options with a simuitaneous
purchase of the stock itsel{f The appropriate amount of stock to purchase is delta times
the value of the options sold Then if the stock price should rise by $1, the profit on
the trader’s holding of stock will offset the loss on the options.
The delta of a call option can be calculated from the Black-Scholes {oimula
(133) to be

A= N(d). (13 22)

This explicit formula can be used to implement delta hedging strategies that employ
call options

In geneial, given a portfolio of securities, all components of which are derivative
to a common underlying asset, we can calculate the portfolio delta as the sum of the

FIGURE 132 Delta of a call option. Deha
C measures the sensitivity of the option value to
small changes in the price of the underlying se-
curity

Stope = A
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deltas of each component of the port{olio Traders who do not wish 10 speculate on the
undertying asset prices will form a portfolio that is delta neutral, which means that
the overall delta is zero In the case of the previous trader, the value of the portiolio
was ~C + A x § Since the delta of § is 1, the overall delta of this hedged portiotio
is ~A+A=0

Delta itself varies both with S and with 1. Heunce a portfolio that is deha neutiat
initiatty will not remain so. It is necessary, therefore, to rebalance the poutfolio by
changing the proportions of its securities in order to maintain neutrality This process
constitutes a dynamic hedging strategy. In theory, rebalancing should occur con-
tinuousty, although in practice it is undertaken only periodically o1 when delta has
materially changed from zero

The amount of rebalancing required is retated to another constant iermed gamma
(') Gamma is defined as

s,

st

Gamma defines the curvatuie of the derivative price cuve In Figuie 13 2 gamma is

the second derivative of the option price curve at the point under consideration
Another useful number is theta (&) Theta is defined as

af (s, 1)
ar

Theta measures the time change in the value of a derivative security Referring again
to Figure 13 2, if time is increased, the option curve will shift to the right Theta
measures the magnitude of this shift

These parameters are sufficient to estimate the change in value of a detivaiive
security over small time periods, and hence they can be used to define appropriate
hedging strategies In particular, using § f, 85, and 87 to represent small changes in
f, S, and f, we have

r

@ =

Sf~A SSHAT X (85 +© x o

as a first-order approximation to § f 2

Example 13.3 (Call price estimation) Consider a call option with § = 43, K = 40,
o = 20,1 = 10, and a time to expiration of 7 —¢ = 6 months = 5 The Bluck-
Scholes formula yields ¢ = $5 56 We can also calculate that A = 825, [ = 143,
and & = —6 127 (See Exetcise 7)

Now suppose that in two weeks the stock price increases to $44 We have §$ = |
and §r = 1/26; therefore the price of the call a1 that time is approximately

Cm556+Ax 1440 x ()P40 x (1/26) = $6 22

The actual value of the call at the later date according to the Black-Scholes formula
is C=$623

2Recall that §3 s propartionat to V37 so we must inchide the (85)F tenm
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13.6 REPLICATION, SYNTHETIC OPTIONS, AND PORTFOLIO

INSURANCE*

The derivation of the Black-Scholes equation shows that a derivative sccurity can be
duplicated by constructing a portolio consisting of an appiopriate combination of the
underlying security and the risk-frec asset We say that this portfolio replicates the
derivative security The proportions of stock and the risk-free asset in the portfolio
must be adjusted comtinuously with time, but no additional money need be added
or taken away; the portfolio is self-financing. This replication can be carried out
in practice in oider to construct a synthetic derivative security using the underlying
and the risk-free assets Of course, the required construction is dynamic, since the
particular combination must change eveiy period (or continuously in the context of
the Black~Scholes {ramework)

The process for a call option is this: At the initial time, calculate the theoretical
price C Devote an amount C to the replicating portfolio This portfolio should have
AS invested in the stock and the remainder invested in the risk-free asset (although
this will usually require borrowing, not lending) Then both the delta and the value
of the portfolio will match those of the option Indeed, the short-term behavior of the
two will match

A short time later, delta will be different, and the port{olio must be rebalanced
However, the value of the portfolio will be approximately equal to the corresponding
new value of the option, so it will be possible 10 continue 1 hold the equivalent
of one option This rebalancing is repeated frequently As the expiiation date of the
(synthetic) option approaches, the poitiolio will consist mainly of stock if the price of
the stock is above K otherwise the portfolio's value will tend to zero

Example 13.4 (A replication experiment) Let us construct, experimentally, a syn-
thetic call option on Exxon stock with a strike price of $35 and a life of 20 weeks
We will replicate this option by buying Exxon stock and selling (that is, borrowing)
the risk-free asset In oider {o use real data in this experiment, we select the 20-week
period from May !l to September 21, 1983. The actual weekly closing prices of
Exxon (with stock symbol XON) are shown in the second column of Table 13.1. The
measuied sigma cortesponding to this period is o == 18% on an annual basis, so we
shall use that value to calculate the theoretical values of call prices and della We
assume an intetest rate of 10%

Let us walk across the first iow of the table There are 20 weeks iemaining in
the life of the option The initial stock price is $35 50 The third column shows that the
initial value of the call (as calculated by the Black~Scholes formula) is $2 62 Likewise
the initial value of delta is 701 To construct the ieplicating portfolio we devote a
value of $2 62 to it, matching the initial vatue of the call This is shown in the column
marked “Portfolio value " However, this portfolio consists of two parts, indicated in
the next two columns The amount devoted 10 Exxon stock is $24 89, which is delta
tumes the current stock value The remainder $2 62 — $24 89 = —$22 27 is devoted
to the risk-free asset In other words we borrow $22 27, add $2 62, and use the total
of $24 89 to buy Exxon stock
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TABLE 13 1
An Experiment in Option Replication
Weeks XON Call Portfolio  Stock Bond
remaining price price Delta  value portfolio portfolio
20 3550 262 704 262 24 89 —2227
19 3463 19 615 196 2128 —1932
18 3375 140 515 139 1737 —1598
17 3475 189 618 i 87 2147 ~19 59
16 3375 125 498 122 1679 -~1558
15 3300 085 397 81 1309 —1228
14 3388 117 494 {14 1674 —15 60
13 3450 142 565 {4y 1948 —1807
12 3375 096 456 96 1539 ~14 43
i 3475 140 583 138 2027 - 18 89
10 3438 110 522 113 1794 —168!
9 3513 144 624 149 2192 —2043
3 3600 194 743 200 2674 ~24 75
7 3700 265 860 269 3180 ~29 11
6 3688 244 858 253 3165 —29 12
5 3875 410 979 408 3792 —3384
4 3788 3147 961 316 3639 —~3323
3 3800 32 980 322 3725 34 03
2 3863 376 998 376 3856 —3479
! 3850 357 1000 357 38 50 -34 93
1] 3750 250 250

A call on XON with strike price 35 aud 20 weeks to expiration is replicated by
buviug XON stock and selling the risk-free asset at 10% The portfolio is adjusted
each week according to the value of delta at that time. When the volatility is set
at 1856 (the actual value durmig that period) the poitfolio valne closely matches
the Black-Scholes value of the call

Now walk across the second row, which is calculated in a slightly different
way The first four entries show that there are 19 weeks remaining, the new stock
price is $34 63, the corresponding Black-Scholes option price is $1 96, and delta is
now 615. The next entry, “Portfolio value,” is obtained by updating from the row
above it The earlier stock putchase of $24 89 is now worth (34 63/35.50) x $24.89 =
$24.28 The debt of $22 27 is now a debt of (140 10/52)$22 27 = $22 31 The new
value of the poitfolio we constructed last week is theiefore now $24 28 — $22 31 =
$1 96 (adjusting for the 1ound-off error in the table) This new value does not exactly
agree with the current call value (although in this case it happens to agree within
the two decimal places shown) We do not add or subtract from the value However,
we now rebalance the portfolio by allocating to the stock $21 28 (which is delta
times the stock price) and borrowing $19 32 so that the net portiolio value remains
at $1 96

Succeeding rows are calculated in the same fashion At each step, the updated
portfolio value may not exactly match the current value of the call, but it tends to be
very close, as is seen by scanning down the table and comparing the call and portfolio
values The maximum difference is 11 cents At the end of the 20 wecks it happens
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in this case that the poutfolio value is exactly equal (to within a fraction of a cent) to
the value of the call

The results depend on the assumed vahie of volatility The choice of o = 8%
represents the actual volatility over the 20-week period, and this choice leads to good
results. Study of a longer period of Exxon stock data before the date of this option
indicates that volatility is more typically 20% If this value were used to construct
Table 13 1, the resulting final portfolio value would be $2.66 rather than $250 If
o = 15% were used, the final portfolio value would be $2.27

The degree of match would also be affected by transactions costs The exper~
iment with an Exxon call assuned that transactions costs were zero and that stock
could be purchased in any {ractional amount In practice these assumptions aie not
satisfied exactly But for large volumes, as might be typical of institutional dealings,
the departurc from these assumptions is small enough so that replication is in fact
practical

Example 13.5 (Portfolio insurance) Many institutions with large portiolios of eq-
uities (stocks) are interested in insuring against the 1isk of a major maiket downturn
They could protect the value of their portfolio if they could buy a put, giving them
the right to sell their portfolio at a specified exercise piice K

Puts are available for the major indices, such as the S&P 500, and hence one
way to obtain protection is to buy index puts However, a particular portfolio may not
match an index closely, and hence the protection would be imperfect

Another approach is to construct a synthetic put using the actual stocks in the
portfolio and the risk-free asset Since puts have negative deltas, construction of a put
requires a short position in stock and a long position in the risk-free asset Hence some
of the portfolio would be sold and later bought back if the market moves upward This
strategy has the disadvantage of disrupting the portfolio and incurring trading costs

A third approach is to construct a synthetic put using futures on the stocks held
in the portfolio instead of using the stocks themselves To implement this swategy,
one would calculate the total value of the puts required and go long delta times this
amount of futures (Since A < 0, we would actually shoit futures } The difference
between the value of stock shorted and the value of a put is placed in the risk-free
asset. The positions must be adjusted periodically as delta changes, just as in the
previous example This method, termed portfolio insurance, was quite popular with
investment institutions (such as pension funds) for a shoit time until the US stock
market fell substantially in October 1987, and it was not possible to sell futures in
the quantities called for by the hedging rule, resulting in loss of protection and actual
losses in portfolio vatue

13.7 COMPUTATIONAL METHODS

The theory presented in this chapter can be transformed into computational methods
in several ways Some of these methods are briefly outlined in this section
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Monte Carlo Simulation

Monte Carlo simulation is one of the most powetful and most easily implemented
methods for the calculation of option values However, the procedure is essentially
only useful for European-style options, where no decisions are made until expiration.
Suppose that there is a derivative seculity that has payoff at the terminal time 7 of
f(S(T)) and suppose the stock price S(7) is governed by geometric Brownian motion
according to

dS = pSdr+o85dz

where z is a standardized Wiener process The basis for the Monte Carlo method is
the risk-neunal pricing formula, which states that the initial price of the deiivative
security should be

P=e"TEF(S(I)]

To cvaluate the right-hand side by Monte Carlo simulation, the stochastic stock dy-
namic equation in a risk-fiee woild

dS =:Sdr +085d2

is simulated over the time interval [0, 7] by dividing the entire time period into seveial
petiods of length As The simulation equation is

Sl 4+ Ar) = S(n) +1 S(n) Ar + oS )e ()

where €(r;) is chosen by a random number generator that produces numbers according
to a normal distribution having zero mean and variance Ar (Or the multiplicative
version of Section 117 can be used ) After each siinulation, the value f(S(7)) is
calculated An estimate P of the true theoretical price of the deivative security is
found fiom the formula

P = e~ Taverage[ f(S(I)]

where the aveiage is taken over all simulation trials

A disadvantage of this method is that suitable accuiacy may require a very large
numbet of simulation trials In geneial, the expected error decreases with the number
of trials # by the factor 1/+/n; so one more digit of accuracy requires 100 times as
many trials Often tens of thousands of trials are required to obtain two-place accuracy

Example 13.6 (The S-month call) Simulation is unnecessary fot a call option since
better methods are available, but this example, which was solved earlier in Exam-
ple 132, provides a simple illustiation of the method For this call $(0) = $62,
K = $60, o = 20%, and ; == 12% The time to matwity is 5 months

To carry out the simulation the 5-month period was divided into 80 equal small
time intervals The stock dynamics weie modeled as

S+ A = S@) +1S(DAr +aS(e( )AL
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Running average value FIGURE 13.3 Monle Carlo evalualion of a
call. The vafue of a call is estimated as the
5 85 - discounted average of finaf payoff when sim-
ufations are governed by the risk-neutral pro-
5 80 - cess The method is easy io implement but
sequires a large number of irials for reason-
575 -] able accuracy
570+
565

Number of trials
H H T T H
5,000 10,000 15,000 20,000 25,000

wherte €{r) is chosen randomly from a normal distribution with mean zero and unit
variance

After each simulation trial, the terminal value of the call, max(§ — K, 0), was
determined based on the final stock price, and this value was discounted back to the
initial time A running average of these discounted values was recorded as successive
runs were made Figure 13 3 shows a graph of the discounted average value obtained
as a function of the total number of trials A reasonably accurate and stable resuit
requires about 25,000 simulation trials Fiom the figure we can conclude that the
price of the call is in the neighborhood of $5 80 plus or minus around 10 cents The
Black-Scholes value is in fact $5 80

The simulation can be improved by various variance reduction procedures,
the two most common of these being the control variate method and the antithetic
variable methiod. {See Exercise 9 )

Although it is costly in terms of computer time to use the Monte Carlo method,
the method is in fact often used in practice to evaluate European-style deiivatives that
do not have analytic solutions The method has the advantages of flexibility and ease
of programming, and it is reasonably foolproo{

Finite-Difference Methods

Numerical solution of the Black-Scholes partial differential equation is a second ap-
proach to the calculation of option prices In this method a large rectangular grid is
established, a small version of which is shown in Figure 134 In this grid the hori-
zontal axis represents time ¢ and the vertical axis represents § The time difference
between horizontally adjacent points is Az, and the price difference between vertically
adjacent points is AS The function f(S, ) is defined at all the corresponding prid
points If the S values on the grid are indexed by i and the s values are indexed by j,
then the function at the grid point (i, j) is denoted by f; ;
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S FIGURE 13.4 Grid for finite-difference meth-

od. The finite-difference method approximates
e e e 8 b o 8 @ 0 0 0 the Biack-Scholes equation by algebraic rela-
tions among values at gric points. The method
can handie American as weli as European op-
[ e ° e [ L] ° e ° L] ° lions

The method is implemented by uwsing the fnite-difference approximations to
partial derivatives as follows:

i/. ~ /H-I,J

EN AS
7y ~ iwry = fy = S+ Ly - Jivry =2+ L1y
as? (AS)? (a8)?

A i Ly

ar At

The terminal conditions imply that £, ; is known at the 1ight boundary of the
grid Additional boundary conditions may be specified, depending on the particulm
derivative security In the case of a put option, for example, it is known that the
value of the put is at least equal to K — § everywhere, and since the value of the put
approaches zero as § — oo, we may specify that the value is zero along the top edge
of the grid

When these approximations are used in the Black—Scholes cquation, the tesult is
a large set of algebraic equations and inequalities These can be solved systematically
by working backward from the right edge of the grid toward the left In fact, the
equations are closely related to the equations of backwad solution in a lattice

The finite-differcnce method has the advantage that it can handle denivative
securities such as American puts that impose boundary conditions other than terminal-
time conditions An inhetent disadvantage, however, is that the equations are only
approximations to the actual partial differential equation, and therefore, aside fiom the
obvious approximation ertor, their solutions are subject to instabilities and inconsis-
tencies, which ave not chaiacteristic of the partial differential equation itself (usually
resulting from implied probabilities becoming negative) As a general rule of numeri-
cal problem solving, il a problem is to be solved with a finite-step approximation, it
is usually better to 1eformulate the problem itself in finite-step form and then solve
that problem divectly, 1ather than to formulate the problem in continuous time and
then approximate the solution by a finite-step method In the case of derivative se-
curitics this means that rather than appioximating the Black-Scholes equation, it is
probably better to use a discrete formulation, such as the discrete-time risk-ncutial
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pricing fonmula or the binomial lattice formulation These discrete formulations will
inttoduce approximation error, but will not instill numerical instabilities Despite these
caveats, finite-difference methods, when carefully designed, do have a useful role in
the numerical evaluation of derivative securities

Binomial and Trinomial Lattices

A popular method for finding the value of a derivative secuiity is the binomial lattice
method of Section 12 6 The method is straightforward and leads to reasonably accurate
results, even if the time divisions are crude (say, 10 or so time periods over the
remaining time interval) However, it is also possible to use other tree and lattice
structures  For example, a good choice is to use a trinomial lattice, as shown in
Figuie 135 For a given number of time periods, the trinomial lattice has more nodes
than a binomial lattice and hence can produce a better approximation to the continuous
solution

At first it might seem that a trinomial lattice cannot replace a binomial lattice
because it is impossible to replicate three possible outcomes using only two securities:
the stock and the risk-free asset This is correct; replication is not possible Hence
the trinomial lattice cannot be used as a basis for options theory However, once the
theoty is deduced by other methods (such as the Black-Scholes method), we can
seek alternative ways to implement it A trinomial lattice is a convenient structure for
implementing the risk-neutral pricing formula

To set up a suitable trinomial lattice refer to Figure 13 6, which shows one piece
of the lattice There are three paths leaving a node, with probabilities py, py, and p3
The three resulting nodes repiesent multiplication ot the stock value by », |, and 4,
respectively, where we set ¢ = I/u, so that an up followed by a down is equal to |

To assign the parameters of the trinomial lattice we can arbitrarily select a value
for # Then if the mean value {or one step is to be | 4+ Ar and the variance is to be

FIGURE 13.5 Trinomial fattice. A trinomial lattice
can give a more accurate representation than a bi-

nomial fattice for the same number of steps
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U FIGURE 13.6 One piece of a trinomial fattice. in this lattice we
must have o = 1/u so that the nodes recombine after two steps

P
P2 1
P

d

72 Ar, we select the probabilities to satisfy

prt+prt+ pa=1
upy + p2 + dpy = L+ u At (1323)
Wpy + 2+ dipy = ot Ar+ (L pan

(The last line represents E(,\'z) = var(x) + E(x)?, where x is the 1andom factor by
which the stock price is multiplied in one period ) This is just a system of three linear
equations to be solved for the three probabilities Once these probabilities are found,
we have a good approximation to the undeslying stock dynamics (Note that we are
implicitly using the dynamics of (11 19))

To use this lattice for pricing, we must instead use the risk-ncutral probabilities
q1, g2, and g3 These are found by solving the same set of equations (13 23), but with
the mean value changed trom u Af to + Ar Once the risk-neutral probabilities are
found, the lattice can be solved backward, just as in the binomial procedure

Example 13.7 (The S-month call) Let us find the price of the 5-month call option
ol Example 12 3 using a trinomial lattice, just to compare the results We have 5(0) =
$62, K == $60, + = 10%, and ¢ == 20% The time to expiration is 5 months = 416667
To set up the lattice we must select a value of 1 and solve the equations (13 23) for
the probabilities (when u is set to 1) in the equations The choice of « requires a bit of
experimentation, since for some values the resulting risk-neutral probabilities may not
be positive For example, using 1 == 1 06 leads to gy == 57, g2 = — 03, and g3 = 46
Instead we use u == 1 1031277 and q; = 20947, g, == 64896, and g3 = 14156 This
leads to the lattice shown in Figure 13 7 Note that the value of the option obtained is
$5 83, which is slightly closer to the Black-Scholes result of $5 80 than is the price
of $5 85 determined by a binomial lattice *

The lattice of Figure 137 has the stock value listed above each node and the
option value listed below each node The final option values are just max(0, S — K)
The option values at other nodes are found by discounted risk-neutral pricing For

¥In this example we assumed monthly compounding, while the Black-Scholes formula implicitly agsumes
comtinuous compounding We can aiso use the equivalent continuous compounding rate in the example, and
the result differs by only one-tenth of # cent from $5 83
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FIGURE 13.7 S-month call using a trinomial lattice. Stock prices are listed above nodes; and option
prices are listed below The discounted risk-neutral valuation is easily generalized to the trinomial
iattice

example, the value at the top node after 4 months is (1 + 10/12)“1(111 x 4128 +
g2 x 3181 + ¢q3 x 23 23) == 3231 I in this calculation the stock values 101 28,
91 81, and 83 23 wete used instead of the option values, the result would be the stock
value of 9] 81, but of course it is not necessary to use this backward procedure for
the stock prices

13.8 EXOTIC OPTIONS

Numerous variations on the basic design of options have been proposed Each variation
offers effective control of the risk perceived by a ceitain group ot investors or eases
execution and bookkeeping We list a few of these variations here:

1. Bermudan option In this option, the allowable exeicise dates are restricted,
in some case to specific dates and in other cases to specific periods within the
lifetime of the option Warrants on stock often have this characteristic
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Forward start options These are options (hat aie paid for at one date, but do
not begin until a later date

Compound options A compound option is an option on an option

“As you like it”” o1 “chooser” options The holder of an “as you like it” option
can, after a specified time, declare the option to be either a put of a call

CAPs These options testiict the amount of piofit that can be made by the option
holder by automatically exercising once the profit reaches a specified level. A $20
CAP on a call option, means that once the stock price riscs to $20 over the stiike
price, the option is excrcised

LEAPS This termn stands for “Long-term Equity AnticiPation Securities.” They
are long-term, exchange-traded options with exercise dates as far as 3 years into
the future.

Digital options In a digital option the payofl is $1 it the option is in the money
and zero otherwise A European digital call option, for example, has payof! | if
S(I'y > K,and Q if S(T) < K, where K is the strike price

Exchange options  Such an option gives one the 1ight to exchange one specified
security for another

Yield-based options A yield-based option on a bond defines the exercise value
in terms of yield rather than price Hence the holder of a yield-bused call option
benefits it bond prices decrease since yields move in the opposite direction to
prices

Cross-ratio options  These are {oreign-currency options denominated in another
foreign currency; for example, a call on German marks with an exercise price in
Japanese yen

Knockout options These options terminate (with zero value) once the piice ot
the underlying asset reaches a specified point For calls these aie *°down and out”
options, which terminate once the price of the underlying assct falls below a
specified level For puts the analogous option is a “up and out” option

Discontinuous options These options have payofls that are discontinuous tunc-
tions of the price of the underlying asset For example, a call option may pay
either zero or $20, depending on whether the final price of the undeilying asset is
below or above a specified stiike price

Lookback options In a lookback option the effective strike price is not specitied,
but is determined by the minimum (in the case of a call) or maximum (in the case
ot a put) of the price of the underlying asset during the period of the option For
example, a European-style lookback call option has a payotf equal to max (§7 —
Sminy 0) = S7 —~ Sniin» Whete Sy is the minimum value ot the price S over the
period from initiation to the termination time 7 Such options are very attractive
to investors, since in fact they always have positive value (unless Sy = Syin) Of
course their prices reflect the apparent attractiveness

Asian options  The payoff ot Asian options depends on the average price S,y of
the underlying asset during the peiiod ot the option There are basically two ways
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that the average can be used In one, Sy, serves as the strike price, so that the
payoff of a corresponding call, for example, is max (S7 — Sqyg,0) In the second
type, Savy is substituted for the final price Thus the payoff of the corresponding
call is max (Suve — K, 0), where K is a specified strike price

Pricing*

Prices of some of these variations can be worked out compultationally by using the
theory and methods presented in this chapter In other cases, formulas analogous to
the Black-Scholes formula have been derived There are cases, however, that present
a serious technical challenge to the investinent analysis community

Example 13.8 (A down and outer) Consider a down and out call option on a non-
dividend-paying stock This option has a strike price of K and a “knockout” price of
N < K If the stock price S falls below N, the option is terminated with zero value.
A closed-form expression for the original value of such an option can be found using
the Black-Scholes framework; however, the details are not neat We shall consider a
simplified case, where the option is perpetual (that is, 7 = co) but still has the down
and out provision.

Since there is no explicit time dependence in the price of a perpetual option, the
Black-Scholes equation reduces to

16282C"(S) +1SC'(85) ~ rC(8) =0 (13.24)
The boundary condition is
C(N)=0

We also know that C(S) = S as § — 0.
To solve (13 24) let us try a solution of the form C(S) = §* This gives the
algebraic equation

%Uza(a ~D+ra—1r =0

which has solutions @ == | and @ = —y, where y = 2 /o> We may wiite the general
solution of (13 24) as a linear combination of these two; that is,

C(S) = m S+ a5

Using the boundary condition we find a; = —a, N**! Hence C(S) = a\[S —
N{(S/N)~7} Using the asymptotic property, we have a; == | Therefore the final result
is

C(S) = S — N(S/N)™"

Since the value of a perpetual call is S, the second term in this expression can be
regarded as a discount for the down and out feature
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The {ookback and Asian options are particularly interesting because their payoffs
are path dependent; that is, their payoffs do not merely depend on the final value
of the price of the underlying asset, but also on the way that that price was reached
So the conventional binomial lattice mcthod of evaluation is not applicable However,
there are ways to modity the lattice approach to handle such cases; but as one might
expect, the amount of computation required tends to be substantially greater than tor
a conventjonal option

For European-style options that are path dependent, the Monte Carlo method
offers a simple and effective procedure The principle of risk-neutral piieing still
applies, so it is only necessary to simulate the process repeatedly, using the risk-ncutral
probabilities for the underlying asset price fluctuations, and to average the payoffs
obtained during the simulations The control vatiate method for reducing the number
of required simulationy is especially useful for these options, and a corresponding
non-path-dependent option, for which a solution is readily Tound, can be used as the
contiol variate (Sec Exercise 9)

13.9 STORAGE COSTS AND DIVIDENDS*

Commodity storage costs and security dividends can complicate an evaluation proce-
dute, but there is an important special case, of proportional costs or dividends, that can
be handled casily This case is usctul in applications, and the study of the technique
involved should further enhance your understanding ot risk-ncutral pricing

Binomial Form

Suppose the comumodity price § is governed by a binomial process having an up factor
u and a down factor d There is a storage cost of ¢§ per period, payable at the end of
each period The tota] risk-frce return per period is R

If you invest in the commodity at the beginning of a period, you must pay the
current price S At the end of the period, you receive the new commodity minus the
storage cost; hence you receive either (i1 —¢)S§ or (d —¢)S The new factors u — ¢ and
d —c are the legitimate tactors that define the result ot holding the cotmmodity, and
therefore these ate the factors that can be used in a replication argument It follows
that the risk-neutral probabilities for up and down are

_R—d+c | H—c—R
4= u—d 7= u—d

respectively (To avoid arbitrage we must have 1 ~¢ > R > d —c ) These risk-neutral
probabilities should be used to evaluate securities or ventutes that are derivative to
the commodity

Example 13.9 (A foreign curreney put) Mr Smith, a successful but cautious U §
businessman, has sold a product to a German firm, and he will receive payment
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of 1 million German marks in 6 months Currently the exchange rate M is $ 625
per DM To protect the value of this anticipated payment, Mt Smith is considering
the purchase of a 6-month put of DM [ million at a strike piice of § 60 per DM
Mr Smith wants to compute the fair value of such a put to see whether the market
price is reasonable

To make the calculation, Mr Smith notes that the US dollar interest rate is
5% while the German mark interest 1ate is 8% The interest on martks acts like a
proportional dividend or, equivalently, a negative holding cost The volatility ot the
exchange 1ate is 3% per month

To find the value of the put, Mr Smith sets up a binomial lattice with six monthly
periods, with u = e =1 03045 and d = 1/u = 97045 The risk-neutral probability
for an up move is

(14 05/12) —d — 08/12
{I mm
u-—d

M Smith then evaluates the put with the usual backwaid process Specifically, he sets
up a lattice of DM prices using the i and « factors defined by the volatility He then
sets up a corresponding lattice {o1 put prices The terminal values are found easily,
and other values are found by discounted iisk-neutral valuation using the risk-neutral
probabilities

= 387

Brownian Motion Form*

Suppose a commodity—Ilet’s take copper—has @ price governed by geometric Brown-
fan motion as

dS = pSdi + oS dz (13 25)

whete - is 4 standmd Wiener process 1f an investor buys coppei and holds it, there
is a proportional storage cost that is paid at the rate of ¢S per unit time 1f at any
moment ! the investor holds copper with total value W(r), the holding cost can be
paid at the 1ate of ¢ W(r)dr by selling copper at this rate The process for the value of
copper loldings is thetefore

daw

Il

puWdi+oWds —cWdr
(- )Wdr +oWd:z (13 26)

i

where W(0) = S§(0) Equation (13 26) can now be regmded as that goveining the
value of a security with the holding costs accounted for We might term W the value
of net copper, since it is the net value after holding costs

1f we consider an investment oppoitunity that involves copper, such as an option
on copper futures or # 1eal option on a pioject that involves copper as a commodity
(such as a copper mining operation or an electiical equipment project), we can value
this opportunity by risk-neutral techniques We change the process {or net copper to
risk-neutial form since it is net copper that can be used in constiucting a 1eplication
of other securities Specifically, in a risk-neutral setting with interest 1ate 1, net coppel
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is governed by
dW =1 Wdr + oW d? (1327)
whete 2 is a standard Wicner process
The appropiiate transformation embodied in the foregoing is that from (13 26) to
(13 27), which boils down to the change y ~ ¢ — 1 This is equivalent to yt — 1 +¢
Hence the original copper price in a risk-neutral world satisfies
dS = (1 +¢)Sdr +05d3 (13.28)

This is the equation that should be used for risk-neutral valuation of copper-ielated
investments

13.10 MARTINGALE PRICING*

Consider any security with a continuous-time price process S(f) Suppose that the
interest rate is » and the security makes no payments for 0 <r < 7 The theory of
risk-neutral pricing states that there is a risk-neutral version of the process on [0, 7]
such that

S(0) = e BLS(r)] (1329)
where E denotes expectation in the risk-neutral world We can translate this expression
to time 1 to write

S(ry) = ™ E[S(r2)]
for any 1, > 1, where ]ﬂE,I denotes risk-neutral expectation as seen” at time 1; We can
then rearrange this expression to
€S = "Ry, [S()]
Equivalently, if for all r we define
NOERG!
we have the especially simple expiession

S(n) = B, [S()] (1330)
for all 12 > 1)

In general, a process v(r) that satisfies x(r)) = E, {x(t2)] for all 1y > 1y is called
a martingale (after the mathematician who fist studied these processes) The expected
future value of a martingale is equal to the current value of the process——there is no
systematic drift

Equation (13 30) states that the security price $(r) deflated by the discount factor
from O to r is a martingale under the risk-neutral probubility structure

Furthermore, our results on risk-neutrat evaluation irnply, in the same way, that
the price process P of uny secutity which is derivative to S (and which does not

“In (13 29) we could write E” but the time reference is understood
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generate intermediate cash flows) must also be a martingale under the same probability
structure; that is,

Pl = B[P(1)] (13.31)

This is just a restatement of the risk-neutral pricing formula because we can unscramble
(13 31) to produce

P(1y) = ™" VE[P(1)] (1332)

Example 13.10 (Forward value) Consider a forward contract on a security with
price process S The contract is written at 1 == 0 with forward price Fy for delivery at
time 7 The initial value of this contiact is f == O At time s > 0, new conlracts have
forward price F;, What is the value f, of the original {orward contract at 1?

The function f is a derivative of the security S; hence its deflated price must
be a martingale in the risk-ncutral world Hence,

71 = El(fT)
Equivalently,
e fy=e"TE (f1) = e T E(Sr ~ Fy) (13 33)

The same argument applied to a contract written at r with forward price F, (and value
Ze10) gives

0=c""E(S; — F)
or, equivalently, E (Sr) = F, Using this in (13 33), we find the desired result
fr= e T — Fy)

which agrees with the formula detived in Section 104 by more elementary (but less
general) arguments

The martingale formulation can be used in the binomial lattice framework as
well The analog of (13 31) is

B =E(F)) (13.34)
for j > k, where
— Py
P = ——e
ST

and E; denotes expectation at k with respect to the risk-neutral probabilities Again
P is P deflated by the discount factor In the binomial framework (13 34) is usually
applied a single step at a time, in which case it is identical, once the interest rate
terms are made explicit, to the familiar backward discounted risk-neutral recursive
evaluation piocess
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Because of this association with matingales, the risk-neutzal probabilities are
often termed martingale probabilities. However, in this text we geneially prefer
risk-neutral terminology to martingale terminology

13.11 SUMMARY

The Black~Scholes equation iy a partial differential equation that must be satisfied by
any function f(S§, r) that is derivative to the underlying security with price process

dS = pSdr +o05dz

where z is a standamdized Wiener process In particulal, the functions S and ¢’ both
satisfy the Black-Scholes equation. The price functions of other derivative securities,
such as options, satisfy the same equation, but with different boundary conditions

It is usuaily difficult or impossible to solve the Black-Scholes equation explicitly
for a given set of boundary conditions It can be solved for the special case of a cali
option on a stock that does not pay dividends duting the life of the option The
resulting solution formula C(S, r) is called the Black-Scholes formula for the price
of a call option. This formula is expressed in terms of the function N, the cumulative
distribution of a standard normal 1andom variable. The function N cannot be evaluated
in closed form, but accurate approximations are avaitable

The Black-Scholes equation can be regarded as an instance of 1isk-neutral pric-
ing Indeed, the value of a derivative security with payoft V(/) at T and no other
payments can be wiitten as V = e“”ﬁ[V(T)], where E denotes expectation with
respect to the risk-neutial process d§ =1 Sdr + oS dzZ

Delta is defined as A = df/3S Delta therefore measures the sensitivity of a
detivative asset to the changes in the underlying stock price S A portfolio can be
hedged by constructing it so that its net delta is zero Delta can also be used to
construct a derivative security synthetically, by replication To do this, one constructs
a special portfolio containing the undertying security in sufficient amount so that its
value is equal to the value of delta times the price of the underlying security The
portfolio also contains the risk-fiec asset (either short or long) in an amount to make
the entire portfolio have value equal to the theoretical value of the derivative The
portfolio is rebalanced periodically so that the value continues to track the theoretical
value of the derivative closely Portfolio insutance is an extension of this idea, but it
constructs the replicating portfolio with futures contracts on the underlying security
rather than with the underlying security itseif

There are several ways to compute the valuc of options or other derivative
securities numerically Monte Carlo simulation is a simple method that is well suited
to European-style options, even those that are path dependent in the sense that the final
payoff depends on the particular price path of the underlying security as well as the
final price itself (as, for example, a call with strike price equal to the averuge price of
the underlying security during the life ol the option) A disadvantage ot Monte Carlo
is that it may require a very large number of simufation runs

Finite-ditference methods approximate the Black-Scholes equation by a set of
algebraic equations, which can be solved numerically The method can treat American-~
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as well as European-style options, but it cannot treat path-dependent options, except
in special cases.

Lattice and tee methods are very popular A disadvantage is that the size of the
fattice or tee often becomes very great Path-dependent options require trees rather
than lattices, and hence the number of nodes can become truly enormous

Many variations of the option concept exist Formulas for the theoretical prices
of some of these exotic options have been devised, but in most cases the prices must
be tound numerically

If storage cosls are incurred or dividends are received while holding an asset,
those will influence the value of securities derivative to that asset If the storage costs
or dividends are proportional to the asset price, the value of a derivative security can
be found by properly adjusting the risk-neulral probabilities or, in the continuous-lime
case, by adjusting the growth coefficient in the risk-neultral process governing the asset.

If intermediate payments are made or costs incurred while holding a derivative
security itself, those additional cash flows can, within the binomial lattice framework,
be accounted for at each node during the discounted risk-neutral valuation process, as
illustrated in Chapler 12 In the continuous-time framework, additional cash flow rates
can be entered as an additional lexm in the Black-Scholes equation, as shown in the
Appendix to this chapter

The risk-neutial valuation equation can be uansformed (casily) to martingale
form: the price of a derivative deflated by the discount factor defines a maitingale
process under the risk-neutral probability structure

APPENDIX: ALTERNATIVE BLACK-SCHOLES DERIVATION*

Here we detive the Black-Scholes equation using the disciete-time risk-neutral pricing
formula and taking the limit as Ar — 0. In addition, we shall account for intermediate
cash fows

The price of the undeilying security is govemed by

dS = puSdi +0Sdz

where z is a standard Wiener process The derivalive security pays cash flow at a rale
h(S, 1) at time ¢ and has a final cash flow of g(S,7T)

To determine (he price ol the derivative security, we set up a binomial lattice
approximating the price process of § Following the usuai procedure (see Chapter 11),
we select Af and put

0 o= L‘a\/Al
d = e-ﬂ\/Al
R = erAl

The risk-neutral probubilities lor up and down moves ate

R—d u—R
R I—g=
it —d

of =
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We use (he first-order approxinations
Y = 1 oA+ %azAl
e_“m e | —ov A4 %UJAI
N Y.
e = |~ At

Subslituting these into the expressions for ¢ and 1 ~ g and keeping terms only up to
first order gives

Let f(8, ¢) be the value of (he derivative security at S and 1 According to the recursive
pricing formula we have

(S, 0) = (S, DA+ (T =1 AD [gf (uS, £ + A + (1 = ) [(dS, 1+ AD]  (13.35)

However, to first order,
af a?
FuS, 1 + A1) = f(S, ’)+ﬁ aVA1+—7—A1 N
¢ 4

192/ af
+v)s 3 &

[(dS, 1+ A1)y = [(S, 1)+—( a\/_+~m)s

2L anst+ Lo

1

t3 2982

Using these in (13 35), keeping teims up to order Ar, and combining similal terms
(requiring a bit of algebra), we obtain

(5.0) = (S, AL+ £ (5,0 =1 /(5. 080+ Ly st I BTy
=0 - 1 S o
/ ( ( f o STs -
Canceling f(S, ) und Af we have
2 1a
R (1136)

ar  as 2038

The boundary condition is f(S, 7} == g(5, I} This is the Black-Scholes equation
when there is cash flow
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EXERCISES

SSsee=

1.

b

w

(Numerjcal evaluation of normal dislribution®) The cumulalive normal distribution can
be approximated (to within abowt six decimal places) by the modified polynomial refation

NGy = P = N'(o)(ark + ak® 4+ a3k + agk +ask®)  forx =0

I — N(~x) forx <0
where
l E
N(x) = eV
¢ var
PR
1+ yx
y = 2316419
a; = 319381530

ay = — 35653782
I 781477937
ay = —1 821255978

[

ay

[

as 1330274429

Use this formnula to find the value of a call option with paramelers 7 == 5, ¢ = 25,
r o= 08, K =35, and Sy = $34

(Perpetual puto) Consider a perpetual American put option (with 7 = oc) For smail
stock prices it will be advantageous to exercise the put Let G be the largest such stock
price The time-independent Biack-Scholes equalion becomes

1022 P () +1SP(S) ~1 P(S) =0

for G < § < oo The appropriate boundary conditions are P(oo) =0 and P(G) = K -G
G should be chosen lo maximize the value of the option

(a) Show that P(S) has the lorm
P(S)=a;§ + a5

where y =2 jo®
(b) Use the rwo boundary conditions to show thai

PS) = (K -G)S/G7
(¢) Finally, choose G 10 muximize P(S) to conclude that

K [u+ns™
P(S) = P £
) l+)/[ v K ]

. (Sigma estimation )  Traders in major financial institutions use the Black~Scholes formula

in a backward lashion to inler other traders’ cstimales of o fiom option prices In fact,
traders fiequently guote sigmas to each other, vather than prices, to arrange tades Suppose
a cail option on a stock that pays no dividend lor 6 months has a sirike price of $35, a
premium ol $2 15, and time to wmalurity of 7 weeks The cunent short-term T-bill rale is
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7%, and the price of the undeilying stock is $36 12 What is the implied volatility of the
underlying security?

4, (Black-Scholes approximationo) Note that to first order N(d) = ’3 +d/vIr Use this
to derive the value of a call option when the stock price is at the present value of the
strike price; that is, § = Ke™7 Specifically, show that C = 4Sa+/T Also show that
A ’3 + 20T Use these approximations to estimate the value of the call option of
Example 132

[

. (Delta)  Using the same parameters as in Example 13 2, find the vahie of the 5-month calf
it the initial value of the stock is $63 Hence estimate the quantity A = AC/AS Estimate
© = AC/A:

=

. (A special identity) Gavin Jones believes that for a derivative security with price P(S),
the vaiues of A, I and © are related Show that in fact

O+15A+ 1o’ =) P

7. (Gamma and thetao) Show that tor a2 European cail or put on 4 non-dividend-paying stock

_ N'(h)

Saﬁ

SN'(dh ,
o = N — 1K™ N(dy)

T

{Himt Use Exercise 6]

=]

. (Great Wesrern CD#) Great Western Bank has otfered a special certificate of deposir
(CD) tied to the S&P 500 Funds are deposired info the account at the beginning of a
month and are held in the accounr for 3 years Inrerest is credited ro rhe accounr ar the end
of each year, and the amount of inreresr paid is based on the performance of the S&P 500
index during the previous 12 months Specifically,” ar rhe end of the first year, if the value
of the index at the end of & monrhs ls SA. k=0,1,2, 12, the average of the 12-monrh
index valves is defined as A = ‘—, Z —, 5S¢ and the mtarest paid {s

T == mux[0, (A — Sy)/Sa}

fimes the initial account bufance Interest in the loffowing years is computed i the same
tashion, with new values of accout balance and index values Assuming that monthly
changes in the S&P 500 index can be modeled as geomertric Browniau motion with o = 20,
what risk-free rate is equivalent to this CD? [Him Try a tree Use 2-month intervals }

9. (The controf variate metliod) Suppose that it is desired ta estimate the expected value of
random variable v (This random variable might be the discounted terminal value of a call
option on a stock that is following a risk-neutral 1andom process; then the expected value
is the value of the option ) One way to do the estimation is to generate numerous sampies
of x, according to its probahility distribution, and then take the avetage of the results A
difficulty with this method is that it may take a very large number of samples to obiain
satisfactory results The process can be speeded up somewhat by the use of an additionaf
random variable v calied a contral variate. The control variate must be correlated with x,

S Tlere were some minor changes in the actual {ormwia
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and its expected value must be known For example, if x is the terminal value of a calf
with a down and out feature, we might choose vy to be the terminal value of a similar
call without the down and out feature We can determine the value of E(y) = ¥ by direct
methods such as the Black-Scholes formula or a binomial lattice But we do expect that
if the stock should happen to end high on a particular simuiation trial, the value of both ¢
and y will be relatively high as well Hence the two variables are correlated

The estimate ¥ of E(x) is made with the formula

T = g+ (Vg = 1)

Sometimes a smail value of a is selecled arbitrarily However, an optimal value of a can
be estimated as well Find the value of a that minimizes the variance of ¥ (The resuit witl
depend on certain variances and covariances )

10. (Controf variate application®) Use the controi variate method of Exercise 9 to determine

the value of a 5-month Asian call option on a stock with 5y = $62, o = 20%, and 1 = [0%
and a strike price of $60

(a) As a control variate use the 5-month slandard call option treated in Exampie 123
(b) Use S,y as a controf variate and compare with part (a)

11. (Pay-later oplions) Pay-later options are options for which the buyer is not required to

pay the premium up front (i e, at the time that the contiact is entered into) At expiration,
the holder of a pay-later option must exercise the option if it is in the money, i which
case he pays the premium at that time Otherwise the option is left unexercised and no
premium is patd

The stock of the CCC Corporalion is cumrently valued at $12 and is assumed to
possess afi the properties of geometric Brownian motion It has an expected anmuaf return
of 15%, an annual volatility of 20%, and the annual risk-free rate is 10%

(a) Using a binomial Iattice, determine the price of a caff option on CCC stock maturing
in [0 months’ time with a strike price of $14 (Let the distance between nodes on your
tree be I monlh in fength )

(b Using a simifar methodology, determine the premium for a pay-fater cail with all the
same parameters as the cail in part {(a)

(¢) Compate your answers o parts (a) and (b) Do the answers differ; if so why, if not
why not? Under what conditions would you prefer to hofd which option?

(California housing put®) Suppose you buy a new home and finance 90% of the price
with a mortgage from a bank Suppose that a few years fater the value of your home
falis below your mortgage balance and you decide to default on your loan California has
antideficiency judgment legisiation that states that the bank can only recover the value of
the house itself, not the entire mortgage balance © (Of course, real estate values in California
afways increase, so this is never an issue!)

Suppose you take out a [5-year mortgage for 90% of the home price, and suppose
that the risk-free rate is constant at 10% Assume also that the house has a net value to
you (perhaps in saved rent) of 5% of its market vaiue each year Housing prices have a
volatility of 18% per year What is the value of this put option for a loan of $907 What is
the fair value for the interest rate on your mortgage? (Use the small A7 approximation )

5This is. of course. a simplification of the faw
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13. (Forest value) Solfve Exercise 16 in Chapter 12 assuming that the annual storage cost of
cut fumber is 5% of its value

14. (Mr Smitly’s put) Find the value of the put for My Smith described in Example 139

The classic paper of Black and Scholes [} initiated the modem approach to options valuation
Another early significant contributor was Merton, many ol whose papers we collected in [2]
Meston examined many important special cases, such as perpetual options Details of options
trading are given in {3] Portfotio insurance is discussed in [4, 5| The Monte Carlo technique is
a clagsic method for evaluating expected value Iis application to options valuation is treated in
[6, 7] A textbook treatment of general finite-difference methods is [8] Application to options
valuation is discussed in [9, 10] For a discussion of exotic options see [11, 12] The idea of
Exercise 4 15 in [13}
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INTEREST RATE
DERIVATIVES

[

ecurities with payoffs that depend on interest rates are called interest rate

derivatives, Such securities aie extremely impoitant because almost every finan-

cial transaction entails exposure to interest rate rigk—and interest rate derivatives
provide the means for controlling that 1isk In addition, as with other deiivative secu-
rities, interest 1ate derivatives may also be used creatively to enhance the peiformance
o} investment portiolios

Some examples of interest 1ate derivatives are listed in the next section These
examples illustrate the complexity of the interest rate environment and the range of
financial instruments designed to harness that complexity

The complexity of tie interest rate market is reflected in the theoretical structure
used for its analysis Even in the deterministic case, we found that it is necessary to
define an entire term structuwie of interest rates in order to explain bond piices When
uncertainty is introduced, it is necessary to define a randomly changing term structuie
We will find, howevei, that the concepts and methods that we have developed in the
past few chapters—namely, risk-neutral pricing, binomial lattices, and Ito processes—
can be combined with the ideas of term structure very nicely to develop a coherent
approach to the pricing of interest rate derivative secuiities The reader should therefore
find this chapter quite inteiesting, both because the topic is itself extremely important
in the investment woild, and because it biings togethe: much of the previous matertal
and expands it

14.1 EXAMPLES OF INTEREST RATE DERIVATIVES

Interest rate derivative securities are iclevant to many foims of investment Here are
some examples

382
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1. Bonds Bonds themselves can be regarded as being derivative to interest tates,
although the dependency is quite direct In particular, the price of a risk-free
zero-coupon bond with maturity in N years is a direct measure of the N-yeai
interest rate Coupon-bearing bonds can be regarded, as always, as combinations
of zeto-coupon bonds,

2. Bond futures Futures on Tieasury bonds, Treasury notes, and other interest iate
instruments are traded on exchanges These were discussed in Chapter 10

3. Bond options An option can be gianted on a bond An American call option
on a 10-year Treasury bond would giant the 1ight to purchase the bond at a fixed
(stiike) price within a fixed period ol time

4. Bond futures options More common than actual bond options are options on
bond futures Such options are traded on an exchange that deals with futures
on Treasury notes and other interest tate [utures contracts Such options specify
delivery of the underlying futwes contract

5. Embedded bond options Many bonds aie callable, which means that the issuer
of the bond has the right to repurchase the bond according to certain terms
(Usually a bond is callable only after a specified number of years ) A call provision
can be regarded as an option granted to the issuer, the option being embedded
within the bond itsell The issuer of such a bond will find it advantageous to
exercise the call option if interest 1ates fall below those of the original issue
Some bonds are putable, which means that the owner of the bond can require
that the issuer redeem the bond under certain conditions, Such bonds grant an
embedded put option to the bond holder

6. Mortgages Typically, a home mortgage cariies with it certain prepayment priv-
ileges, allowing the moitgagee (o repay the loan anytime (Often there is a tepay-~
ment penalty for, perhaps, the first 2 years ) The repayment privilege is analogous
to a call provision in a bond, with the homeowner taking the role of the issuer
Some morigages have special leatures such as rates that adjust with prevailing
interest 1ates

7. Mortgage-backed securities Mortgages are usually packaged together in mort-
gage pools A mortgage-backed security is an ownership shate of the income
generated by such a pool or an obligation secured by such a pool The individual
mortgages in 4 pool are typically serviced by banks, which receive the monthly
mortgage payments and send them to the mortgage owner For this reason these
securities are also termed pass throughs. The overall market for mortgage-backed
securities is enormous, stpassing that of the corporate bond maiket

*®

Interest rate caps and floors It is quite common for a financial institution to
offer loans to businesses in which the outstanding balance is charged an interest
rate that is pegged to a standard, such as the prime rate or the LIBOR! 1ate
However, the institution may offer to cap the interest rate over a cettain time

! The Londoxt interbank Offered Rate (LIBOR) is the rate used for U'S, dolfar borrowisg 1hrought London
imermediaries There are LIBOR rates for various maturities such a5 | month, 3 months 6 months and
50 0n
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period Foi example, it may offes to chaige each day, oves the next 6 months, the
LIBOR iate plus 1%, but the chaige will never exceed 10% (annual rate). Similarly
a floor might be established, where the interest sate will never fall below the floos
level Adjustable-rate moitgages often have cap and floor featuies The interest
rate is updated periodically accoiding to an interest 1ate index, but the charge
cannot exceed 4 ceilain specified amount each period and may be fimited over the
life of the moitgage by an overail cap

9. Swaps A swap is an agreement between two parties to exchange the cash flows
ol two interest rate instruments Foi example, paity A may swap its fixed-income
stream with paity B's adjustable-rate stream

10. Swaptions The term is short for swap oprion A swaption is an option on an
intejest rate swap Such options aie quite popular among coiposations wishing
to hedge interest rate risk (See Exercise 10) For the student, they represent
an excellent example of how the interest rate muket is becoming ever moie
sophisticated

14.2 THE NEED FOR A THEORY

Wise investoss take interest rale movements into account as a form of risk To analyze
this 1isk systematically, it is best to develop a model of intesest rate fluctuations
Development of a model may seem di{ficult because the interest rate environment
is charactesized at any one time, not by a single interest iate, but by an entire term
structure, composed of a seiies of spot rates, or a spot rate curve This entire cuive
varies its shape with time

A simplistic approach to modeling the fluctuations is to assume that the indi-
vidual spot 1ates move independently of one another in a completely random fashion.
This is pexhups ucceplub]e abstractly, but it is not in accord wilh the obseivation that
fos ths observation and bul]d additional suuclure into the model of aliowable Huctu-
ations Howevei, as soon as a specific model is proposed, a new issue aiises—that of
potential aibitrage

To see how Ihis issue aiises, fet us hypothesize, as a simple model estiicting
the fluctations, that the teym structure is always flat, but that it moves iandomly up
and down—all rate%  moving together by the same amount This simple model was in
tact used in the 1mmumzuuon analysis of Chapter 3 To complete the model we could
decide on a probabilistic structure for the up and down miovements, assuming eithes
a discrete set ol possible jumps o1 a conlinuous distribution of movements Foi the
piesent argument, howevei, we do not need (o be that specific No matter how the
probabilities are assigned, this simple model of term structure vaiiations implies that
arbitrage opportunities exist The simplest proof of this is to look again at Chapter 3,
Example 3 10, which treats the immunization problem of the X Corporation According
to (hat example, if interest rates are flat at 9%, one can form a portfolio by buying
$292,788 worth ol bond 1 and $121,854 worth of bond 2 while shorting $414,642
worlh of a zero-coupon bond that matwes in 10 years The total cost of this portiolio
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is zero However, if the term structure moves either up or down, the net value of
the portfolio will increase Hence there is a chance that a positive profit can be made
from the portfolio and no chance of a loss—a classic type B arbitrage situation (This
is a general result for the flat term structure assumption, as shown in Chapter 3,
Exercise 16 ) This example shows that one cannot arbitiarily select a framework for
term structure fluctuation if arbitrage opportunities are to be avoided How can we
find a realistic framework that is arbitrage free?

14.3 THE BINOMIAL APPROACH

Our familiar tool-~the binomial lattice—provides a suitable framework for construct-
ing interest rate models We set up a fattice with a basic time span between successive
nodes equal to the period we wish to use for repiesenting the tetm stiucture—perhaps
a week, a month, a quarter, o1 a year We then assign a short rate (that is, a one-
period 1ate) to each node of the lattice The inteipretation of this lattice is that if the
process reaches a specific node, then the one-period rate, foi the next period, is the rate
specified at that node To complete the model we may assign probabilities to the var-
ious node transitions so that we have a full piobabilistic process for the short rate
Howevel, real probabilities for node transitions are not relevant for the pricing theory
that follows Instead we will also assign a set of risk-neutral node transition prob-
abilities The assignment of the short 1ate values and the corresponding 1isk-neutral
probabilities completely defines an interest rate structure for all maturities, as will be
demonstrated shortly It is important to undeistand that the risk-neutral probabilities
are assigned in this case rather than derived from a replication argument

Since the risk-neutral probabilities are assigned, rather than computed, it is con-
venient to set them all equal to one-half We follow this convention in this section It
is convenient as well to establish an indexing convention for the nodes of the lattice
For this purpose, it is easiest to draw the lattice in the right-triangle form shown in
Figure 14 1 Note that at time ¢ thete are a total of ¢ 4+ | nodes, indexed by i from 0

5  FIGURE 14,1 Indexing system for short rate

lattice. Nodes are double indexed in the form
{t, /) The t refers 10 time as shown at the bot-
4 10m of the lauice, and i refers to the height

above the lowest part of the lattice

3 3 3
2 2 2 2
1 1 t 1 I
[
0 0 g 0 0 0
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t0 { A convenient way to visualize this notation is (o imagine that the two branches
leading from any node we considered to be “up” and “flat” The index / at time ¢
denotes how many ups it has taken to reach the node A specific node in the lattice is
indexed by the pair (¢, ), with 7 being time and i being the node index at that time
At a node (¢, 1) there is specified a short rate 1, > 0, which is the one-period rate at
that point

This lattice forms the basis for pricing interest rate secutities by using risk-neutral
pricing When the process is at any node, the value of any interest rate security depends
only on that node; and we assume that all node values are related by the risk-neutral
pricing formula For example, consider a given node (¢, /) somewheie in the middle
of the lattice, and any intetest rate security Suppose the value of this security at node
(1,i) is V,; Then according to the rules of the lattice, this value is related to the value
of the security at the next two possible successor nodes according to the risk-neutral
pricing lormula

i
V/i=m(%v/+l i1+ $Vigr 1)+ Dy (14 1)

where D, is the dividend payment? at node (1, i)

Implied Term Structure

It may seem that we are a long way from having specified an entire term structure
model, since all we have are short rates—but actually the whole structure is already
there We just have to extract it The extraction is accomplished in the same way
that a spot 1ate curve js extracted from a series of one-period forward iates in the
deterministic case For the binomial lattice, the extiaction is based on 1isk-neutral
pricing To see how this works, suppose that we are at the initial time, at node (0, 0)
The one-period spot rate is simply 1qy, as defined at that node To find the two-
period spot rate, we consider a bond that pays $1 at time 2 We find its value in two
steps, woiking backward using the risk-neutral pricing formula In detail, suppose for
simplicity the period length is a full year Denote the price at node (¢, i) of the bond
that matures at year 2 by £,;(2) Then,

t i
Pi(2) = Lxt+txi)= e
0@ 1+lm(: 1% 1) T+

| 1
P2y = —— (A x t 44 = e
n(2) 1_H”(zx +4x1) T

and next

i
Py(2) = ——— [LPp(2) + 4 P2
w(2) T [3Pw(2) + 4 Pu(2)]

2This formuta assumes that Dy, depends only on ¢ and i For some complex securities. this does not hold
and the vatuation process is then path dependent Stuch cases are jlfustraled in Jaler sections
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This process can be applied to evaluate the price Pyy(k) for any & The couresponding
spot rate for period k is then the rate 54 that satisfies

i
ey = Poo(k)

Exampte 14.1 (A simple short rate lIattice) Figure 14 2 shows a shoit rate lattice
giving the rates for 6 years (The period length is 1 year ) The figure was constructed
by using an up factor of # = 1 3 and a flat (or down) factor of d = 9 Risk-neutial
probabilities for the lattice were assigned as ¢ = 5 for up and | —g = 5 lor flat

The entire term structure of interest rates can be determined from this lattice
by computing the prices of the zero-coupon bonds of varjous maturities An example
of such a calculation is shown in the lower part of the figure for a bond matming
at time 4 The value is computed by moving backward through the lattice in the
familiar way, at each period weighting the next period’s values by the 1isk-neutral
probabilities and discounting by the one-period 1ate For example, the top entty in
the third column is Pin(4) = 21( 8667 + 9038)/1 1183 = 7916 The value of the
bond at time zero is found to be 7334 times its face value This corresponds to a
spot rate from time zero to time 4 of sy = (1/7334) B 1 = 0806 The other
spot rates can be calculated in a similar way by constructing a lattice of the cor-
responding length with 1's in the final column If this is done, the resulting term
structure is found to be (0700, 0734, 0769, 0806, 0844, 0882) Note how the
term structure rises smoothly in a manner that is fairly characteristic ol actual term
structules

A short rate binomial lattice gives birth to a whole family of spot rate curves,
depicting the way the term stiuctuie varies 1andomly with time To see this, imagine
the process initially at the node (0,0) The corlesponding term structure (spot rate
curve) can be determined by the calculations illustrated in the loregoing example
Atfter one period the process moves to one of the two successor nodes This successor
node is then considered to be the new initial node of a (smaller) short 1ate lattice that

FIGURE 14,2 Simple short rate lattice and val-
2599 yation of a 4-year bond The bond is valued by
Short rate 1999 {799 working backwaid in the lower lanice, staing
1538 f384 {246  from the terminal value of 10 and discounting
{183 1065 0958 0862 with 1he short rale values in the upper lanice
0910 0819 0737 0663 0597
0700 0630 0567 0510 0459 (413

10000

Bond value 8667 10000
7916 9038 10000

7515 8481 9314 10000

7334 8180 8909 9514 10000
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is a sublattice of the original one A corresponding spot rate curve can be computed
exactly as before, but it will have somewhat different values, representing the one-
period change If the process had moved to the other possible node, the corresponding
spot rate curve would be somewhat different still We can therefore visualize a spot
rate curve associated with every node in the lattice As the underlying process moves
from node to node, the entire spot 1ate curve changes

No Arbitrage Oppoitunities

Is the term structure determined from the short rate binomial lattice {ree (rom arbitrage
possibilities? Yes! This important fact follows from the 1isk-neutral pricing formula.
To prove it, first consider the possibility of arbitrage over a single period, starting at
node (7,i) Any security at that node is defined by its values V,.p; and V., 4 at
period ¢+ 1 and its price P, at (1,{) These are related by

Vitrs + Viern

P, =
n VoF iy

1
i
If this security represents an arbitrage, then we must have P, < 0 and Vi = 0,
Viwnr41 = 0 with one of these inequalities being strict This is cleatly impossible since
all cocfficients in the equation linking these values are positive Hence no arbitrage is
possible over one period

The argument for two periods is similar A security will have price P; at time
t, payouts Dy, Digprigr at time 7 4+ 1, and values Viga i Viga (1. Viaa i42 at time
-2 It should be clear (see Figure 14 3) that these values are related by

Dy + Digria
I 415

Vitri + Vi,
(Ut (T t1y)

Vieript + Vigz a2
U+ rpr i X 1)

Pi=} + 4 +4
Again for an arbitrage, all variables on the right must be greater than or equal to
zeto, and P, must be less than or equal to zero, with at least one strict inequality
Clearly this is not possible Hence no two-period arbittage exists The argument can be
exlended to an arbitrary number of periods Therefore the short rate lattice approach to
modeling interest 1ates is arbitrage free, and hence specification of a short rate lattice
provides a workable model of interest rate variations

Vs w2 FIGURE 143  No arbitrage is possible. The initial price
P, is determined by discounted risk-neutral valuation. If
all payoffs are nonnegative. then the initial price must also
he nonnegative

Diyy i Vier i

(27
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14.4 PRICING APPLICATIONS

Many interesting secutities can be priced with the short rate fattice Sometimes the
short rate lattice together with the promised payout pattern on the nodes ol the lattice
is all that is needed to set up a backward calculation to determine vatue Other times
somewhat more subtle techniques must be used But a wide assortment ol problems
are amenable to faitly quick calculation using the binomial lattice tramework This
section discusses und jllustrates a representative group of important and inteiesting
applications of this type

Bond Derivatives

The previous section showed how to calculate the value of zero-coupon bonds using
the binomial lattice methodology It is a straightforward extension to calculate the
value of other bonds To calculate the value of a derivative of a bond, we proceed in
two steps: first we calculate the price lattice of the bond itself, then we calculate the
value of the derivative We illustrate the procedure for an option on a bond

Example 14.2 (A bond option) Conside1 a zero-coupon bond that has 4 years re-
maining to maturity and is selling at a cuirent price of 73 34 Suppose that we are
granted a European option to purchase this bond in 2 yeais at a stike price of 84 00
What is the value of this option?

We assume that the term stiucture is governed by the short rate lattice of Ex-
ample 14 | The value of the zero-coupon bond at any node is indicated in the bond
price lattice shown in the bottom portion of Figure 142 To evaluate the option we
only necd the first three periods of this lattice The value at expiration of the option
is max(0, P — K ), where P is the price of the bond at expitation and K is the strike
price We can then construct a small lattice to determine the option value, as shown
in Figure 144 The last column shows the value of the option at expitation The
earlier columns show the value obtained by working backward (as usual), using the
1isk-neutral probabilities of 5 and discounting according to the cotresponding valies
in the short 1ate lattice We conclude that the value of the option is 1 4703

Forwards and Futures®

Forward and futures contracts on infercst tate secutities, such s bonds, are easily
treated by the binomial lattice method This method provides additional insight into the

FIGURE 14.4 Bond option catculation. The standard backward method
0 s appied
81

3712
{4703 27752 509
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results of Chapter 10 and generalizes those results in important ways, since it is not nec-
essary to assume that interest rates are deterministic. Actually, the results for forward
contracts are not influenced much by the introduction of uncertainty, but the results for
(utures are. This means, in particular, that the futures—forwards equivalence result no
longer applies However, the calculations required for interest rate futures are simple

Example 14.3 (A bond forward) Consider a forward contiact to purchase a 2-year,
10% Treasury bond 4 years from now. Assume that the interest rate process follows
the lattice of the previous examples, as shown in Figure 14 2; and assume that coupons
are paid yearly and that the contract specifies that delivery will be made just after the
coupon payment at the beginning of year 4

The first step of the calculation is to find the value of the Treasury bond at the
beginning of the fourth year This is done in the usual way by backward calculation,
as shown on the right side of Figure 14 5 In the calculation the coupon payments for
years 5 and 6 are included For example, the top entry in yem S is ?l:g( S5x 110+ 5x
110) + 10 = 97.31 The column for year 4 is computed in a similar way, but without
the coupon The figures in the column for year 4 are the prices that the bond would
sell for that year

The left part of the lattice continues the backward calculation, but does not
include any coupon payments The resulting value at the initial node is the value of
the 2-year bond delivered at year 4, but paid for at year zero This is 72 90

With the forward contract there is no initial payment; the payment is at year 4
This delay of payment has time value, which is determined by the value of a
4-year zero-coupon bond The value of such a zero-coupon bond was calculated in
Example 14 1 to be 73 34. We can find the correct forward price of the bond by
comparing it with the forward price of $100 cash that is to be delivered in 4 years;
this forward price is of cowse just $100 Hence the correct price of the forward is

Fy = forward price of bond
‘ d pri £ $100 current value of bond

= forwir price o8 X rent value of $100

72.90

100 x =73 99 40
FIGURE 14.5 Llattice for bond for-
Year ward. The value of the bond is calcu-
lated backward from year 6 to year 4,
0 1 2 3 4 5 6 The forward price is then computed
backward using the year 4 bond values
Bond 110 as final values

9731 110

Forward period 8356 10323 110

7638 | 9269 10782 110

7307 87061 9996 11127 110

722 8446 956911055 11380 110

729 8381 9372 1024 {1097 11563 110
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FIGURE 14.6 Llattice for bond future Futures
Year prices are computed by averaging in backward steps
without discounting

0 1 2 3

Futures period 83 56
88131 9269

9223 9633 | 9996

9588 9954 10275 10553

99 12 10236 10518 10761 | 10968

Futures®

The pricing of {utures contracts is also easy using a binomial lattice The method is
best described by a continuation of Example 14 3

Example 14.4 (A bond future) Consider a futuies contract on the 2-year, 10% bond
to be purchased in 4 years As before, we need to know the value of the bond at each
node for year 4, when the futures contract is due This calculation wus cairied out
in the previous example, and we simply enter the values in a new luttice at year 4,
as shown in Figure 14 6 Now suppose that you are at the top node of yem 3, and
that the price of the futuies contract is F at that point You pay nothing then, but
next period you would obtain a profit of either 83.56 — F o1 9269 — F The piice
you should pay at year 3 is therefore 5(83 56 — F) + 5(92 69 — F), discounted
by the shoit 1ate at that point. But this price is zeio, since you pay nothing for the
contract Hence F = 5(83 56 -+ 92 69) = 88 {3 In other words, the futures piice is
< the average of the two next piices (using the 1isk-neutral probabilities) This argument
can be applied to every pievious node So we just woitk backward, computing aveiages
without discounting The value at the initial node is the price of the futures contiact;
namely, 99 {2 Note that indeed this value is slightly different than the couesponding
forward price of 99 40, thus demonstrating that futures-forward equivalence does not
hold when interest 1ates are randomn (although the discrepancy is likely to be smail)

14.5 LEVELING AND ADJUSTABLE-RATE LOANS*

Luckily we have been able to solve most piicing problems in this book using binomial
lattices, rather than more complex tree strnctures Lattices are very deshable since the
number of nodes in a lattice giows only in propottion t6 #, the number of periods,
whereas for more general tiees the number of nodes may grow geometrically (snch
as 2" for a binomial tiee) Hence it a lattice can be used, 1epiesentation will be
iclatively easy and computational eftort will be ielatively small; whereas everything
is more difficult if a full tree is tequired Not surprisingly, we are willing to work
haid to convert tiee structures into fattice structures when that is possible This section
describes a method lor doing just that, and then applies the method to the evaluation
of adjustable-rate loans



392

Chapter 14

INTEREST RATE DERIVATIVES

When using a lattice, nodes are typically defined by the value of some underlying
variable that uniquely determines the cash flow at that node For example, for standard
options, the stock price serves that function, whereas tor a bond the short rate is used.
It the cash flows associated with a node depend on the path used to armrive at the
node, then the cash flow piocess is said to be path dependent and the lattice is
not an appropriate stiucture A tree structure, on the other hand, does not have this
shottcoming because each node in a tree is reached by a unique path Hence one way
to solve path-dependent pioblems is to sepaiate ail the combined nodes in a lattice,
thereby producing a tree that represents the same problem

Usualty, what is going on in a path-dependent case is that miore than one variable
is needed to describe the cash flow at a node Sometimes we can collapse these
variables into one and salvage the lattice

We term the technique that we wusc leveling for a reason that will become clear
It applies to situations where cash flow is defined by two variables, say, j and x The
first of these is a disciete variable that by itsell would define a lattice The second
vatiable is a continuous variable that is also needed to define cash flow As an example,
consider the Complexico gold mine with random gold prices (which was treated in
Chapter 12, Example 12 8) The gold price can be modeled as a binomial lattice, so
this price serves as the lattice variable j However, alter arriving at a lattice node, the
cash flow there depends also on the amount of gold remaining in the mine, and hence
this amount serves as the x variable The mine value is path dependent because the
amount v at any gold price node depends on the path that led to that node Problems
of this type look discouraging because we fear that we might need a lot more nodes
to account for the v dependence

The path-independent dilemma can be circumvented if the price at a node can be
proved to be proportional to the variable A If this is the case, we can decide on a fixed
level xp of x and use this one level at all nodes, then later scale the results appropriately
Specifically, when working backward, at any node j we value the security price V at
node j using the underlying variable values j and xo The resulting value is V, The
step-by-step backward computation is simple because we can easily keep track of the
changes in v for a single step. For example, suppose we are at node j and we nced
the price at node j+ 1, which is one step ahead, but we need the price at j -+ 1 when
v # xp By linearity this price is (x/vg) V4, whete V. is the price at j -+ 1 when
x = vp Things are especially simple if we choose xp = 1 Then the price at any node
j and level v is of the form V (v} = K;v We just need to keep tiack of the K;'s;
then multiply by the appropriate x

The method is called leveling because the x variable is kept at a constant level
The Complexico gold mine problem was solved this way, after it was found that the
lease value was lineai in the gold rescrve amount ¥ The method seems to be especiaily
valuable in interest 1ate derivative problems We shall use it to treat adjustable-tate
loans in the next subsection That example should claiify the method

Adjustable-Rate Loans

Adjustable-rate loans are very commion and very important A typical adjustable-rate
loan charges an interest rate in any period that is tied to a standard index, such
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as the 3-month T-bill rate For example, the rate charged might be the T-bill 1ate plus
2 percentage points However, if the loan is to be amortized over a fixed number of
periods (that is, it is to be puid oft essentially uniformiy), a change in interest rate
implies a change in the level of the required payment The payment in any period is
calculated so that the loan will be retired at the maturity date, under the assumption
that the interest rate will 1emain constant untit then

Suppose you were to {1y to evaluate such a loan You could take the perspective
of the bank that makes the loun, and see how much the bank would pay lor the
(random) income stream represented by the foan repayment schedule You would stait
with a binomial tattice model ol the T-bill tatc Then you would be inclined to enter
the payments due at any node in the lattice and evaluate this payment stiucture by
buckward calculation in the standaid way However, in thinking about this, you would
soon discover that the payments could not be entered on the lattice in a unique way
because the payment due at any node depends not only on that node, but also on the
path taken to get to that node For example, if a path of high interest rates were taken,
the loan bafance might be laiger than if a path ol low interest tates were taken The
toan balance at a node thereflore depends on the patticular history of interest 1ates
Your thought at this point would most likely be “Oh, no; it looks like I might have to
use a binomial tree, with its thousands of nodes, instead of a fattice But wait; maybe
I can use leveling ”

Example 14.5 (The auto huyer’s dilemma) Denise just graduated from cotlege and
has agieed to purchase a new automobile She is now faced with the decision of how
to finance the $10,000 balance she owes after fier down payment She has decided on
a S-year loan, but is given two choices: (A) a fixed-tate loan at 10% interest o1 (B) an
adjustable-rate loun with interest that at any year is 2 points above the {-year T-biil
rate at the beginning of that year Currently the T-bill rate is 7% She wants to know
whiclt is the better deat
Denise is pretty adept with spreadsheet programs, so she does a {ittle homework
that night First she decides that the T-biff rate can be modefed by the lattice that we
used eatlier in Example 14 1 She decides to take the viewpoint of the bank and see
what the two loans are worth to it She makes the assumption that all payments aie
made annually, staiting at the end of the first year
The fixed-rate loan is easy The payments are found by using the annuity lormuia
in Chapter 3 Numely,
PRI S
Iy -1t
For P = $10,000, 1 = 10%, and 1 = 5 this yields A = $2,638, which is the annual
payment The cash flow at each node is shown on the lattice on the left side of
Figure 147 The fattice on the right side of the figure shows the conesponding value
of this cash flow computed using the interest rates of Example 14 t 3 Denise concludes
that the fixed-rate loan is worth $561 10 to the bank

2.638/(1 + \A)‘] where the y &

. . "5
3 The loan valie can eyuivalendy be calculated as ~$10 000 4 ZA:{
are the spot rates implied by the short rate lattice
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Year Year
0 2 3 4 5 0 1 2 3 4 5
2,638 2,638
Payment received 2,638 2,638 | Loan value 4,8365 2,638
2,638 2,638 2638 68813 49553 2638
2,638 2,638 2,638 2,638 89147 7,1571 50453 2,638
2,638 2,638 2,638 2,638 L0090 93508 7,3680 51119 2,638
~10,000 2,638 2,638 2,638 2638|5611 11,5917 96848 7,5247 51602 2,638

FIGURE 14.7 Value of fixed-rate loan. The Jaitice on the right is found by standard discounted risk-neutral evaluation
using the payments shown in the left lattice

For the adjustable-1ate loan, Denise quickly recognizes that the cash flows are
not unigue at a node, but depend on the particular path by which the node was reached
She could pioceed by constructing a ee and recording at each node both the short rate
and the loan balance Cash flow at the node would be uniquely determined by these
two values Instead, she preserves the lattice structuie by using the leveling technique,
wotking with loans of the same balance at every node She uses a balance value of
$100 At each node she calculates the 1equired annual payment to amortize a loan of
value $100 starting at that time and ending at year 5 These values are shown in the
lattice on the left side of Figure 14 8 For example, the top clement of year 4 shows
$122, which is the amount that must be paid at the end of 1 year to clear a loan of ${00
made at an interest rate of 19.99% + 2% Similarly, the initial node shows $25 71,
which is the amount that would have to be paid at the end of each year to amortize a
loan of $100 over the entite S5-year period at a fixed intetest rate of 7% + 2% This
table is constructed by using the amortization formula It could be used on an ongoing
basis to find the actual payments of the adjustable-rate loan Denise would simply find
the balance of the loan at the node (whicl depends on the path to the node) and then
apply the amount in the lattice as a payment per $100 of balance This payment would
be made at the end of the then cuirent year

The lattice on the 1ight side of Figure 14 8 contains at each node the value to the
bank of initiating an adjustable-rate loan for $100 at that node But the length of the

Year Year
0 1 2 3 4 5 0 1 2 3 4 5
100 0
Paymen rate 122 100 | Value per 100 1667 0
6338 1158 100 2535 1757 0
4295 5967 1116 100 3436 2665 1825 0
323 4035 5713 1086 100 43744 3601 2763 1876 0
257F 3039 3857 5539 1066 1005340 456512 3723 2835 1912 ¢

FIGURE 14.83 Value of adjustable-rate loan. The lattice on the right is found using the leveling
technique, keeping the foan balance fixed at $100 The payments shown in the left lattice are those
associated with a balance of $100



146 THE FORWARD EQUATION 395

loan is such that it terminates at the end of the original 5-year period The lattice has
the final values of 0 since loaus initiated there would be paid back immediately und
no interest paymients would be received At the top node of year 4 the bank could loan
$100 at a rate of 22% This would give it a payment of $122 uext yewr This payment
has a present value of $122/1 20 = $101 67 Subtracting the $100 loan outlay gives
« net present value profit of $1 67 The earlier nodes are a bit more complicated The
top node of year 3 is calculated by noting that a new loan of $100 will genetate a cash
flow of $63.38 uext year Past of this payment is interest payment and part reduces the
pritcipal The temaining principal will be $100—$63 38+ ($15 384-$2 00) = $54 00
This principal is received by the bank and then loaned again to Denise during the next
petiod at rates deteimined then (In effect, Denise will pay the bank $63 384 $54, and
the bank will then issue her a wew lomn for $54 ) The value of this next loan is either
$1 67 per $100 or $1 76 per $100, each with (risk-neutral) probability of one-hatf
This amount together with the first payment can be discounted back one period and
the $100 subtiacted to obtain the overall net present value of $2 535 Specifically,

541+ (1 674 176)/100] + 63 38
11538

Working back thitough the lattice, Denise finds that a $100 foan made at yea

zero is worth $5 349 Hence the $10,000 loan is worth $534 90, which is only stightly

lower than the $561 10 value found for the fixed rate Hence she concludes that

the udjustable-rate loan is somewhat better than the fixed-rate loan in tetms of price

(although she may wish to carry out a different analysis to see which is best {or het

utitity function, since she is probably unwilling to engage in active T-bill tiading to
fully hedge the uncertainty)

— 100 =2 535

14.6 THE FORWARD EQUATION

Backward evaluation through u tree or lattice is a4 powerful method for evaluating
financial instruments There are times when a dual method—a {orward recursion—
is even better This forward method is patticularly usetul for determining the term
structure based on a short tate lattice

In Section }4 4 we saw that a shoit rate lattice completely determines the terin
structure  This term structuie can be computed by finding the prices ol zero-coupon
bonds for euch maturity using the backward evaluation method However, separate
recursions und separate price lattices are requited for each of these maturities Hence
if there are u peiiods, n separate tecursions must be made in order to compute the
entite term structure  For large values of # the number of single-node cvaluatious is
approximately #°/6, as compared to #%/2 for one pass through the entire tree * The
forward process desciibed next requites only a single recursion

4 A recursion at period J — | requires J single evaluations Hence to evaluate o bond of waturity & requires
1 +2-+  +k = (k+ Dk/2 separate evaluations Since this must be done tor all i waturities the totud
is Z'A‘:‘ (k+ 1k/2 = (n(n + /61 + 1/ + 13} For one pass througl the entire tree the number of
evajuations is n(n + 1}/2
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The forward recursion is based on calculating elementary prices. The elemen-
tary price Py(k, s) is the price at time zero of a security that pays one unit at time &
and state s, and pays nothing at any other time ot state The prices Py(k, 5) are termed
elementary prices because they are the prices of elementary securities that have payoff
at only one node We could find Py(k, s) for any fixed k and s by assigning a } at the
node (k, 5) in the lattice and then woiking backward to time zero Alternatively, we
can work forward.

Suppose that elementary prices have been found for all nodes in the lattice fot
times from 0 through & Considet a node of the {otm (k+1, 5), where s # 0, s # k415
that is, 5 is not the bottom or the top node of the lattice at time k4 } This situation
is ilustrated in Figure 14 9 Such a node has two predecessor nodes (nodes leading
to it), namely, (k, s — 1) and (k,s) Suppose that a security pays one unit at node
(k + 1, 5) and nothing elsewhere H we were to woik backward in the latiice, this
security would have values 5d; ,—y and 5dj, at the iespective predecessor nodes,
where d; ,—y and ¢ , are the one-period discount [actors (determined from the short
rates at those nodes)

At time zero the values at these two predecessor nodes are woith, by definition
of the elementary prices, Sdy .—yPolk,s—1) and Sdi.,Po(k, s), respectively The total
value at time zero is the sum of these two, and this is the elementary price at (k4 1, ¥)
Thus Pytk+1,5) = Sdg -1 Polk, s — 1) + S5dy. , Polk, s). This is a forward recursion
because the value at time &k 4 | is expiessed in terms of values at time & Il v =0
or k + 1, thete is only onc predecessor node, and the resuit is modified accordingly
Overall we obtain the three forms of the forward equation, depending on whether the
node is in the middle, at the bottom, or at the top of the lattice,

Polk 4 1, 5) = §ldi 1 Potk, s — D)+ dy (Polk, 3)], 0<y<k+l (142
Pytk+1,0) = 3di o Py(k, 0), s=0 (14 2b)
Potk+ 1L k+ 1) = sdi k Polk, k), s=k+1

Although we derived this equation through intuitive reasoning, it is possible to
derive it algebraically from the backward equation This forward equation is just a
different way of organizing the {undamental risk-neutral pricing equations

The price of any intetest rate security can be found easily once the elementary
prices are known We simply multiply the payoff at any node (k,s) by the price
Po(k,s) and sum the results over all nodes that have payoffs For exemple, the price
at time zero of a zeto-coupon bond with value | that matures at time n is

Po=y Py(n.s)
=0

L
7
L
3

Sy, i FIGURE 14.9  Construction of forward equation. The elemen-
k, s tk+ 1,8 tary price for node (k -+ 1, 5) can he expressed as a combination
of the elementary prices for the lwo predecessor nodes
5d;
th,s—1
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Short rale

0910

0700 0630

Elementary prices

4673

10000 4673
Bond prices 9346
Spot rates 0700

FIGURE 14,10 Use of elementary prices to find term

2599 structure. The elementary prices are determined by a sinple
1999 1799 forward sweep through the lattice The sum of any column
1538 1384 1246 then gives the price of a zero-coupon bond of that matu-
1183 1065 0938 0862 rity. Note that a shor! rate applies over the coming year
0819 0737 0663 0597 while a spot rate applies 1o the previous years Hence the
0567 0510 0459 0413 initial short rate and the initial spot rate, alhough equal,
are one column apart
0069
0173 0468
0415 0943 1302
0958 1754 2028 1894
2042 2963 2757 2155 1527
4340 3046 1913 1134 0648
20198 1040 0495 0237 OfH4
8679 8006 7334 6670 6021
0734 0769 0806 0844 0882

The forward equation can be used to find the entire term stiucture corresponding
to a short rate tree by a singte lorward recursion—because alt zero-coupon boud prices
can be determined

Example 14.6 (The simple lattice) Let us apply the forward equation to Exam-
ple t4 1 The elementaty price lattice can be calculated ditectly from the short rate
fattice It is shown in Figure 14 10 together with the resulting zero-coupon bond prices
and the derived term structure

As an example of the calculation, both terms in the second column are derived
from the singte predecessor node; and these terms are equal to one-half times the
discount rate at the first period times the elementary price at 0, which is I Hence
these values ate 5/t 07 = 4673 The figues directly below the lattice are the sunis
of the elements above them These values correspond to prices of zero-coupon bonds
The final figures below the lattice make up the term structure, expressed as spot rates
computed directly from the bond prices above The vatues agree with those computed
in Example 14 } by the more laborious process

14.7 MATCHING THE TERM STRUCTURE

Happity we now have an excelient statt on a workable methodology lot pricing intet-
est 1ate derivatives, based on the consuuction of a short rate binomial lattice From
that lattice we can compute the teun suucture and evaluate interest tate derivatives
using the risk-neutral pricing formula and backward recursion One vital part of this
methodology, which we have not yet {ully addressed, is how to construct the original
short rate lattice so that it is tepresentative of actual interest rate dynamics This is the
subject of this section
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Interest rate fluctuations are similar in chatacter to the fluctuations of stock prices
Thetefore a shott tate lattice should teflect those basic properties However, we also
know that once a short tate lattice is specified, it imiplies a certain texm structure It
seems appropiiate therefore to construct the lattice so that its initial term structure
matches the current observed term stiucture This is easily accomplished using the
concepts and tools developed in the previous sections

The Ho-Lee Model

Let us index the nodes of a shout rate lattice according to our standard format as (&, s),
where k is the time, k = 0, I, ,n,and s is the state, withs = 0,1, ,kattmek
We must make the assignments 7, of short jutes at each node

One simple method of assignment is to set

Tk = Gk 4 bis (14 3)

This is the Ho-Lee toim It only temaing to select the parameters a; and by for
J=0,1, ,n The variation among nodes at a given time is completely determined
by the parameter be In fact, from any node (k — I, 5) at time k — 1, the next rate is
either a; + bys or a; + (s + 1) The difierence between the two is by Indeed, it
can be shown easily (see Exercise 6) that the (risk-neutraf) standaid deviation of the
one-peiiod rate is exactly b;/2 Hence we teler to by as a volatility parameter. The
patameter a; is a measure of the aggregate drift {rom period 0 to & 1f we remain in
state 0, the short rate increases 1o ay

In the standard Ho-Lee model, the volatility parametess are all set equal to a
constant b, which is characteristic of the observed volatility of interest rates (accounting
for the factor of one-hatf) It therefore remains only to select the a;’s; and these can
be selected to match the observed term structure at time zero

If the times are 0, 1,  , n, thete are n + 1 values of a, to be chosen and » 41
spot rates to be matched Hence we have equal numbers of variables and requirenients
The only difficulty is that the relation between the a;’s and the spot rates is somewhat
indirect; but the matching can be carried out numerically

Example 14.7 (A 14-year match) Consider the 14-yeat tenmn stiucture used in Chap-
ter 4 We will agsume that this is the obseived spot rate curve To match it to a full
Ho-Lee model, we must make some assumption concemning volatility Suppose that
we have measured the volatility to be Ol per year, which means that the short rate is
likely to fluctuate about 1 percentage point during a year

We can cany out the match using a spreadsheet package that includes an
equation-solving routine The details are shown in Figure 14 11 The first two lines of
the figure show the given spot rates over the l4-year petriod. The next row shows the
parameters a; that are used in the Ho-Lee model These parameters ate considered
varfable by the program Based on these parameters a short rate lattice is constructed, as
shown next it Figure 14 1} From this the forwaird equations are constructed as another
lattice, based on the short rate lattice The sun of the elements in any column gives
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Year 0 1 2 3 4 5 6 7 8 9 10 i1 12 13 14

Spot 7.67 827 8.8 931 975 10.16 1052 1085 1115 1142 1167 11.89 1209 1227
a 7.67 B8.863 0.878 10.79 1149 1218 1264 13.12 135 13.79 141 1423 144 14.51
State 13 14.77
12 14.64 1475
11 445 1462 1473
10 Short rates 1430 1443 1460 1471
9 1397 1428 1441 1458 1469
8 13.66 1395 1426 1439 1456  14.67
7 13.26 13.64  13.93 1424 1437 1454 1465
6 1276 13.24  13.62 1391 1422 1435 1452 1463
5 12.74 1322 13,60 13.89 14.20 1433 1450 14.61
4 11.57 1272 1320 1358 13.87 14.18 1431 1448 1459
3 10.85 11.55 1270 1318 13.56  13.85 1416  14.29 1446 1457
2 9.92 10.83 1153 12.68 1316  13.34 1383 1414 1427 1444 1455
1 8.88 990 10.81 1151 12.66  13.14 1352 138! 1412 1425 1442 1453
0 767 B8 988 1079 1149 12.64 1342 1350 13.79 1440 1423 1440 1451
4 1E-05
13 3E-05 2E-04
12 6E-05 4E-04 .001
il Elementary prices 1E-04 8E-04 .002 004
10 3E-04 .002 .004 .008 .012
9 8E-04 .003 .008 014 .02 024
8 .002 .007 .013 .024 .031 .036 036
7 .004 014 .027 .04 .048 .05 047 041
6 009  .027 048 .063 .069 067 .059 048 036
5 .02 052 .081 .096 .095 .083 .067 .05 .036 024
4 044 098 131 136 12 .095 .07 .048 031 .02 012
3 097 175 196 175 .136 096 063 04 024 014 .008 004
2 213291 263 .19% 131 082 .048 .027 .013 .008 .004 .002 .00t
1 464 427 291 175 098 .053 027 .014 007 003 002 8E-04 4EO04 2E-04
0 1 464 213 097 044 .02 009 004 .002  BE-04 3E-04 1E-04 6E-05 3E-05 1E-05
Py 1 929 853 776 7 628 56 496 439 .386 .339 297 .26 227 .198
Forward rate 7.67 827 881 931 975 1016 1052 1085 115 1142 1167 L8 1209 1227

FtGURE 14.11 Match of term structure. The observed spot rate curve ts given at the top of the tigure. Below that are fisted some assumed values
tor the a’s. Using these a 's, the shorl rate fatice 15 constructed and the elementary prices are computed by the forward equations. The elementary
prices are summed column by column to obtam the zero-coupon bond prices, and these are converted to the torward rates shown  the bottom
row. An equation-solving routine s run which adjusts the assumed ai’s until the bottom row agrees with the spot rates shown at the top.
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the piice ol a zero-coupon bond with maturity at that date From these prices, the spot
rates can be direclly computed The equation-solving routine is run, adjusting the a;’s
until the bottom row matches the assumed spot rate values given in the second row

The spreadsheet method takes advantage of the forward equation and is an
appropriate method when the number of periods is not Jarge When the number of
petiods is really large, it is betier lo take advantage of the fact that the spot rate sy
depends only on ag, s2 depends only on ag, a;, and so forth The a,’s can therefore
be found sequentially by a very rapid pirocess

The Black-Derman-Toy Model

An alternative to the mode} given by (14 3) is to asswine that the values in the short
rate lattice ae of the form

Ty = e (14.4)

This can be viewed as a Ho-Lee mode} applied 1o Inry, In this case b represents the
volatility of the logarithm of the short rate from time k& — } to k

In the simplest version of the Black~Derman~Toy model, the values of by are
all equal to a value » The a;’s are then assigned so that the implied term structure
matches the observed forwaid rates The computational method is very similar to that
for the Ho-Lee model

Matching Volatilities

The procedure of this section can be extended to match volatilities® of the spot rates
as well as the spot rates themselves To carry out this extended match, both the ai’s
and the ;’s are varied The voladlities of the spot rates ate first observed by recording
a history of each of the spot rates Foi example, a history of the rates for 2-year zero-
coupon bonds wil} provide an estimate of both the 2-year spot rate and the volatility
of that rate It is likely that the volatilities associated with different matuiities will
differ In facy, it is common to define a term structure volatility curve as well as a
term structure rate curve

14.8 IMMUNIZATION

Our new understanding of interest rate fluctuations and their impact on the teun stiuc-
ture provides the basis for a new, more sophisticated approach to bond portfolio

3The probabitities used are risk-neutral probabilities, so strictly speaking, the by’s determine rigk-neutral
volatilities However, tor smalt time periods the real probubilitics are close to one-half, so real and risk-
neatral volatilitics are upproximately equal
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immunization, as discussed in Chapters 3,4, and 5 In those eatliet chapters uncertainty
was not treated explicitly; instcad, a portfolio was immunized against parallel shifts in
the spot tate cutve Howevet, we saw in Section 14 2 that the paallel shilt assumption
is not only simplistic, but in lact inconsistent with a theory that piccludes arbinage
The new approach does ot have that weakness

The new approach is based on the binomial lattice fiamework Suppose that
we have a series ol cash obligations to be paid at specific times ia the future,
say, up to year n Suppose also that we have decided on a specific binomial lat-
tice representation of the short tate Then we can compute the initial value of the
obligation stteam using this lattice One way to compute this value is to first find
the term Suuctute at time zeto (using the forward equations) and then compute the
present value of the obligation stream, just as we leamed to do in Chaptet 4 Alter-
natively, but equivalenily, we can compute the initial vatue of the obligation streant
by applying the risk-neuttal discounting backwiard process to the obligation stieam
The valuc w the initial node will be the initial (present) value of the stieam To
honot the obligation stream, we must have a bond portfolio with this same piesent
value

Attet the fitst petiod, the value of the obligation sueam can take on either of two
possible values, corresponding to the values at the two successor nodes For simplicity
assumie that no paymients must be made . this time The value at a particular node
would covtespond to the present value that would be obtained using the new term
structute at that node Likewise, ow bond pottiolio will have new values at the two
successor nodes Our poitfolio is inununized if its value at each of the two successo!
nodes exactly matches the present value of the obligation at those nodes In othet
wotds, to immunize lor one petiod, we must match the present values at t/u e¢ places—
the initial node and the two successor nodes

The matching might seem compiex, but because of the no-atbitrage property of
the intetest tate sttucture, things fall into place very nicely To sce how this wotks,
imagine two difterent bonds that atc valued at $1 at time zeto One of these bonds
is the single-petiod, tisk-fiee bond that pays | 4-7q0 &t each of the two successor
nodes The other i $1 worth of a zero-coupon bond that matures at yew n This
second bond will have a 1elatively low value next petiod il the spot 1ate incieases,
but it will have a rclatively targe value if the spot 1atc decieases The two bonds
provide two independent outcomes loi the next petiod, and therefore they can be
used in combination to replicate the one-period performance of any other interest
rate insttument In particular, they can be combined to teplicate the behavior of the
obligation

The solution to the immunization problen is now clea Using any two dissimilar
bonds, we construct a portiotio having the sume values at both of the next two states
By the no-mbitiage property, the initial value of this portlolio will be equal to the
initiat value of the obligation stieam that it replicates  Furthermote. the total portfolio
congisting of these bonds and the obligation stream is immunized in the sense that its
net vatue is exactly zeto initiatly and at the next period, no matter which state occurs
Alter one petiod, the portfolio can be tebalanced to obtain immunization for the next
petiod as well By continuing to tebalance each petiod (with the result dependent on
the state that occuis), complete inununization over all periods is possible
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FIGURE 14.12 Initial branching of values, The initial and
Bond | 7096636 next-period values of the 1wo bonds and an obligation are
6595147 71 05353 shown A combination of the bonds will replicate the obli-
gation for one period
Bond 2 109 4342
101 6677 109 497

Obligation 67 59499
6280256 6764404

Example 14.8 (Our earlier problem) We consider again the immunization problem
of Example 4 8 in Chaptes 4 In this problem we have a $1 million obligation at the
cnd of 5 years We wish to immunize this obligation with two bonds Bond 1 is a
12-year 6% bond with a price of $6595 Bond 2 is a 5-year 10% bond with a price
of $101 65 The spot rate curve is known and is equal to that of the Ho~Lee matching
problem solved in the last section

To carry out the immunization we use the shoit rate lattice found in Exam-
ple 14 7, since this matches the term structure given in the eatliet example Using this
lattice we solve backward for the piices of each of the two bonds and of the obliga-
tion We need (o know the tesults only for the first two periods, which are shown in
Figure 14 12 (The initial prices differ slightly fiom the prices computed earlier due
to rounding errors in the lattice ) In each case, the values shown are percentages of
the face value

To construct the immunization, we let xy and x; be the number of units of bond }
and bond 2, 1espectively, in the porttolio We then solve the equations

65 95147y + 10} 66771, = 628,025 6 (14'5)
70 96636x + 109 4342x, = 675,949 9 (14 6)

(It is not necessary to replicate explicitly state 0 in period 1 This will occur automat-
ically; otherwise there would be an arbitrage opportunity——which is impossible ) The
result is that

X = 2,165 66 (147
Xy = 4,772 38 (14 8)

This solution is quite inseusitive 1o the volatility assumed when constructing the short
rate lattice Note that the solution is very close to the vajues of 2,208 17 and 4,744 03
obtained using the standard duration matching method presented in Chapter 4 This
secms to be gencrally true, and hence despite the deeper elegance of the lattice theory,
the conventional method of duration matching is frequently used in practice with good
results

14.9 COLLATERALIZED MORTGAGE OBLIGATIONS*

Collateralized mortgage obligations (CMOs) are securities constructed from mort-
gage pools The cash flow derived from a pool is sliced up in various ways, and the
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individual slices define the payout of a particular CMO The slicing process can be
quite intricate, for rather than merely apportioning the principal o1 the interest payment
stream, CMOs are made up of slices that vary the {raction of interest and principal
over time There are numerous variations of the general theme, and new designs are
introduced frequently

The motivating force behind the introduction of CMOs is the prepayment option
inherent in real estate mortgages Homeowners can pay the balance of their mortgage
at any time (with some restrictions) and therefore terminate the mortgage This pre-
payment feature means that the payment stream of a mortgage is not fixed in advance
because the principal might be paid early This timing uncertainty is somewhat alle-
viated by the averaging effect derived from a pool, but it is not entirely eliminated
because the prepayment pattern cannot be fully predicted CMOs were devised in order
to reduce the variubility of the of cash flow due to prepayments

CMOs were first issued by the Federal Home Loan Mortgage Corporation (called
Freddie Mac), which buys individual mortgages and forms pools CMOs issued by
Freddic Mac me lederally insured against default Other agencies and corporations
now ofter CMOs, but those otiginated by Freddie Mac make up the majority of the
market

The first CMOs were sequential CMOs, und they are still very common In
this structure the principal payments are assigned in sequence to different classes, or
tranches, of CMO bonds Typically there are tour to twelve different classes The total
principal of the poo} is first divided among the classes In the early years, mortgage
payments teceived by the pool are used to pay interest to all classes in proportion
to their existing unpaid principal balances, unless they are defined to be Z bonds, in
which case owed interest is not paid but instead is accrued and added to the principal
balance of that class The remaining portion of the recetved morigage payments is paid
to the first class to reduce its principal balance This continues until the first class is
fully 1etired After that, the principal of the second class is reduced until it is retired,
and so on Once all previous classes are retired, a Z class bond receives inconie to
reduce its (now greater) principal and to pay interest on that principal

For example, suppose there are three clagses A, B, and Z Then, as the fiist
mortgage payments are received, interest is paid to classes A and B, and the remaining
income is distributed to the A class to reduce its principal. The interest that is due to
class Z is paid as principal to class A, thereby speeding the retirement of that class
This foregone interest also augments the principal owed to the Z class When class A
is retired, the principal payments pass to class B, and then finally to class Z The
principal balance patterns are illustiated in Figure 14 13 {or a 20-year moitgage pool

The vatuation of CMOs depends very much on the assumed prepayment pattern
A simple approach is to assume a fixed pattern over time There is in fact a benchmark
pattern adopted by the Public Securities Association (PSA) This pattern assumes a
prepayment rate of 2% (on an annual basis) the fivst month, 4% the second month, 6%
the third month, and so forth until month 30 Atter that, the prepayment rate is assumed
to be fixed at 6% annually = 5% monthly For this pattern, or those siwnilar to it, it is
easy to project the cash flow pattein {or any of the CMO classes The corresponding
valtue of the CMO class can then be obtained by straightforward discounting using the
current spot rate curve No latice or uee calculations aie required
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FIGURE 14.13 Principal balance patterns of
a three-class sequential CMO. Class A is paid
principal befare the ather classes. When class A
is retired, then class B is paid Class Z daes nat
receive interest until all previaus classes are re-

¥ T 1 tired Instead its interesl is accrued, augmenting
10 15 20  the principal balance

Class Z

1

In actuality, prepayments depend on prevailing interest rates Homeowners are
more likely to 1efinance their loans (which entails prepayment of the existing loan)
when interest rates are refatively low Using such a model, a CMO class can be valued
using the lattice and tree techniques that we have studied

Example 14.9 (Quick, buy this CMO) M Johnathan Quick, the city treasurer of
White Falls, is young, well educated, and wants to modernize the financial affairs
of the city A major New York bank has urged him to purchase, for White Falls’
account, a poition of class A of a CMO originated by Freddie Mac This CMO has
four classes A, B, C, and Z, each entitled to one-fourth of the principal of a pool
of 30-year mortgages carrying an interest rate of 12% He has been told that these
mortgages are guaranteed by the federal government The current short rate is 10%
and the price that he is quoted for the class A bonds s 105 00

Mr Quick decides to carry out a simple prototype valuation of this CMO To do
this he first makes a few simple calculations The yeaily payment on a 30-year 12%
mortgage is found (see Chapter 3) to be 1241 per hundied The interest that will be
paid to each of the classes B and C while A is not yetretired is 25 x 12% =3

He then constructs a short rate lattice covering 4 years, as shown at the top
of Figure 14 14 (The lattice starts at the top left node The successor nodes are the
two nodes in the next row ) This lattice has iisk-neutral probabilities of 5 Next
he assigns estimated prepayment rates He assigns a 5% annual rate whenever the
shot rate goes down, and a 2% rate when the short rate goes up He then puts the
remaining poot size fiaction on the short rate lattice (shown as a separate array in
Figure 14 14)
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100 Short rate lattice 1000 Pool size lattice

095 115 950 980

090 110 130 903 931 960

085 105 125 145 857 884 912 941
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FIGURE 14 14 Quick’s CMO valuation. The top of the figure shows the short rate fattice Next to
that is the fattice showing the corresponding pool size fraction These Jattices start at the top and
move downward A down move is a move directly downward, and an up move is a move downward
to the right Below these is the tree of principat due class A, and finally the corresponding tree of
values for class A

Quick must keep track of the principal owed to class A. Unfortunately, this
principal is path dependent in the original lattice So he decides that he must use a
binomial tree rather than a lattice He establishes the initial principal to be 25, since
class A is entitled to 25% of the total He arranges his tree in the downward flowing
manner, as shown in Figure 14 14 As an example calculation, the final value in the
tree is

13725 % 112~ 1241 x 960+ 2 x 3 00
—{ 960 — 941)[13 725 + 50 +25(1 12)*] = 7.551

In words, the new principal is the old principal times 1 plus the intetest rate on the
loan (129%), minus the total paymeni made by the remaining pool, plus the interest
payments that must go (o classes B and C (but not Z), minus the new prepayment
amounts (which is the change in pool size times the total remaining principal) The
tree is terminated after 3 years Mt Quick assumes that the remaining small amounts
of principal will be paid to class A the following year

To find the value of the class A bond, he uses a tree 10 carty out backward
risk-neutral valuation A year 3 node value is equal to the year 3 cash flow plus a
discounted version of next year’s principal and interest The value at an earlier node is
equal to the cash flow at that node plus the discounted expected value of the successor
node values For example, the final node value is

7551 x 112/1 145 + 1241 x 960 -2 x 300
+( 960 — .941)[13 725 + 50 + 25(1 12)*] = 15 207
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The final node in the previous row is
1241 x 980 —2 % 3 00 4 ( 980 — 960)[19 526 + 50 + 25(1 12)%]
+ 5(15.351 4+ 15 207)/1 130 = 21.665

The overall value is 25 758, which when normalized to a base of 100 is 4 x
25758 = 103.032 Mr Quick concludes that the offered price of 105 00 may be a bit
high.

He then runs his spreadsheet program again after adding 1 percentage point to
each of the short 1ates and finds the value of 101 112 and therefoie concludes that an
effective modified duration is Dy = 100(103 032— 101 112)/103 032 = 1 863 years
This is in accord with the obseivation that the class A bond is retired very quickly

M1 Quick decides to investigate other classes, which he believes may offer
substantially gieater financial return and whose analyses are suie to offer substantially
greater intellectual occupation.

The preceding example shows that the evaluation of CMOs can be quite chal-
lenging If one attempted to carry out the tree methodology of that example, but on
a monthly basis and for evaluation of the other classes, very large trees would be
requited The main ditficulty, of course, is that principal amounts are path dependent
It is for this 1eason that, in practice, CMO evaluation techniques are usually based on
simulation (Monte Carlo) methods However, it should also be clear from the example
that the conceptual principles outlined in the past few chapters ate appropriate for this
area of finance

14.10 MODELS OF INTEREST RATE DYNAMICS*

In previous sections the shoit rate was assigned directly by specifying it at every time
and state Although this is a good and practical method, an alternative is to specify
the short 1ate as a process defined by an Ito equation, similar to the processes used to
define stock behavior This allows us to work in continuous time

In this approach we specify that the (instantaneous) short rate 7 (¢) satisfies an
equation of the Ito type,

dr = pQ, 1)dt -0, 1)dz (14 9)
where Z(f) is a standudized Wiener process in the risk-neutral world Given an initial
condition 7 (0), the equation defines a stochastic process r(¢)

Many such models have been proposed as being good approximations to actual
intelest 1ate processes We list a few of the best-known models:

1. Rendleman and Bartter model

dr =mr dt 401 d2

This model copies the standard geometiic Biownian motion model used for stock
dynamics It leads to lognormal distiibutions of future short 1ates It is now, how-
ever, rately advocated as a realistic model of the shott rate process
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. Ho—Lee model
dr =0()dt +0dZ

This is the continuous-time limit of the Ho-Lee model The function 8(f) is cho-
sen so that the resulting forward rate curve matches the current term structure A
potential difficulty with the model is that 7 (¢} may be negative for some ¢

. Black-Derman-Toy model
diny =0(r)dr + o dZ

This is virtually identical to the Ho-Lee model, except that the underlying variabfe
is Ins rather than » Using Ito’s lemma, it can be transtormed to the equivalent
form

dr = [0() + Lo} dr + ov d2
. Vasicek model
dr =ab—r1)dr +0di

The model has the feature of mean reversion in that it tends to be pulled to the
value b Again, it is possible fo1 7(r) to be negative, but this is less likely than
in other models because of the mean-reversion effect Indeed, if there were no
stochastic term (that is, if ¢ = 0), then 7 would decrease if it were above b and it
would increase if it were below b This feature of mean reversion is considered to
be quite important by many researchers and practitioners since it is felt that interest
1ates have a natural home (of about 6%) and that if rates differ widely from this
home value, there is a sttong tendency (o move back to it.

. Cox, Ingersoll, and Ross model
dr =ag —1)dr +ev/rd?
In this model not only does the drift have mean reversion, but the stochastic term

is multiplied by /-, implying that the variance of the process increases as the rate
1 itself increases

. Hull and White model
dr = [0(f) ~ar]dt + o di

This model is essentially the Ho-Lee mode! with a mean reversion term appended

. Black and Karasinski model
diny = (@ —alny)dr +odi

This is the Black-Derman-Toy model with mean reversion
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All of these models are teferred to as single-factor models because they each
depend on a single Wiener process £ There are other models that are multifactor,
which depend on two or more underlying Wiener processes

14.11 CONTINUOUS-TIME SOLUTIONS*

The three general metlrods of solution in disciete time each have a continuous-time
analytic counterpart: (1) the method of backward recursion becomes a generalized
Black-Scholes partial differential equation, (2} the method of discounted risk-neutral
evaluation becomes evaluation of an integral, and (3) the forward recursion method
becomes a forward partial differential equation that is dual to the Black-Scholes equa-
tion We shall give some details on the first two of these methods

The Backward Equation

The backward equation is perhaps the most useful Suppose the short rate is governed
by the lto equation {14 9) in a risk-neutral wotld And suppose f{1,¢) is a price
function for an interest rale security with no payments except at the terminal time
Then it can be shown that f is governed by the generalized Black-Scholes equation
2
%f’.+%{-w,z)+%%a(z,z)h;/o,z):o (14 10)
The boundary condition is defined at ¢+ = 7 and depends on the final payoff structure
This equation is analogous to backward recursion
For example, suppose we denote by P(:, ¢, T) the price at time ¢ of a zero-
coupon bond maturing at time 7 when the cutrent short rate (at 1) is 2+ We define the
function f(r,1) = P(1,t,T), and the appropriate boundaty condition is f(2,7) = 1
In sonte cases the backward equation (14 10) can be solved analytically, and this
leads to analytic formulas for valuing interest rate derivative securities. In practice,
however, numerical solutions are usually required

Example 14.10 (Constant interest rate) The simplest case is when the short rate
is governed by dr = 0, implying that the interest 1ate is constant To find the price
P@,t,T) of a zero-coupon bond, we set f(1,t) = P(,t,7) However, since 7 is
constant, we may suppress the dependence on and write f(7) The backwaid equation
reduces to

daf
o 1f()y=0
This can be written as
d
4@ g

)
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o1, equivalently, as

din f(t)=1ds
This has solution

Inf(fy=cHrt

where ¢ is a constant The boundary condition gives f(I') = [ o1, equivalently,
In f£(I) =0 Hence we put ¢ = — I' The final solution is therefore

P, Ty =70

which agrees with what we know about bond values when the interest rate is constant

Example 14.11 (A Ho—Lee solution) As a somewhat mote complex exaniple of an
analytic solution consider the special case where the short rate is governed by
di =adf +0di
We will try to find the zero-coupon bond price P(2,t, T') Weset f(1,¢) = P(1,1,T)
and solve (14 10) Motivated by the solution to the previous example, we try a solution
of the form
f0. 1) = A, e~ 70

Substituting this in the Black-Scholes equation, we find

dA(, T)

dr

where the common factor e~ has been canceled from every term This leads to
the equation

—(I =A@ Na+ 5T —1?a*A@, 1) =0

dinA(¢, Ty = [(T —t)a— 4T —1)?c’}ds
Accounting for the boundary condition In A(T, T) =0, we find
AW, T)=—4(T —1fa+ 3T —1)c*

We thus have an explicit formula for P2, T, 1)

Risk-Neutral Pricing Formula

The discounted risk-neutral pricing formula also works in the continuous-time case,
and it can be used to define the value of any interest rate derivative security Suppose
the security pays a dividend of Y (7, r) at ¢, and suppose that the short rate is goveined
by the risk-neutral process

dr = p(r, 1)dt +a(s, 1) dZ.

Then the value of the security at time zero is

T ot
v(O):E[] exp[] —l(_s)d.s] Y(l,!)d!} (1411
0 0
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whete F denotes expectation with respect to the risk-neutzal probability defined by the
process § Of couse, this formula can rarely be evaluated directly It does, however,
provide a basis for simulation

14.12 SUMMARY

Interest rate securities are extiemely important because almost every investnent entails
interest rate risk Interest rate derivatives, such as bond options, swaps, adjustable-rate
mortgages, and mortgage-backed securities, can help control that risk Analysis of
interest 1ate securities requires 2 model of term structure variations Simple models
that merely add randomuess to a tenn structure curve ate not suitable because they
may inadveitently allow arbitiage opportunities

An elegant and workable approach is to define a short 1ate lattice spanning
several time periods The rate listed at each node is the interest rate that would apply
at that node for loans of one period in length Two sets of probabilities, are assigned to
the ares ol the lattice The first set defines the real probabilities, giving the likelihoods
of various transitions The second set defines the risk-neutral probabilities used for
evaluation Indeed, only the second set is needed for pricing interest rate derivatives

Once the short rate lattice together with the risk-neutral probabilities is con-
structed, a secuiity such as a bond can be valued by discounted risk-neutral piicing,
working backward through the lattice The short rate at a node defines the discount
factor to be used as the process passes through that node

Seemingly comiplex secutities, such as options on bonds, options on bond fu-
tures, and adjustable-rate mortgages, can be evaluated with the discounted 1isk-neutral
approach In some cases the quantities necessary (o determine the cash flow at a node
are path dependent, in the sense that these quantities depend on the path to a node as
well as on the node itself In such cases a tiee, rather than a lattice, can be used to
accurately record the necessary information for the discounted risk-neutral valuation
process However, this can lead (o a large increase in the numbe: of nodes There is
a special method teimed leveling that transforms an apparently path dependent situ-
ation into one that is not path dependent This method is applicable when the cash
flow at a node depends on the node itself and is a lincar function of an underlying
path-dependent variable Adjustable-tate loans can be evaluated with this method

An entire term structure can be extracted froni the short rate lattice One way to
do this is Lo value zero-coupon bonds of all possible maturities This method requites
numerous separate valuation processes A more efficient way to find the tenm structure
is to construct a lattice of elementary prices This can be done with a single forward
sweep through the original short 1ate lattice

The short tate lattice must be constructed carefully in order to give useful resuls
One cominon strategy is to construct the lattice so that the term structure that it implies
malches the cutrent tenm structuie Often some volatilities aie matched as well Two
of the simplest methods ate the Ho-Lee method and the Black-Derman~Toy niethod

The short rate lattice also provides a new approach to bond portfolio iminu-
nization In this appioach, the portfolio is immunized against initial up and down
movements in the short rate
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An important and challenging application of the methodology of interest rate

derivative valuation is collateralized mortgage obligations (CMOs) These instruments
can have very complex structures, which require careful analysis fo1 pioper evaluation
Usually some aspect of theirr mathematical representation is path dependent, and hence
trees or Monte Cailo methods must be employed

Continuous-time 1nodels of the term stiuctuie can be constructed by defining

a shoit 1ate Ito process This piocess is driven by a specified risk-neutral standard-
ized Wiener process Soime models ol this type lead to analytic expressions for their
assoclated term structuge

~

Lol

kol

. {A callable bond®) Construct a short rate lattice for periods (years) O through 9 with an

initial raie of 6% and with successive rates determined by a multiplicative lactor of either
u=12o0rd= 9 Assign the risk-neutral probubilities to be 5

(a) Using this lattice, find the value of a 10-yem 6% bond

(b) Suppose this bond can be called by the issuing party at any {ime after 5 years (When
the bond is called, the face vadue plus the currently due coupon are paid at that time
and the bond is canceled ) What is the fai1 value of this bond?

. (General adjustable foymula)  Let Vi, be the value of an gdjustable-rate foan initined at

period & and state s with initial pincipal of 100 The loan is to be fully paid at period
The interest 1ate chimged each period is the shoit 1ate of that period plus a premium p
The foan payment lor a period is the amount trat would be required to amortize the loan
at the charged interest yate equally over the renwining periods Write an explicit backward
recursion fornwda {ov Vi, as a function of & and s

(Bond lutuves option)  Explain how you would find the value of a bond futures option
(Adjustable-rate CAP#) Suppose that the adjustable-rate auto loan of Example 14 3 is
wodilied by the provision of & CAP thut gumantees the borrower that the inteiest 1ate to

be applied will never exceed 11% What is the value of this loan to the bank?

(Forward construction®) Use the forward equation to find the spot rate curve for the
lattice constiucted in Exercise |

{Ho-Lee volatitity) Show that Tor the Ho—Lee model the (risk-neutiat) standard deviation
of the one-period 1ate is exactly b; /2

. (Yenm match®)  Use the Black-Derman—{oy model with b = 01 to match the term

structure of Example 147

. (Swaps) Consider a plain vanitla interest rate swap whete party A agiees to make six
P p I paity

yearly payments to party B of a fixed 1ate of interest on a notional principal of $10 mittion
and in exchimge party B will make six yearly payments to party A at the fioating short
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rate on the same notional principal Assume that the shott rate process is described by the
lattice of Example 14 1

(a) Set up a lattice that gives the value of the floating rate cash flow stream at every short
rate node, and thereby determine the initial value of this stream

(b) What fixed rate of interest would equalize both sides of the swap? (Compare with
Exercise 11, Chapter 10)

b

(Swaption pricing) A swaption is an option to enter a swap arrangement in the future
Suppose that company B has a debt of $10 million financed over 6 years at a fixed rate
ol interest of 8 64% Company A offers to sell company B a swaption to swap the fixed
rate obligation for a floating rate obligation, with payments equal to the short rate, with
the same principal and the same termination date The swaption can be exercised at the
beginning of year 2 (just after the payment for the previous year and when the sliort rate for
the coming year is known) Assuming that the short rate process is that of Example 14 I,
how much is this swaption worth?

10. (Change of variable 0} Suppose a shoit rate process in a risk-neutral world is defined by
dr = pu(r, 0y dt +o(r, £y d2

where 2(7) is a standardized Wiener process A standard way to approximate this equation
at a point (r, #) over a small interval A7 is by the binomial tree shown in Figure {4 15 In
this approximation,

I r +a’(r,t)\/E
1T =1 -l VAL
ouln0Var

=5 e

i

|

(@) Show that in general this does not produce a recombining lattice That is, show that
an up move followed by a down move is not the same as a down move followed by
an up move

(b) Consider the change of variable

"o /a(\ n
f
D

Use Ito’s lemma to write the process satisfied by w(r, 1), and show that its volatility
term is constant Conclude that the binomial approximation for w(r, r) is recombining

rt  FIGURE 14 15 Approximation method A shon rate process
can be approximated by a binomial lattice if an appropriate
q change of variable is used

-
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(¢) Find the approptiate change of variable for the geometric process

dr = g1 dr o1 d2

. (Ho-Lee teum structure) Refer to Example 14 11 Let F (1) be the forward tate from 0 to

t By the basic definition of the torward rate, we have the identity
e P, 0, 0)

Find an explicit formula for F (1)

. (Continuous zeroo) Gavin wants to dig deep into piicing theoty, so he decides to wotk

out an application of Eq (14 11) He suggests to himself that a simple model of interest
rates in the tisk-neutral wotld might be
dr = ad?

where £ is standard Brownian motion, and where 7 (0) =19 He is working out a formula
for the value of a zero-voupon bond that pays $1 at time 7, based on Equation (14 11),
without using the Black—Scholes equation Can you? Compare with Example 14 11

For genetal textbook presentations of interest tate derivatives see [1, 2] The forward equation
was presented in Jamshidian [3] The Ho-Lee model was otiginally developed in [4] without
the benefit of the short rate lattice concept The shott rate lattice was used in the presentation
of the Black-Derman-Toy model in {5] A more complex inlerest rate process, not describable
as a single-factor model, is that of Heath, Jarrow, and Morton [6] For an oulline of CMOs
and mortgage-backed securities, sce [7] For continuous-time models, see [8-13] Exercise 10
is based on [14]
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onclusions about multiperiod investment situations are not mere variations of
single-period conclusions—rather they often teverse those earlier conclusions
This makes the subject exciting, both inteliectually and in practice Once the
subtleties of multiperiod investment ave understood, the reward in tesms of enhanced
investment performance can be substantial
Fortunately the concepts and methods of analysis for muitiperiod situations buiid
on those of earlier chapters Internal rate of veturn, preseat value, the comparison
principle, portfolio design, and lattice and tree valuation all have natural extensions
to general situations But conclusions such as volatility is “bad” or diversification is
“good” are vio longer universal truths The stovy is much more intevesting
This chapter begins the story by extending the elementary concept of internal
rate of return, showing how to design portfolios that have maximal growth The next
chapter extends present value analysis

15.1 THE INVESTMENT WHEEL

Undeistanding postfolio growth requires that one adopt a long-teem viewpoint To
highlight the importance of such a viewpoint, consider the investment wheel shown
in Figure 151 You atc able to place a bet on any of the thiee sectors of the wheel
In fact, you may invest diffevent amounts on each of the sectors independently The
numbers in the sectors denote the winnings for that sector aftes the wheel is spun Fo.
example, if the wheel stops with the pointer at the top sectos after a spin, you will
receive §3 for every $1 you invested on that sector (which meaus a net profit of $2)

The top sectos is very attvactive, paying 3 to I, even though the area of that
sector is a full one-half of the entiie wheel A $I bet (or investment) will retwn
either $0 or $3, each with a probability of one-half The expected gain is therefore
% x$3 4 1 x $0— §1 = $ 50 This is quite favorable

5
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A4 FIGURE 15.1 The investment wheel. The numbers shown are the
payoffs for a one-unit investment on that sector The wheel is favor-
able and can be expectedt 1o cause capital to grow if investments are
properly managed

The lower left sectos, on the other hand, has unfavosable odds, since it pays only
2 to | for an area that is only one-third of the total A bit better is the Iower right
segment, which pays even odds, since it pays 6 to | and is one-sixth ol the area

Suppose now that you start with $100 and have the opportunity to bet part or
all of your money 1epeatedly, reinvesting your winnings on successive spins of the
wheel Because of the favorable top segment, you can make your capital grow over the
long run through judicious investment The question is, just what constitutes judicious
investment?

Based on the odds we calculated, it seems appropriate to concentrate your at-
tention (and your capital) on the top sector One strategy would be to invest all of
your money on that sector Indeed, this strategy is the one that produces the highest
single-period expected return. An investment of $100 is expected to gain an additional
$50 on the very first spin The problem is that you go broke half of the time and
cannot continue with other spins Even if you win and continue with this strategy, you
will again face the risk of 1uin at the next spin Most people find this stiategy too
risky when given the opportunity to play repeatedly

A second, moire conservative, strategy would be to invest, say, one-half of your
money on the top sector each spin, holding back the other half That way if an
unfavoiable outcome occuwrs, you are not out of the game entirely ! But it is not clear
that this is the best that can be done

Analysis of the Wheel

To begin a systematic search for a good strategy, let us Hmit ows investigation to
fixed-proportions strategies These are strategies that prescribe pioportions to each
sector of the wheel, these proportions being used to apportion current wealth among
the sectors as bets at each spin Let us numbes the sectors I, 2, and 3, coiresponding to
top, left, and right, 1espectively A geneial fixed-proportions stiategy for the wheel is
then described by a set of three numbers (¢, a3, @3), whelte each o, > 0,7 = I, 2, 3,

and wheie o) +a24a3 < | The ,’s correspond to the piopostions bet on the different

) This wheel investment problem actuslly makes a good game for a group, using play movey or keeping
records Actual play forces people to think exactly how they wish to snvest The main pojnt js that investmein
for the fong run js not the smne as jnvestment for a single spin
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sectors The remaining | —o a3 —as3 is held in reserve. As an example, the strategy
mentioned earlier of investing one-half of your capital in the top segment each time
is (1,0,0)

Each fixed-proportions strategy leads to a serfes of multiplicative factors that
govern the growth of capital For example, suppose you bet $100 using the (37,0, 0)
strategy. For one spin there are two possibilities: (1) with probability one-half you
obtain a favorable outcome and end up with $50 + 3 x $50 = $200; and (2) with
probability one-half you obtain an unfavorable outcome and end up with just $50
In general, with this strategy your money will be either doubled or halved at each
spin, each possibility occurring with probability one-half The multiplicative factors
for one spin are thus 2 and %, each with probability one-half After a long series of
investments foltowing this strategy, your initial $100 will be multiptied by an overall
multiple that might be of the form (})(})}(2)(1)(2)(2)  (2)(3), with about an equal
number of 2’s and 1's Hence the overall factor is likely to be about | This means
that during the course of many spins, your capital wilt tend to fluctuate up and dowt,
but is unlikely to grow appreciably

An alternative strategy is to bet one-fourth of your money on the top sector,
corresponding to the strategy (%, 0,0) 1f that top sector is the outcome of a spin, your

money will be multiplied by [ — 1‘ =+ :—: = :7 If that sector is not the outcome, your
money will be multiplied by | — } = 3 On aveiage, two spins provides a factor of

(%)(%) = % Hence each single spin provides, on average, a factor of \/g = | 06066
With this strategy your money will grow, on average, by over 6% each tum (Exeicise |
shows that this stiategy is, in a limited sense, optimal )

15.2 THE LOG UTILITY APPROACH TO GROWTH

The investment wheel is repiesentative ol a large and important class ol investment
situations where a particular strategy leads to a random growth process This class
includes investment in common stocks, as shown later in this section A general
formulation is that if X represents capital after the kth trial, then

Xio= ReXpoy (s

for k = 1,2, In this equation Ry is o 1andom return variable We assume that
it is a stationary independent process, where all R(’s have identical probability
distributions and are mutually independent

The investment wheel with the strategy of investing one-half of one’s capital on
the top segment corresponds to this model with Ry’s that take on either of the two
values 20 or 50, each with probability of one-half The R variables all have the
same probability density and are independent of one another (that is, other outcomes
do not influence the present outcome)

In the general capital growth process, the capital at the end of n trials is

Xu= RyRu-1  RaR\Xo
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Taking the togarithm of both sides gives

n
X, =InXo+ Y InR
k=1

A little more manipulation produces

X I/n P
in{ == = ) IRy 2
n(%) "ank (152)

Consider the right-hand side of (15 2) as # — oo The variables In Ry are each random
variables that are independent and have identical probability distributions The law of
large mumbers® therefore states that

-
- E in Ry - E(In Ry)
=

(We can use E In R, in this expiession since the expected value is the same for all k.)
We define m = E(in R|) Then we have from (15 2),

(X,,) \/n
In{ — —m
Xo

This is the fundamental result that we now highlight:

Logarithmic performance If X, X3, is the random sequence of capital values
generated by the process

Xp= Ry Xy
then
X\ V"
In (—) —>m (153)
Xy
asn — oo, where
m = E(n Ry) (15 4)

Taking the antilogarithm of both sides of (15 3) gives

!

X\

Xo
Then, formally (although it is not quite legitimate to do so), we raise both sides to the
power of 1, and we find

Xy = Xoe™
In other words, for large n the capital grows (roughly) exponentially with n at arate m
2The law of large numbers states that if ¥y, ¥a. are independent random variables with identical distri-

butions then (1/5) ZL. Y1 = E(¥1) A simple example Is thut of flipping a caln and assigning ¥; = -+1
il heads occurs on the kth trial und —1 if tails occurs The average of the numbers tends to zero
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The loregoing analysis reveals the importance of the number m defined by (15 4)
It governs the rate of giowth of the investment over a long period of iepeated trials It
seems appropriate therefoie to select the strategy that leads to the largest value of m

Log Utility Form

Note that if we add the constant In Xy to (15 4) we find
m 41X = E(n R) 4+ In X¢ = E(In R{Xy) = E(In X )

Hence if we define the special utility function U(X) = In X, the problem of maxi-
mizing the growth rate m is equivalent to maximizing the expected utility E{U(X )]
and using this same strategy in eveiy trial In other words, by using the logarithm
as a utility function, we can treat the problem as if it were a single-period problem
We find the optimal giowth stiategy by finding the best thing to do on the first trial,
using the expected logarithm as our criterion This single-step view guarantees the
maximum growth rate in the long run

Examples

Many important and interesting situations fit the framework presented in this section

Example 15.1 (The Kelly rule of betting) Suppose that you have the opportunity
to invest in a prospect that will either double your investment or return nothing The
probability of the favoiable outcomne is p Suppose that you have an initial capital of
Xo and you can repeat this investment many times How much should you invest each
time?

This situation closely 1esembles the game of blackjuck, played by a player wlo
mentally keeps track of the cards played By adjusting the playing strategy to account
for the composition of the remaining deck, such a player may have, on average, about
a 50.75% chance of winning a hand; that is, p == 5075 The player must decide how
much to bet in such a situation

Let & be the proportion of capital invested (or bet) during one play The player
wishes to find the best value of o If the player wins, his or hei capital will grow by
the factor t — o 4+ 2a = | +a If he o1 she loses, the factor is | — o Hence to find
the fog-optimal value of o, we maximize

m = pin(t +a)4 (I — p)In(l —a)
Setting the derivative with respect to o equal to zero, we have

p I-p

- =0
[4+a [~a

This gives the equation

pl =)= (1= p)l +a) =0



422

Chapter 15 OPTIMAL PORTFOLIO GROWTH

or & = 2p — 12 Hence in the blackjack example, a player should bet I 5% of the total
capital on each hand when p == 5075. Professional blackjack players actually do use
this rule or a modification of it

Blackjack may seem to offer an easy living! The growth 1ate of the Kelly rule
strategy is

me=pin2p+ (1 — p)In2 —2p) = pln p+ (1 — p) In(l — p) +1n2

For the case where p = 5075, this gives " &2 | 0001125, which is a 01125% gain
To double your capital you must expect to play 72/ 01125 == 6,440 hands (temember
the 72 rule of Chapter 2) This requires about 80 hours of play, which realistically
requites about I month of activity But there are many obstacles in the path of such
a profession

Example 15.2 (Volatility pumping) Suppose there are {wo assets available for in-
vestment. One is a stock that in each period either doubles or reduces by one-half,
each with a probability of 50% The other just 1etains value-—like putting money
under the mattress Neither of these investments is very exciting An investment left
in the stock will have a value that fluctuates a fot but has no overall growth rate
The other clearly has no giowth 1ate Neveitheless, by using these two investments in
combination, growth can be achieved

To see how, suppose that we invest one-half of our capital in cach asset each
period Thus we rebalance at the beginning of each period by being sure that one-half
of our capital is in each asset Under a favorable performance, our capital will grow
by the factor % + % X 2w % 4 1. Under an unfavorable performance, the factor will
be % + % X % = % + % Hence the expected growth rate of this stiategy is

m==tin(d 4+ 1D+ %I + ) ~ 059

Therefore " = 1 0607, and the gain on the portfolio is about 6% per period

Figure 15 2 shows one simulation run of the performance of the 50-50 mix of
the two assets versus the stock itsell. The mixture portfolio outperforms the stock

The gain is achieved by using the volatility of the stock in a pumping action
If the stock goes up in a certain period, some of the proceeds are put aside If on the
other hand the stock goes down, additional capital is invested in it. Capital is pumped
back and forth between the two assets in oirder to achieve giowth greater than can be
achieved by either alone.

Note also that this strategy automatically, on average, follows the dictum of “buy
low and sell high” by the process of 1ebalancing In essence, that is why it produces
growth

Example 15.3 (Pumping two stocks) Let us modify Example 15 2 by assuming that
both assets have the property of either doubling or halving in value each period with
probability onc-half Each asset moves independently of the other. Again we invest

3The answer implicitly assumes p > 5 If p < 5. the optimal ¢ is ¢ = 0
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500 f FIGURE 152 Mixture of two assets.
{  Twa mediocre stacks can be combined
450 - | 1o give enharnced growth
!
400 50-50 portfolio ,’
350 + ,K

{
¢

300 - A
250 - AR
200 !
150
100
50

Stock alone —

TSN SO O SO VO S S OO U0 S B T T SO B Y

1T 3 5 7 9 1113 1517 19 2

one-half of our capital in each asset, rebalancing at each period We find immediately
that

m:}ln2+%ln§+§ln% :%ln% = 1116
Hence e” = \/g =] I8, which corresponds to an 11 8% growth rate each period
The pumping action is greatly enhanced over that of the previous example Pumping
between two volatile asscts leads to large growth rates

Example 154 (Large stock portfolios) Suppose that there are n stocks that have
returns R,, i =1,2,3, ,n, for any one period (of, say, a week) These returns are
random, but they have the same probability distribution each period The retumns ol
different stocks may be correlated, but the returns of different periods are not core-
lated We form a portfolio of these stocks by assigning weights wy, wa, w3, W,
with w; > 0 for each i and Y/, w; = 1 The overall return on the poitfolio is
R = Y '_, w;R;. To obtain the maximum possible giowth of this portfoljo, we se-
lect the weights so as to maximize m = E(ln R) If we do this, the portfolio can be
expected to grow roughly, on average, according to ", wheic k is the number ot
periods
We shall study this example in greater detail later in this chapter

Example 15.5 (The investment wheel) Let us compute the {ull optimal strategy for
the investment wheel allowing for the possibility of investing on all sectors For «
stiategy* (@, aa, @3) we find the 1esults as follows:

1. If t occurs, R =1 +2a) ~ a3 — a3

IRecall that 1 2 3 correspond to the top, left, and right with payoffs 3 2, and 6 respectively
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2. If2occurs, R= | —qa) +o3 — 3

3. if 3 ocours, R =1 ~a) — a1 + Sy

To maximize the expected logarithm of this retum structure, we maximize
m == %ln(l 4 20y — oy —u3)+%ln(l —a +u2—u3)+éln(l — o) — o 4+ Sarg)

if we assume that the solution has ¢; > 0O for each i = 1,2,3, we can find the
solution by setting the derivatives with respect to each o; equal to zero This gives
the equations

2 1 1
- - == 0
20l + 20~z —a3) 3 ~a)4+ar~ar) O —a) —az +5a3)
1 . 1 1 N
21420 — oz —a3) 3 —a) +on ~a3)  6(1 —a) ~ oy +503)
1 1 5

TR TRy Rk T g R N R
General equations of this form are difficult to solve anatytically However, in this
case a solution is o) = 1, = 4, and a3 = §, which can be checked easily (For a
generalization of this problem and its solution see Exeicise 4 ) This means that one
should invest in every sector of the wheel, and the proportions bet are equat to the
probabilities of occurrence

Substitution of this optimal strategy in the original objective of expected loga-
rithm gives

We then find that
" ~ 1 06991

Hence the optimal solution achieves a growth rate of about 7%, which compares with
the approximately 6% achieved by the strategy of investing one-fourth on the top
segment and nothing on the other two

The results of one simulation of 50 trials of the investment wheel are shown
in Figure 153 The figure shows the results for thiee strategies: the optimal strategy,
the simplified strategy of betting one-~fourth on the top segment, and the poor strategy
of investing one-half on the top segment Also shown is a curve representing a 7%
growth rate The simulation has a great deal of volatility, and other runs may look
quite different from this one The long-term effect shows up when there are hundreds
of trials, as theie would be, for example, in the yearly result of daily stock market
investments

Notice that the optimal strategy requires an investment on the unfavorable sec-
tor 2, which pays only 2to | This investment se1ves as a hedge for the other sectors——it
wins precisely when the others do not.” It is like fire insurance on your home, paying
when other things go wrong.

S The equations defining the oplimal solution are actually degenerale for this problem There is a whole
fumily of optimal solutions, all giving the sume value for m An alternate solution is oy = 15—“ vy = 0.
>3 = ﬁ In this solulion nothing is invested on the unfavorable sector



3000

2500

2000

1500

_ o ——o——o Optimal

154  ALTERNATIVE APPROACHES® 425

FIGURE 153 Wheel simulation. Under the optimal strat-
egy, the wheel provides a growth rate of nearly 7%
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15.3 PROPERTIES OF THE LOG-OPTIMAL STRATEGY”

Although the log-optimal strategy maximizes the expected growth rate, the short run
growth rate may differ We can, however, make some definite statements about the
log-optimal strategy that are quite impressive

Suppose two people start with the same initial capital level Xy Suppose further
that person A invests using the log-optimal strategy and person B uses some other
strategy (with a lower value of m) Denote the resulting capital streams by X;,\ and
X2, respectively, for the petiods k = 1,2, Then it can be shown that

E(X2/x8) <1, for all k

This says that the ratio of the capital associated with alteimative strategy B lo the
capital associated with the optimal strategy A is expected to be less than 1 at every
stage This propeity mpues in favor of using the log-optimal strategy, and many people
are indeed persuaded that this is the strategy they should adopt

15.4 ALTERNATIVE APPROACHES*

The log-optimal strategy is not necessarily the best strategy to use in repetitive in-
vestment situations, but it is a good benchmark to keep in mind when considering
alternatives We mention some possible alternatives in this section

Other Utility

One alternative is to use the standard framework of maximizing expected utility (as
in the first part of Chapter 9) If there will be exactly K repetitions, we can define a
utility function U lor wealth at the end of pertod K and, accordingly, seek to maximize
E[U (X )]
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The use of U(Xk) = In Xx is one special case In fact, because of a special
recursive property, maximization of E(In X x) with respect to a fixed strategy is exactly
equivalent to the log-optimal strategy of maximizing E(In X,) This follows from

©

E(nXx) = E[l(RgRy—1  RiXo)l=InXg+E(nR)+ Y EllnRy)

k=2

Maximization of the left side is equivalent to maximization of E(lnRy) since afl
Ry’s are identical random variables This in turn is equivalent to maximization of
E(InX;) = InXo + E(InR;) Hence the choice of U(Xg) = InXx leads us once
again to the log-optimal strategy

One interesting class of utility functions is the class of power functions U(X) =
(I/y)yXY for y < 1 This class includes the logarithm [since lim, _.o{(1/¥)}X" —
[/y} = InX]; and it includes the linear utility U(X) = X

This class of functions has the same tecursive property as the log utility; that is,
the stiucture is pteserved from petiod to period This is seen fiom

1 , t - —_—
BV (X)) = SEL(Rx Ry Rqu)’]=;E<R’KR’K-; R X§

- lE(R’,\'.)E(R’A',_X) E(R) X}
Y

where the last equality follows fiont the fact that the expected value of a product of
independent random variables is equal to the product of the expected values Hence to
maximize E[U (X ¢ )] with a fixed-ptoportions stiategy it is only necessary to maximize
E[(Ri1X0)"], so again to maximize E[U (X« )] one need only maximize E[U (Xy)]

If y > 0, the power utility function is quite aggressive The extreme case of
y = |, corresponding to U(X) == X (leading to the expected-value criterion), was
considered earlier when discussing the investment wheel We found that the strategy
that maximizes the expected value bets all capital on the most favorable sector—
a stiategy prone to early bankruptcy Indeed, bankruptey is likely for any y with
1 = y > 0 For example, suppose y = % Considet two opportunities: (a) capital
will double with a probability of 90 or it will go to zero with probability 10, and
(b) capital will inciease by 25% with certainty Since 9x+/2 > /125, opportunity (a)
is preferred to (b) with a square root utility However, in a long sequence of repeated
trials, an investor following opportunity (@) is vittually certain to go bankrupt Most
people prefer (b) when they understand that many trials will be played A similar
argument applies to any y in the tange | > ¢ > 0

It is moie conservative lo use y < O However, many people find this to be foo
conservative For example, suppose that y = —% Again consider two opportunities:
(a) capital quadruples in value with cettalnty, and (b) with probability 35 capital re-
mains constant and with probability 5 capital is multiplied by 10 million (or any finite
number) Since —4~4? > — 5~ 5(10,000,000)~}7, an investor with the utility func-
tion V(X) = —X~!? will prefer (@) This is quite conservative Again, similar argu-
ments apply for any y < 0, although they becotne less compelling if y is close to zero

Based on the preceding discussion, we conclude that if an investor uses a power
utility function, it is likely that it will be one with y < 0, but y close to zero Such
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a utility function is close to the logarithm We can argue that similar (although less
precise) results hold for any broad class of possible utility functions; that is, only
those close to the logarithn will seem appropriate when the long-term consequences
are examined Therefore, although in principle an investor may choose any utility
function, supposedly reflecting individual risk tolerance, a repetitive situation tends to
hammer the utility into one that is close to the logarithm

Most long-term investors do consider the volatility of portfotio growth as well
as the growth rate itself This leads to consideration of the variance of the logarithm
of return as well as the expected value of the logarithm of return. Indeed, if investors
take a long-term view, it can be shown that (under certain assumptions) these two
vatues are the only values of importance. We state this formally as follows:

[NX| Growth efficiency proposition An investor who considers only long-term perfor-
B 'mance will evaluate o portfolio on the basis of its logarithm of single-period yenun,
using onlv the expected value and the variance of this guantity

This proposition intetlaces well with the earfier discussion about power utility
functions We found that if the utility function U(X,) = (1/y )X were chosen, it is
likely that » < 0 and y» =0 We can then use the approximation

%(X” —-D=inX+ %)/(ln X)?

This shows that use of this utility function is close to using a weighted combination
of the expected fogarithm of return and the variance of that logarithm In other words,
the expected logarithm and its variance are the two quantities of interest

In view of the growth efficiency proposition, it is natuiaf to trace out an efficient
frontier of m versus o similar to that for the ordinary mean—variance efficient frontier
but where sz and o are, respectively. the mean and standard deviation of the logarithm
of return We shall do this for stocks whose prices are described by continuous-time
equations in the next section

15.5 CONTINUOUS-TIME GROWTH

Optimal poitfolio growth can be applied with any rebalancing period—a year, a month,
a week, ot a duy In the limit of very short time periods we consider continuous
tebalancing

In fact, there is a compelling reason to consider the limiting situation: the result-
ing equations for optimal strategies turn out to be much simpler, and as a consequence
it is much easier to compute optimal solutions Hence even if rebalancing is to be
catried out only, say, weekly, it is convenient to use the continuous-time formulation
to do the calcufations

The continuous-time version also provides important insight For example, it
veveals very clearty how volatility pumping works
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Dynamics of Several Stocks

We first extend the continuous-time modef of stock dynamics presented in Chapter {1
to the case of severat correlated stocks This model wilf then be used in our anatysis
of stock portfotios

Suppose there are 1 assets The price p; of the ith asset, for i = 1, 2, 3, Jn,
i governed by a standaid geometric Brownian motion equation

an

i

== p; dr + dz;

whete z, denotes a Wiener process, but with variance parameter a,.3 rather than 1 This

is equivalent to the standard model for a single stock The new element here is that

the assels are correlated through the Wiener process components In particular,
cov(dz;, dz;) = E(dz; dzj) = oy, dt

We define the covariance matrix S as that with components g;;, and we use the
convention a,-z == g;, We usually assume that S is nonsingular
From Chapter 11, each asset i has a lognormal distribution, and at time ¢,

E[ln (%%%)] = (1, — $07) = vt

vat [ln (-’7'—('l>i| = o7t
()

and

Portfolio Dynamics

Now suppose that a portfolio of the n assets is constructed using the weights w,,

= 1,2, ,n,with 37_jw; =1 Let V be the value of the portfolio Then because
lhe instantaneous rate of return of the portfolio is equal to the weighted sum of the
instantaneous rates of return of the individual assets, we have

n dp:
Z Wy ———

2

u
=y w4 w; d
i=
The variance of the stochastic term is
I3 2 n I3 I3
E (Z W, dz,-) = E (Z w,d:.,) (Z wj dz,) E Z wio; jw; df
i=t i= =1 rj=1

Hence the value V(1) is lognormal with

Vi)
E[l (W)]-W-Zw /L,r——Zw,a,,w, (155)
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The variance of In[V(r)/V(0)] is

"
2 Z

g(f) = w,0,, w;t
i

__l In V()
”"TE[ wm]

Hence v gives the growth 1ate of the portfolio—analogous to m, used in previous
sections, We can control this growth rate by the choice of the weighting coefficients
wi, wa, » Wy

Note that

Implications for Growth

Equation (15 5) explains how volatility can be pumped o obtain increased growth As
a specific example, suppose that the n assets are uncorrelated and all have the same
mean and variance A typical asset therefore has its price governed by the process
dp,
P pdr+dy

i

where now each dz, has variance o?dr. The expected growth rate of each stock
individually is v = p — %az Suppose now that the n stocks are each included in
a portfolio with a weight of 1/n Then from (15 5) the expected growth rate of the
portfolio is
1 2

2 e T

nort S
Pumping reduces the magnitude of the —-%az correction term, theieby increasing the
growth 1ate In this example, the growth rate has increased over the v of a single stock

by
1 N - =1y ,
Vpon = V = 5 l——,—l o=\

Ihe pumping eftect is obviously most dramatic when the original variance is
high Afler being convinced of this, you will likely begin to enjov volatility, seeking
it out for your investments rather than shunning it, a5 you may have after studying the
single-period theory of Chapters 6 and 7 Volatility is nor the same as risk Volatility
is opportunity

Example 15.6 (Volatility in action) Suppose that a stock has un expected growth rate
of 15% a year and a volatility (of its logarithm) of 20% These are faitly typical values
This means that v = g — g% = 15 and o = 20. Hence p = 15+ 04/2= 17 By
combining 10 such stocks in equal proportions (and assuming they are uncorrelated)
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we obtain an overall growth iate improvement of (9/20) x 04 = 1 8%—-nice, but not
dramatic

It instead the individual volatilities were 40%, the improvement in growth rate
would be 7 2%, which is substantial At volatifities of 60% the improvement would
be 16 2%, which is truly impressive Unfortunately it i hard to find 10 uncorrelated
stocks with this level of volatility, so in practice one must settle for more modest
gains ¢

The Portfolio of Maximum Growth Rate

We obtain the optimal growth portfolio by maximizing the growth rate v Referting to
equation (15 5) we sce that this is accomplished by finding the weights wy, wa, , wy
that solve
" "
maximize Z Wy - é— w;iojw,
i=1 1

1=

u
subject to Z uy == 1

We solve this problem in the next section

15.6 THE FEASIBLE REGION

Paralleling the familiar Markowitz concepl, portfolios can be plotted on a two-dimen-
sional diagram of v versus o The 1egion mapped out by all possible portfolios defines
the feasible region. This is depicted in Figure 154.

There is, however, an important qualitative difference between the general shape
of this region and the Markowitz region The new region does not extend upward
indefinitely, bul instead there i$ a maximum value of v, corresponding to the growth
rate of the log-optimal portfolio There is also, as in the Markowitz case, a point of
minimum o These points ate indicated on the figure

The Efficient Frontier

Again, just as in the Markowitz framework, we define the efficient frontier of the
feasible region to be the upper left-hand portion of the boundary This frontier is
etficient in the sense of growth as spelled out by the growth efficiency proposition of
Section {54 In this case we can be quite specific and state that the efficient fiontier
is the portion of the boundary curve lying between the minimum-variance point and
the log-optimal point

S0f course we mst temper ow enthustasm with s accounting of the commissions associated with frequent
trading
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Maximum expected log FIGURE 15.4 Feasible region. The feasible re-
gion has a maximum expected log value and a

Minimum log variance on v
minimum log variance value

In fact, we obtain a strong veision of the two-fund theorem. Any point on
the efficient frontier can be achieved by a portfolio consisting of a mixture of the
minimum-vatiance poitfolio and the log-optimal portfolio We now state this formally
as a theorem, We also give a proof using vectol-matiix notation (The 1eader may
safely skip the proof )

[2X] The two-fund theorem Any point on the efficient fiontier can be achieved as a mixture
A of any two points on that frontier In particular the minimum-log-variance porifolio and
the log-optimal porifolio can be nsed

Proof: Assume there are n securities Let w = (ug, i3, .. , tp), and let
w o= (W, wa, ,W,) be portfolio weights If w is efficient, it must solve
the following problem for some s:

maximize w’u~ {w’Sw
subject to w/ 1= 1
wiSw= 5
By introducing Lagrange multipliers A and y /2, we form the Lagrangian
L=wu—twiSw—aw'1- 1)~ LywSw—3)
The first-order conditions are
u~Sw—Al ~ySw=10
Hence the solution has the form

1
= 87 U - AL
w Ty (u )

The constants A and y are determined so that the solution w satisfies the two
constraints of the original problem

Setting y = 0 means that the second constraint is not active, and hence
this solution corresponds to the log-optimal portfolio.

All solutions e linear combinations of the two vectors S~'uand 8711,
50 uny two such solutions can be used to generate all otheis In particular,
the log-optimal and the minimum-variance solutions can be used §
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Inclusion of a Risk-Free Asset

Suppose that there is a risk-free asset with constant interest rate 7, This asset can be
considered to be a bond whose price py(r) satisfies the equation
dpy(r) _
Po
Assuming that there is no other combination of assets that produces zero vari-
ance, the risk-free asset is on the efficient fronder. Indeed, it is the minimum-variance
point To find the entire efficient frontier it is therefore only necessary to find the
log-optimal point, and we shall do that now
The log-optimal portfolio is defined by a set of weights wy, wa, , wy for the
risky assets and a weight wg = | ~Z'.’=: w; for the risk-free asset The weights for the

)
1isky assets are chosen to maximize the overall growth rate; that is, to solve the problem

1pdt

n n n
max [(l -3 w,)lf + Z(Mill)j - §Zw,a7,kwk>i|
=t j=t =t
Setting the derivative with respect to wy equal to zero, we obtain the equation for the
log-optimal portfolio i, ~ rp ~ Z?:: oj;w; = 0, which we highlight:

The log-optimal portfolio  When there is a risk-fiee asset, the log-optimal por tfolio
has weights for the 1isky assets that satisfy

Doy = g (156)
fori=1,2, N

Equation (15 6) is a system of # linear equations that can be solved for the n
weights

The efficient frontier with a 1isk-free asset is shown in Figure 155 It should be
clear from the figure that most investors will in fact not wish to design their strategies
to correspond to the log-optimal point This is because a first-order decrease in standard
deviation can be attained with only a second-order sacrifice in expected (log) value
by moving slightly leftward along the efficient frontier

Ein FIGURE 15.5 The feasible growth rate re-
Markowilz portfolio gion. The Markowitz portfolio is not efficient

Log-optimai portfolio in the sense of growth

stdev in
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The Markowitz strategy can be defined by using the Markowitz portfolio weights
and rebalancing regularly This strategy will be inefficient with respect to the expected
log-variance criterion

Example 15.7 (A single risky asset) Suppose that there is a single stock with price
S and a riskless bond with price B These prices are governed by the equations

ds

S=#di+ﬂdi
dB

— oz p g df
5=

where : is a standard Brownian motion process The log-optimal strategy will have a
weight for the stock given by (156) In this case that reduces to w = (u - 17)/a”
The corresponding optimal growth rate is

(e —1y)
Vo == 17 + —,)—Uzj—-
and the corresponding variance is
2 (- ’f)z
Top = 37

Let us consider some numerical values, Suppose that the stock has an expected
growth rate of 15% and a standard deviation of 20% Suppose also that the tisk-free rate
is 10%. We know that o == .20 and v = g~ 1o? = 15. This means that u = 17 We
find that w == 1 75, which means that we must borrow the risk-free asset to leverage
the stock holding We also find that the optimal vatue of v is gy = . 10+( 07)%/ 08 =
16 125% This is only a slight imptrovement over the 15% that is obtained by holding
the stock alone Furthermore, the new standard deviation is 07/ 20 = 35%, which is
much worse than that of the stock The situation is itlustiated in Figure 156

The log-optimal strategy does not give much improvement in the expected value,
and it worsens the vatiance significantly This shows that the log-optimal approach is

18 Growth rate FIGURE 15.6 Feasible region for one stock
i and a risk-free assel, The log-oplimal strategy
16 gives only modest improvement in growth rate
over holding the stock alone, at the expense of
14+ g f
12 a greaily increased standard deviation
7 Log-optimal
14 Stock alone Og-optima
08
06
044
02 4
0 L ) i L ]
0 1 2 3 4 5
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. not too heipful unless there is opportunity to pump between various stocks with high
1 volatility, in which case there can be dramatic impiovement.

Example 15.8 (Three stocks) Suppose there are three risky stocks with prices gov-~
erned by the equations

9 ssdr ez
Sl L <
ds,

= 20dr +dz
82
dSs
ez [5df 4 dz
5 I +dz3

with the covariance of dz being

09 02 0l
02 07 ~0!
01 -0l 03

The risk-free rate is 10% We can ealculate the eorresponding growth rates: vy =
19 5%, 13 = 16.5%, and v; == 13 5%
Referring to equation (15 6), the log-optimal portfolio weights satisfy the equa-

tions
09w + 02wy + Olwy = 14
02wy + 07wy ~ Olws = 10
Otw; ~ Otwy + 03wz = 03

which have solution

wy = 105
wy = .38
wy = 178

It follows that frop is the corresponding weighted sum of the individual u’s; that is,
prom = 105x 24+ 138x 204+178x [54+(1~105~138~178)x 10=04742

and

3

2

Tow = D W01,
ij=1

09(1 05)% + 02(105)(1 38) + O1(1 05)(1 78) + 02(} 38)(1 05)
+07(1 38)% — 01(1 38)(1 78) + OI(1 78)(1 05)

— O1(1 05)(1 38) + 03(178)*

= 03742
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3 ¢ FIGURE 15.7 Boundary poinls of three-
Giowth rate stock example, The three original stocks to-
25 - gether with the risk-free asset define a bound-
ary of points that are optimal with respect to
2 fog mean and log variance
15+
‘] —
05 -
0 T T T T H 1
00 20 40 60 80 100 120
4

Hence gy == 61 17% The growth rate is
5
Vop = Hept = 305, = 28 71%

Figure 15 7 shows the original three points and a portion of the boundary of the
feasible region

15.7 THE LOG-OPTIMAL PRICING FORMULA*

N
=

The log-optimal strategy has an important role as a universal pricing asset, and the
pricing formula is remarkably easy to derive. As before, we assume that there are n
tisky assets with prices each governed by geomettic Browntan motion as
dﬂ:.-u,-dr+d:,, i=1,2 ,n.
pi
Since E(dz,) = 0 for all #, the covariances o;; are defined by E(dz, dz;) == 0;; dr There
is also a risk-free asset (asset number 0) with rate of return vy Any set of weights
wy, wi, wa, , w, with 37, w; = 1 defines a portfolio in the usual way The value
of this poitfolio will also be governed by geometric Brownjan motion We denote the
corresponding covariances of this process with that of asset i by o; pon
As a special case we denote the log-optimal portfolio by the subscript opt. This
portfolio has variance denoted by aglp, and covaliance with asset i denoted by g, o
The u of any asset can be recovered from the log-optimal portfolio by evaluating
the covariance of the asset with that optimal portfolio This is essentially a piicing for-
mula because it shows the relation between drift and uncertainty The pricing formula
is stated heie (in four different forms):

Log-optimal pricing formmla (LOPF) Fo) any stock i there holds
Hy g = Oy o (15 7a)

W=y = O g — %af (15.7b)
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Equivalently, we have
=1y == Biop (Ijvop\ —17) (15.8a)
Vi =1y = Brop Oay — 307 (158b)

i

2
where Bi.op = 0; o /Unpl

Proof: The result follows from the equation for the log-optimal strategy
(15 6); namely,

n
M;—,fr.za,,-ww (159)
j=1

If V is the value of the log-optimal portfolio, we have

dv <
v = Zw/(”'f dr +dz;)
=1

Hence 0, o = E{dz; dzgp) = ):}’:1 oijw, = p, ~ 17, where the last step is
(159) This gives (15 7a) The version (15 7b) follows from v, = pu, — %a,.l

To obtain the altemative expressions we apply the Hrst pricing formula
[equation (15 7a)] to the log-optimal strategy itself, obtaining pop —7, = agp,w
Equation (15 8a) follows immediately The version (15 8b) follows directly
from the definition of B B

According to these formulas the covariance of an asset with the log-optimal
portfolio completely determines the instantaneous expected excess return of that asset.
Equations (15 7a) and (15 8a), in tetms of o — 7, are easy to remember because they
mimic the CAPM equation These equations exptess the excess expected instantaneous
eturn as 2 single covatiance or, in the alternate version, as a beta-type formula

Example 15.9 (Three stocks again) Conside: the three stocks of Example 158 Let
us determine p; using (I5 7a) The covariance of Sy with the log-optimal portfolio is
found from

Eldzi(w; dzy+wardzz+wsdzs)] = {1.05%x 0941 38%x 024178 01}dt = 14dt
Therefore,
wyp=1,+ 14= 124

which is correct since it coincides with the pq originally assumed

Equations (15 7b) and (15 8b), in terms of v — 7, are perhaps the most relevant
equations since v is the actual observed growth rate Consider (15 8b), which is v, —

2

17 = Bropi 0%, — 307 For stocks with low volatility (that is, with o7 small) the excess
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v FIGURE 15.8 Log return versus beta.

Bom B

growth rate is approximately proportional to 8, o This patallels the CAPM result
Greater risk leads to greater growth However, for large volatility the —%af term
comes into play and decteases v

Note in particular that if secutity / is uncorrelated with the Jog-optimal portfolio,
its growth rate will be less than the risk-free tate This is because its volatility provides
opportunity that a risk-free asset does not

The volatility term implies that the retation between risk and return is quadratic
rather than linear as in the CAPM theoty To highlight this quadiatic feature, suppose,
as may on avetage be true, that the o of any stock is proportional to its 8; that is,
o = yf, where y is a constant Then we find

7282

2
V=i =g =5

A graph of this function is shown in Figute 158 Note that this cuive has a differ-

ent shape than the tiaditional beta diagram of the CAPM It is a parabola having a
. P

maximum value at o = o5, /v~

Market Data

If we wete to look at a family of many reat stocks, we would not expect them to fall
on a single curve like the one shown in Figure 15 8 since the true relationship has two
degiees of fieedom; namely, g and o Howevet, according to the theory discussed,
we would expect a scatter diagram of all stocks to fall roughly along such a parabolic
curve We can check this against the resalts of a famous comprehensive study of
matket returns which includes many decades of data 7 The data shown in Figures 159
and 15 10 are taken from that study The figures show annualized return, as computed
on a monthly busis, over the petiod of 1963~1990 Of coutse the 8 used in the study is
the normat 8 based on the market return, not on the log-optimat portfolio This study
has been used to argue that the traditional relation predicted by the CAPM does not
hold, since the tetum is clearly not proportionat to 8 We have drawn a dashed parabola
in each figure, which shows that the data do suppoit the conclusion that the relation
between return and 8 is roughly quadratic To put this in perspective, we emphasize

7This is the Fawa and French study clted at the end of the chapter See table I of that retereace
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FIGURE 15.9 Observed return versus 3 for medium-
sized companies. The data support the conclusion of the
LOPF that return is approximately quadratic with respect
to B with a peak at around g =1
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FIGURE 15.10 Observed return versus 3 for a cross
section of all securities. The data support the conclu-
135k [ sion of the LOPF that retutn is approximately quadratic
-~ T~ e with respect to 8 with a peak at g = 1
~
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that the LOPF is independent of how investors behave. It is a mathematical identity All
that a market study could test, therefore, is whether stock prices really are geometric
Brownian motion processes as assumed by the model Since retums are indeed close
to being lognormal, the log-optimal pricing model must closely hold as well

15.8 LOG-OPTIMAL PRICING AND THE BLACK-SCHOLES
EQUATION*

The log-optimal pricing formula can be applied to derivative assets, and the resulting
formula fs precisely the Bluck~Scholes equation. Hence we obtain a new interpretation
of the important Black—Scholes result and see the power of the LOPF The log-optimatl
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pricing equation is more genetal thun the Black-Scholes equation, since log-optimal
pricing applies more genetally—not just to derivative assets

As in the standaid Black-Scholes framewotk, suppose that the price of an un-
derlying asset is govemed by the geometiic Brownian motion process

dS = uSdt +o0Sdz

whete z is a normalized Wienet piocess Assume also that there is a constant inteiest
rate ¢+ Finally, suppose that the price of an asset that is a derivative of the stock is
v = F(S,1) for some (unknown) function F,

The price y will fluctuate 1audomly accoiding to its own Ito process The equa-
tion of this process is given by Ito’s leinma as

aF 0F 19°F

) = ('8'5’1 o VTaas
If we divide the left side of 15 10 by v(z) and the tight side by F (S, 1), we will have
an equation for the instantaneous 1ate of retum of the derivative asset Tle first tetm on
the right is then the expected instantaneous 1ate of retuin We can call this fgey Since
it is the p of the derivative asset Then pgeny — 7 must be equal to the covatiance of
the instantaneous retuin of the derivative asset with the log-optimal portfolio Writing
this equation will give the final result Befoie we cany this out, let us first find the
log-optimal portfolio

The log-optimal potfolio is a conibination of the stock and the 1isk-free asset
The derivative asset cannot enhance the return achieved by these two assets, since it
is by definition a derivative Therefore the log-optimal portfolio is the combination
found in Example 157 Specifically, it is the combination in which the weight of the
stock is w = (i — 1) /0"

We can now wiite the log-optimal pricing formula directly as

| (3F s aF 1 8°F 12 | (8F s) (o
| — —t=—0 5 )=t = = —0
Flas® T Yagsm© "=F\s p

The left-hand side is just fLgey — 1, Whete .y is the expected instantaneous 1eturn
of the derivative asset It is found by just copying the first part on the tight of (15 10),
dividing by £, and subtiacting 1 The right side is the covartance of this derivative
asset with the log-optimal portfolio Since both the derivative and the log-optimal
pottfolio have prices that are tandom only through the dz term, we simply multiply
the coiresponding coetficients of the instantaneous teturn equations to evaluate the
covatiance The fust pat is just a copy of the dz coefficient in (15 10) divided by F
and the second part is the standaid deviation of the log-optimal portfolio, as found in
Example 157
The equation is simplified by multiplying thiough by F and canceling the two
identical texms containing #, yielding
8F  OF 18%F 5
3_1+§’ +§E)S30 S = F
which is the Black—Scholes equation
We now have tin e different interpretations of the Black-Scholes equation The
fitst is a no-arbitrage interpretation, based on the observation that a combination of

, P
a‘S2>d1+?F§anz (15 10)




440

Chapter 15 OPTIMAL PORTFOLIO GROWTH

two risky assets can reproduce a tisk-free asset and its rate of return must be identical
to the risk-free rate The second is a backward solution process of the risk-neutral
pricing formula The third is that the Black—Schaoles equation is a special case of the
log-optimal pricing formula

15.9 SUMMARY

Given the opportunity to invest repeatedly in a series of similmr prospeets (such as
tepeated bets on an investment wheel or periodic rebalancing of a stock portfolio), it
is wise to compare possible investment strategies relative to their long-teim effects on
capital For this puipose, one useful measure is the expected rate of capital growth
If the opportunities have identical probabilistic properties, then this measure is equal
to the expected logarithm of a single return In other woids, long-term expected cap-
ital growth can be maximized by selecting a stiategy that masimizes the expected
logarithm of 1eturn at each trial; this is the log-optimal strategy.

For bets that pay off either double o1 nothing, the log-optimat strategy is known
as the Kelly rule 1t states that you should bet a fraction 2p — | of your wealth if the
probability p of winning is gieater than 5; otherwise, bet nothing

For stocks, the log-optimal strategy pumps money between volatile stocks by
keeping a fixed proportion of capital in each stock, rebalancing each period This strat-
egy automatically leads, on average, to following the maxim “buy low and sell high ™

For stocks, the log-optimal approach is mathematically more tractable in a
continuous-time framework than in a discrete-time framework, for in the continuous-
time framework explicit formulas can be derived for the log-optimal strategy and the
resulting expected growth rate—it is only necessary to solve a quadratic optimiza-
tion problem The resulting formula for the expected growth rate clearly shows the
souice of the pumping effect Basically: growth rate is v ==y — Lo? When assets are
combined in proportions, the resulting j is likewise a proportional combination of the
individual p's [However, the resulting o* is 1educed more than propottionally because
it combines individval o*'s with squares of the propoitionality factors Therefore the
resulting v is gieater than the proportional combination of individual v's Hence v is
pumped up by the reduction in the volatility term

The growth cfficiency pioposition states that any long-term investor should eval-
uate a strategy only in terms of the mean and variance of the logarithm of return This
leads to the concept of an efficient frontier of points on a diagram that shows ex-
pected log-return versus standaid deviation of log-return Giowth-efficient investors
select points on this efficient frontier This fiontier has two extreme points: the log-
optimal point and the minimum log-vaiiance point The two-fund theoiem for this
framework states that any efficient point is a combination of these two extreme-point
potfolios If there is a risk-free asset, it serves as the minimum log-variance point

The log-optimal portfolio plays another special iole as a pricing portfolio Specif-
ically, for any asset i, we find p; — 1, = 0, o That is, the expected excess instanta-
neous return of an asset is equal to the covariance of that asset with the log-optimal
portfolio This formula, the log-optimal pricing formula (LOPF), can be transfornied

10 v, — 1y = B, ooy — 407 This shows that the growth rate v; tends to increase
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with 8, o as in the CAPM, but it decreases with a,-z Roughly, this leads to security
matket lines that are quadratic rather than linear Empirical evidence tends to support
this conclusion

The power of the log-optimal pricing formula (LOPF) is made clear by the fact

that the Black-Scholes partial differential equation can be derived directly from the
LOPF However, the LOPF is not limited to the pricing of derivative securities—it is
a general result

-

»

W

&=

. (Simple wheel strategy) Consider a strategy of the form (p,0,0) for the investment

wheel Show that the overall factor multiplying your money after u steps is likely to be
(4 +2p)"*(1 ~ y)"* Find the value of p that maxintizes this factor

. (How to play the state fottery) In a ceiain state lottery, people select eight numbers

in advance of a random diawing of six numbers If someone’s selections inciude the six
drawn, they receive a farge prize, but this prize is shared with other winuers Vicior has
discovered that sonie numbers are “unpopulas™ in that they are rarely chiosen by lottery
players He has computed that by selecting these numbers he has one chance iu a miltion
of winning $10 million for a $1 lottery ticket He has odds of 10 to 1 in his tavor Victor's
current wealth is $100,000, and fie wants to maximize the expected fogarithm of wealth
{a) Should Victor buy a lottery ticket?

(b) Victor knows that he can buy a fraction of a ticket by forming a poot with friends

What fraction of a ticket would be optimal?

(Easy policy) Show that (%, %) is the optimal policy for Example 152

. (A general betting wheelo) Consider a whieel with # sectors If the wheel pointer lands

ot sector i, the payoff obtained is 7, for every unit bet on tiat sector Tiie chance of landing
on sector i is p,, { = 1,2, .1 Let o, be the fraction of one's capital bet on sector /
We requite ) o, < bande, z0fori=1,2, ,n

(a) Shiow that the optimal growth strategy is obtained by solviiig

u u
max Zp, tn (r,u, + 1= Zu,)
gl =1

(b) Assunting thato, > O forafti= 1,2, ,nu, show that the optimal values nust satisly
u
Pils P
nm+l—2:'=,a. ;z,d,+l—2;’=,u,

foraltk=12,. .n
(¢) Assume that . /e, = I Show that in this case a solution is @, = p, lor i =
L2, ,n

(d) For the wheel given in Example 155, find the optimal solutiort and determine the
correspontding optiral growth rate

=0
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5. (More on the wheel o) Using the notation of Exercise 4, assume that ) 1/, = I, but
try to find a solution where one of the o;'s is zero In particular, suppose the segments
are ordered in such a way that p,r, < py, forall f = 1,2, ., n Then segment n is the
“worst™ segnient

(a) Find a solution with e, = 0 and all other o;’s positive
(b) Evaluate this solution for the wheel of Example 155

6. (Volatility puomping)  Suppose there are # stocks Each of them has a price that is governed
by geometric Brownian motiont Each has v, = 15% and g, = 40% However, these stocks
are correlated, and for simplicity we assume that g, = 08 for alt i # j What is the value
of v for a portfolio having equal portions invested in each of the stocks?

7. (The Dow Jones Average puzzie) The Dow Jones Industrial Average is an average of the
prices of 30 industriaf stocks witlt equal weights applied to all 30 stocks (but the sum of the
weights is greater than 1) Occasionaily (about twice per year) one of the 30 stocks splits
(usually because its price has reached levels near $100 per share) When this happens, alt
weights are adjusted upward by adding an amount ¢ to each of them, where & is chosen
so that the computed Dow Joues Average is continuous

Gavin Jones’ father, Mr D Jones, uses the following investment suategy over a
10-year period At the beginning of the 10 years, Mr Jones buys one shaie of each of the
30 stocks in the Dow Jones average He puts the stock certificates in a drawer and does
no more hading If dividends arrive, he spends thein If additional certificates arrive due
to stock splits, he tosses them in the drawe:r along with the others At the end of 10 years
he cashes in alt certificates He then compares his overail retuin, based on the ratio of the
finat value to the original cost, with the hypothetical return defined as the ratio of the Dow
Jones Average now to 10 yems ago He is suiprised to see that there is a difference Which
teturn do you think will be larger? And why? (Ignore transactions costs, and assume that
alt 30 stocks remain in the average over the 10-year period ) {The difference, when actually
measured, is close to 1% per year ]

-3

. (Power tititity) A stock price is governed by
ds
— =pudt d:
S ndt +a

where : is a standardized Wiener process Interest is constant atate s An investor wishes to
construct u constantly ebatanced poitfolio o} these two assets that maximizes the expected
value of his power utility U(X) = (1/y)X¥, y < |, at all times ¢ > 0 Show that the
proportion w of wealth invested in the iisky asset is w = (z —1)/[(1 — y)a?] Use the
following steps

{a) Show that

X(1) = X(())epm-mm-ru-.u:n-‘m_wm N

where # is a normal random variable with mean 0 and variance |
(b) Use E(e") = ¢ /? to show that

E[U ( X(r))] = %eyp:+m|u-r):-miul:m-l-y?wfu%/:

(¢) Find w
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9. (Discrete-time, log-optimal pricing formula)  Suppose there are » assets Asset 7, i =

1.2, . n, has rate of retmn s, over a single period Ihere is also a risk-free asset with
wate of retmn 7, The log-optimal portfolio over one period has rate of return 7y, and we
define Py =1/(1 +1q)
(@) Derive the pticing formula
cov(r,, Py)

E(Py)

Fo—iy=—

(b) Suppose that over a small period of length Ar the return of asset i is 1+u, Ar+n, VAt

where n, is a normal random variable with mean 0 and variance a,? Show that the

disciete-tinte pricing formula in part {e) goes irt the lintit, as At — 0, to the continuous-
tinte {og-optimal pticing formula given in Section 157

The special advaniages of using a logacithtmic ulility function in simations of repeated invest-
ments was initially discovered by Kelly {1] and Latané {2] The theory was developed more
fully by Breiman {3] Sec {4] for a good discussion of asyniptotic properties The idea that the
expected logarithm and the variance of the logmithim are the only 1wo quantities of imporiance
in tong-term behavior was presented in {3] The fact that the fog-optimal portfolio can be used
for pricing was presented in {6] The classic empirical study of security returns is {7]

t
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Lataué, H (1959), “Criteria for Choice among Risky Vemtures,” Jonrmal of Political Econ-
omy, 67, 144-155

Breintan, L (1961), “Optiinal Gambling Systenis for Favorable Games,” Fourthh Berkeley
Symposiunt, vol 1, 65~78

Algoet, P H, and T M Cover (1988), “Asyniptotic Optimality and Asymptotic Equipar-
tition Properties of Log-Optimum {uvestment,” Annals of Probability 16, 876-898

Luenberger, D G (1993), “A Preference Foundation for Log Mean~Variance Criteria in
Portfolio Choice Problems,” Tonnal of Econoniic Dynamics and Controt, 17, 887906

Loug, J B, Jr (1990), “The Numeraire Portfolio,” Journal of Financial Economics 26,
29-69

Fania, E F, and K R Freuch (1992), “The Cross-Section of Expected Stock Retumns,”
Journal of Finance, 47, no 2, 427463 (See especially Table I)



GENERAL INVESTMENT
EVALUATION

stream in present value terms. A proper evaluation, however, must account

for the uncertainty of the stream and the relation of the stream to other assets
To structure a general evaluation procedure, therefore, we must have a fiamework for
representing multiperiod stochastic cash flows of several assets. Given this framework,
the familiar concepts of risk-neutial vatuation and utility maximization can be extended
to multipeliod situations

g nalysis of an investment oppo1tunity centers on the evaluation of its cash flow

16.1 MULTIPERIOD SECURITIES

444

We begin by building a framework for representing securities in a multiperiod setting
with a finite number of stutes—a framework that geneializes the discussion of Chap-
ter 9 (The reade1 should be familiar with Chapter 9 before reading this chapter ) The
basic component of this multiperiod framework is a graph (usuvally a tree or a lattice)
defining a random process of state transitions, as shown in Figure 16 1 The leftmost
node represents the initial point of the process at time ¢t = 0. The process can then
move to any of its successor nodes at t = | A probability is assigned to each of the
arcs Each probability is greater than or equal to zero, and the sum of the probabilities
for arcs emanating from any particula node must be |

The nodes of the graph can be thought of as representing various “states of
the financial universe.” They might be various weather conditions that would affect
agriculture and hence the piice of agricultural products They might be conditions of
unemployment that would affect wages and hence profits Or they might be the various
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FIGURE 161 State graph Each node represents a
clifferent state The graph of this figure is a tree, but in
general some nodes may combine

—

possible prices of gold The graph must have enough branches to fuily represent the
financial problems ol interest Particular security processes are defined by assigning
numbers to the nodes, as discussed next

Assets

An asset is defined by a cash tlow process, which in tum is defined by assigning a
cash flow (or dividend) to each node of the graph Symbolically, such a cash flow or
dividend process is represented by a series of the form § = (8y, 8, . 8y), where
each §; is the cash fow at thme + The Aow §, is, however, 1andom since it depends on
which of the gtates at time r actuaily occurs, so really §; is a symbol for all possible
values at time ¢

Associated with each asset is another process, the price process, which is denoted
by § = (Sp, St, ,S7) The price S, represents the price at which the asset would
trade after receipt of the cash flow at ¢ Again, each §; for + > 0 is random since it
depends on which node is active at time ¢

An example of an asset is a zero-coupon bond, which pays $1 at time T Thig
asset has a cash flow process that is zero at every node except those at time I', where
the value is $1 The conesponding price process decreases as one moves backward
through the graph, the actual values being 1epresentative of discount lactors

The state model can be used to represent several assets simultancously Ditlerent
assets merely correspond to different cash flow and price processes

The structure of an underlying graph requires some consideration 1t is always
safest to make this graph a full uee, with no combined nodes This will assure that
any derived quantities can also be accommodated We preter a simpler representation
with a small number ol nodes, such as a lattice; but a lattice 1epresentation that
is adequate for an asset may not be adequate for a derived quantity because that
quantity may be path dependent (An example is the value ol a lookback option
whose price depends on the maximum price that a stock attains ) This phenomenon
occwis in a graph 1epresentation of several assets as well, and hence we must watch
for path dependencies (which require that nodes be separated) In geneial, it is easiest
to assume merely that all assets are defined on a common state tree Then we never
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need to worry about possible path dependencies For computation, on the other hand,
we aggressively seek opportunities to combine nodes—perhaps discovering a lattice
iepresentation Then we struggle to keep the nodes from separating, so that we can
devise a computationaily efficient method of solution

Portfolio Strategies

Assume that there are n assets Asset { for i = 1,2, ,n has (stochastic) cash
flow process § = (5{,, 5{, \ 5?,) Asset  also has the stochastic price process §; =
(i, S{, . S';) A trading strategy is a portfolio of these assets whose composition
may depend on time and on the patticular nodes visited Corresponding to a trading
strategy, denoted by @, there is an amount 9,’ of asset { at time r, but 9,’ also may
depend on the particular state at time ¢ In other words, each o = (8!, 6{, L, 9;) is
itself a process defined on the underlying graph—the process of how much of asset /
is held

A trading strategy defines a new asset, with an associated cash Row process 87
The cash fAows ate found from the equation

13
8 = Z (@] —8))si+6] 48]

=1
where as a convention we put 67 = 0 for all { The fust term inside the summation
represents the amount of money received at time ¢ due to changing the portfolio
holdings at time r The second term is the total dividend received at time ¢ fiom the
portfolio weights at time 1 — |

As a simple example, conside: the trading policy of just buying an asset at

time ¢ = 0 for price S and holding it This will geneiate the net cash fow stream
(—8,81,8,  .81)

Arbitrage

It may be possible to find a strategy that is guaranteed to make money with no cost
Such a strategy is an arbitrage. Formally, a tading stiategy 6 is an arbitiage if 7 » 0
and §” is not identicaily zero In other words,  is an arbitrage if it generates a dividend
process that has at least one positive teim and no negative terms [t is easy to imagine
an arbitrage, since we have seen many examples in earlier chapters

Short-Term Risk-Free Rates

An asset is short-term risk free at time ¢ if its dividend at time ¢ + { is 8,44 = 1 and
zero everywhete else Its price S, at time ¢ gives the discount factor d, = S, Purchase



16 2 RISK-NEUTRAL PRICING 447

of this secutity at time ¢ yields the cash flow process (0,0, . ,-5,1,0, ,0) If
there is no such underlying asset, it may be possible to constiuct one synthetically with
a trading strategy In either case, we say that short-term risk-free borrowing exists
We define the risk-free retumn as R, .4y = 1/d,.

Suppose now that short-term risk-free borrowing exists for alt ¢, 0 <r <7
Then we define the forward return as

i

Ry = i
" didiyy di

for s >t

The variable R, is the amount to which $1 loaned at time ¢ will grow at time s
if it earns interest at the prevailing short rate each period from s to s The quantity Ry,
is, of course, random If 7 is fixed, then at time s its specific value depeuds on the node
at s It ig a conceptually attractive quantity, as we shall see, but it is computationally
unattractive It is unattractive because for s — ¢ > 1 its description can require a full
tree representation, even il the underlying short rate process is defined on a lattice,
because the overall return between two periods is path dependent (See Exercise 2)

16.2 RISK-NEUTRAL PRICING

We now turn to one of the main themes emphasized throughout the book: risk-neutial
pricing We assume throughout this section that short-term 1isk-free borrowing exists
for all periods, as described in the previous section Hence there is a short rate defined
for every node in the tree

Assume again that there are n assets defined on the underlying state process
graph From these assets, new assets can be constructed by using trading strategies
We say that risk-neutral probabilities exist if a set of risk-neutral probabilities can be
assigned to the arcs of the graph such that the price of any asset or any trading policy
satisfies

DRELEN JUNES ) (16 1
R: 141
for every t = 0,1,2, ,T — 1 and where B, denotes expectation at time ¢ with
respect to the risk-neutral probabilities

This definition applies only one period at a time, and it is expressed in a backward
fashion It gives S, as a function of the reachable values of Sy, and 8,4,

We cannot assume that risk-neutral probabilities exist for the particular set of
assets in out collection After all, the actual prices of the assets may not be related in
a systematic fashion However, as one might suspect, we can guarantee the existence
of risk-neutral probabilities when the prices of the original assets are consistent in a
way that makes arbitrage impossible This is the content of the following theorem,
which follows immediately from our earliet result in Chapter 9 on risk-neutral pticing
because the risk-neutral pricing formula (16 1) is a single-period formula
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X Existence of risk-neutral probabilities  Suppose a set of n assets is defined on a state

process Suppose that from these assets, shoit-teimn risk-free borrowing is possible ar
every time t Then there are risk-neutral probabilities such that the prices of trading
strategies with 1espect to these assets are given by the risk-neutral pricing formula

|
Sp = e By (Sp1 + 8050)
RLH*I

if and onlv if no arbitrage is possible

Proof: We already have all the elements It is clear that risk-neutral pricing
implies that no arbitrage is possible This was shown in Section 14 3 for a
short rate lattice, and the proof carries over almost exactly

It temains to be shown that i no arbitrage is possible, then there are risk-
neutral probabilities Howevet, if no arbitrage is possible over the T periods,
certainly no arbitrage is possible over the single pertod at 1, starting at a given
node It wag shown in Chapter 9 that this implies that risk-neutral probabilities
exist for the arcs emanating from that node Since this s true for ail nodes at
ail times ¢, we obtain a full set of risk-neutral probabilities B

The tisk-neutral pricing formula (16 1) can be wtitten in a nonrecursive form as

7
. 8
S,:E,( E E—) (162)
veihl TS

where now E, denotes expectation of all future quantities starting at the known state at
time ¢. This formula cxpresses S; as a discounted risk-neutral evaluation of the entire
remaining cash Alow stream It has the nice interpretation of generalizing the familiar
present value formula used for deterministic cash flow streams However, this form is
not convenient for caiculation because the quantity R,, generaily requires a ful tree
repiesentation (See Exercise 2 ) There are cascs where the result simplifies, of course,
such as when interest rates are deterministic

The preceding result is just a slight generalization of concepts developed in
earlier chapters We have aiready seen many examples of the application of the risk-
neutral pricing equation Binomial option pricing was the simplest and earliest ex-
ample More complex examples, involving interest rate derivatives, were discussed in
Chapter 14 We will look at additional examples in this chapter that exploit the general
formula, but first we need a bit more theory

16.3 OPTIMAL PRICING

According to the definition, risk-neutral probabilities exist if there is no opportunity for
arbitrage among the available assets. The theorem does not say that these piobabilities
are unique, and, in general, they are not
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If the assets span the degrees of freedom in the underlying graph, as is the case
ol two assets on a binomial attice, then the 1isk-neutial prices are unique If they do
not span, as in the case of two assets on a trinomial lattice, there will be additional
degrees of freedom, and the risk-neutral probabilities are not unique

When there are extia degrees of freedom, a specific set of 1isk-neutial probabii-
ities can be defined by intioducing a utility function U, measuring the utility of the
final wealth level, and finding the tiading policy that maximizes the expected value of
U(X7) This optimal tiading policy will imply a set of risk-neutral prices in a mannet
similar to that for the single-period case discussed in Chapter 9

We shail limit our consideration to utility functions that have a separation prop-
erty (as was done in Chapter 15) To teview, suppose that we begin with a wealth
fevel Xo After the fitst petiod, our wealth will be Xy = ag“ x Xg, where ozg" is
a random return factor that depends on the wading policy vaiables at period zero

AR . B, 0 -
Continuing in this fashion we see that X; = o° x &' x x a7y x Xo. Il we

select U(X7) = In Xy, then U(X7) = lnal' + ol +  +1naf"} +In X, Hence
we maximize Eo{U (X7)] by maximizing E, [In(ozf”)] for each r, where E, denotes
expected value as seen at time + This maximization is equivalent to maximization
ol E, [ln(oz,”’X,)] = E, [U(X,;1)] with 1espect to 8, This is the separation property
Maximization of the expected final utility is obtained by maximizing the same utility
function at each step of the process

The separation property holds for the logarithm, and it also hoids for the power
utility function U(X7) = (I1/y)X} When the separation property holds, the muiti-
period case reduces to a series of single-period probiems, all having the same form of
utility function This greatly simplifies the necessary calculations (although most of
the general conclusions hold for other utility functions)

The Single-Period Problem

Recall that there ate n assets The single-period problem at time ¢, and at a specific
node at that time, is to select atnounts 9,’ fo1 i =1,2, , 1 of the n assets, forming
a portfolio We wish to maximize the expected utility of the value of this portfolio at
1+ 1 subject to the condition that the total cost of the portfolio at time  is | Hence
we seek 9,”5 to solve

max’i]mize E, [U(X, 101 (16.3)
!
"
subject to Y _6!S; =1 (16 4)
i=1
«
PIACHER I E (165)

=1
The expectation is taken with respect to the actual probabilities of successor

nodes If there aie K such nodes, we denote these piobabilities by py, p2.. . px

Given amounts 6, i = 1,2, ,n, the value of next-period weaith X,,, depends on
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the particular successor node k that occurs. The objective function can be written as
ZL';, PeU(X a0k, where U (X,4.1)x denotes the value of U(X, ) at node k

Using the results of Chapter 9, a set of risk-neutral probabilities can be found
from the solution Specifically, the risk-neutral probabilities are

_ P U’( X;‘H)k
i) PUCR

where X is the optimal (1andom) value of next-period wealth If the utility function

U is increasing, U'(X}, ) will be positive, and hence all the gi’s will be positive

These 1isk-ncutial probabilities can be used to price any agset using the general
formula

I (16 6)

_ Ei(Ss1 + 830

5
' R:.t+l

which takes the specific form

_ Zf:i (St + 80k

N
Rl.l+l

Applications

If this method is used to find a set of risk-neuttal probabilities when there arc more
states than basic assets, the risk-neutral probabilities will depend on the choice of utility
function The vatiations in the risk-neutral probabilities will not affect the prices of the
original assets, but will lead to variations in the prices assigned to other (new) assets
The price assigned to a new asset this way ig such that an individual with the given
utility function will not choose to include that asset in the optimal portfolio (either
fong or short)

Example 16.1 (Log-optimal pricing of an option) The optimal pricing method
provides the foundation for a new lattice procedure for pricing a call option Suppose
that we plan to use moderately large period lengths in our attice, but to maintain
accuracy we decide to use a multinomial (rather than binomial) lattice We assign
(real) probabilities to the arcs of this lattice to closely mateh the actual characteristics
of the stock.

In this situation, tisk-neutral probabilities are not uniquely specified, but we can
infer one set of such probabilities by using a utility function, say, the logarithmic
utility function U(X) = In X Once the risk-neutral probabilities are found, we can
price the call option by the usual backward computational process

What does the resulting price assigned to the call option represent? It is the
price of the call that would cause someonc with a logarithmic utility to be indifferent
about including it in his or her portfolio Specificaily, this person could first form
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a log-optimal portfolio (rebalanced every period) of the stock and the risk-free asset
Then if the cail were offered at the derived price, this person would find that inclusion
of the call, either shoit or long, would not increase utility Hence it would not be
added to the portfolio In other words, the utility-based price is the price that leads to
a zero level of demand

Example 16.2 (A 5-month call) As a specific example let us consider the 5-month
call option studied in Example 123 The undeitlying stock had S(0) = $62, p = 12,
and ¢ = 20 The risk-free rate is + = 10% per annum, and the strike price of the
option is K = $60.

We use a trinomial lattice with 1-month periods To match the parameters of
the stock, we decide on the trinomial patameters 4 = 1 1, d = 1/u, and the middle
branch has a muitiplicative factor of I To find the real probabilities we must solve
the equations that correspond to: (1) having the probabilities sum to 1, (2) matching
the mean, and (3) matching the variance These equations, first given in Section 137,
are

m+p+ pa=1
upr + pr + dpy =14 Ar
W+ g+ dPpy = a*Ar (1 +pAr)

It

They have solution py = 228, p» = 632, and p3 = 140
Now that the lattice parameters are fixed, we must solve one step of the log-
optimal portfolio problem Hence we solve the problem

max E{ln[aR + (1 — &)Rol}

where R is the random return of the stock over one petiod and Ry is the tisk-ftee
return Written out in detait this is

max {pl infaeu + (I —a)Ry] + paInfo + (I — @)Ro] + p3infad + (1 —oz)Rg]}

This has optimal solution & = 505 The corresponding risk-neutral probabilities are
then readily found from (16.6) to be

4l
=Y 167
o au+ (1 —oz)R()L ( )
P2
) = e 168
o o+ (1 —Q)Ruc e 8)
¢ = —_n (169)

ad+ (- ”

where ¢ is the normalizing constant When normalized the vafues ate ¢ = 218, ¢2 =
633, and g3 = .148

With these values in hand it is possible to pioceed through the lattice in the
normal backward sofution method The results are shown in Figure 162 The price
obtained is $5 8059, which is very close to the the Black-Scholes value of $5.80
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FIGURE 16.2 Log-optimal pricing of a
9985 5-month call option using a trinomial lattice.
Stock price lattice 9077 9077 The upper lallice contains the possible stock
8252 8252 8252 prices. The lower laltice is found by risk-neutrat
7502 7502 7502 7502 valuation using inferred probabilities
6820 6820 6820 6820 6820
6200 6200 6200 6200 6200 6200
5636 5636 5636 5636 5636
5124 5124 5124 5124
4658 4658 4658

4235 4235

38 50

39 85

Log pricing lattice 3127 3077

2351 2302 2252

1651 1601 1552 1502

1043 985 927 870 820

58059 520 456 385 303 200
192 143 92 43 00

26 09 00 00

00 00 00

00 00

00

16.4 THE DOUBLE LATTICE

The staiting point for general investment analysis as presented in this chapter is a
graph that represents a fanily of asset processes How can we construct such a graph
to embody the characteristics of each asset and the relations between assets? Clearly,
this construction may be quite complex

This section shows how a graph for two 1isky assets can be constructed by com-
bining the sepatate representations for each asset Specifically, two binomial fattices
are combined to produce a double lattice that faithfully represents both assets.

Suppose that we have two assets A and B, each represented by a binomial lattice
Each has up and down factors and probabilities, but movements in the two may be
correlated A representation of one time period is shown in Figure 16.3

The combination of these two lattices is really a lattice with four branches at each
time step It is most convenient to use double indexing for this new combined lattice;
call the nodes 11, 12, 21, and 22 The first index relers to the first lattice and the second

1 FGURE163 One step of two separate lattices Their
oy movements may be correlated
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t

2 FGURE 16,4 Nodes of the comhination. There are four possible
successor nodes from the central node

to the second We define the tiansition probabilities as pyy, p12, pu, and pa, respec-
tively A pictute of the combined lattice is shown in Figure 16 4 Here the center node
is the node at an initial time, and the four outer nodes are the four possible successors

Suppose the lattice for stock A has node factors 1 and d® with probabilities
p;\ and p:,"\, respectively; and the lattice for stock B has node factors #® and d® with
probabilities p7 and pb If the covariance of the logarithm of the two retutn factors
oap is known, we may select the probabilities of the double lattice to satisty'

put+pr= Pf\

P+ pu = py

pi o+ pa = P}i

(pu = Pt PY) UNUP + (pi2 = p p7) UAD®

+(par = P2 p1) DMUP + (pra — pf p%) DAD® = op

where U = Inu®, D* =Ind?, UP = lnu®, and DB = ind®.

A special case is when the covariance is zero, corresponding to independeuce
of the two asset returns In that case it follows that the appiopiiate lattice probabilities
are piy = ppls pia = pPpds par = pi pyy and py = pfp?

Example 16.3 (Two nice stocks) Consider two stocks with identical binomial lattice
repiesentations of w = 1 3,d = 9, and p, = 6, ps = 4 Assume also that they have
a correlation coefficient of p = 3 Let us find the double lattice representation

Let Sy and S be the 1andom values of the two stocks after one period when
initiated at unity We have

E(lnSp) =E(InSp) = 6 xi3+ 4xIn9 = 11527
o? = vai(InSx) = var(in Sp) = 6(Int 3)> + 4(in 9)> — 11527% = 03245
009736

2
covap = 30~

! Summing the first two equations gives pry + pra + po + paz = p;\ + pg = 1, so the probabilities sum to
1 Also subtracting the third equation from this above equation gives pya+ pan = 1 — pI“ = pl_] Note also
that the last equation can be written ppUAUD 4 paUADR 4 py DAUB + puDADY = app + (p;\UA +
DM (PPU + p2 DY)
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Therefore we must solve

pitpn=6
pa+pn=4
pittpu =6

pin1 32+ pa(nl 3)(In 9) + par(in1 3)(In 9) + paa(in 9)?
= 009736 + (.11527)* = 023023

This has solution

puy = 432
piz = 168
pa = 168
P = 232

16.5 PRICING IN A DOUBLE LATTICE

The double lattice construction does provide a valid 1epresentation of the two assets,
but there is a problem When a risk-fiee asset is adjoined, we have four nodes, but
only rhree assets: the two risky assets and the risk-free asset There is an extra degree
of freedom Therefore the risk-neutral probabilities are not completely specified as
they are in the two original small lattices. We must find a way to pin down that extra
degree of freedom in the definition of the 1isk-neutral probabilities

One way to specify 1isk-neutral piobabilities is to introduce a utility function,
as in the previous section Different utility functions may lead to different risk-neutral
probabilities, but it turns out that under certain conditions a fourth relation holds
independently of the particular utility function

Let us introduce a utility function U. We determine the tisk-neutral probabilities
by maximizing expected utility Denote the optimal value of wealth at the next time
point, at node jj, by Xi*j; and, correspondingly, define U,.’j = U’(X;‘J) Then the 1isk-
neutial ptobabilities are, from (16 6),

_ Pij Ui'j
=52 7
Xk =i PuUy

for i, j = 1,2 If the utility function U is strictly increasing, then the risk-neutral
probabilities ate strictly positive

In certain special cases there will be a relation among the g,;’s that will supply
the additional relation necded to make them unique Two of those cases are spelled
out in the following theorem:

qij (16.10)



165 PRICING IN A DOUBLE LATTICE

Ratio theorem Suppose the q,,’s are determined by (16 10) Then the 1elation

qugn _ pupn
qogpi pop

holds if either of the following two conditions is satisfied

(a) One of the original assets appears at zero level in the optimal portfolio

(b) The time At between periods is vanishingly small

Proof: We shall prove that under either condition U{ Uy, = U[,U3; This

fact will then lead to the final conclusion

(a) Suppose that asset A has zeto level in the optimal poitfolio Then changes
in asset A do not influence U’ Hence U}, = U}, and U}, = Uj, Thete-
fore U{, U}, = U,’:,Uz’l Cleatly, the same result holds if asset B has zeto

level in the optimal portfolio

(b) Now, as a second case, assume that Az is small At the optimal pmtioho

we may wiite X;; = (R + RB + R%X,, where the tetms R}, RI

RY are the returns in the pmtioho that correspond to the 1isky asset A,
the 1isky asset B, and the risk-free asset, respectively For small At the

return over one petiod must be close to | Hence,
RFRP+RY = 142041040
= (+ A+ ha+"

where 12,79, and 1% are small This approximation cairies over to U’ as

i

well, gwlmY

UL = UTa 0+ +00%,]

i

2

U'X)+ U008 417 +19%,

124

VX + M+ Hd +y10)
where
_ UTXoX,
U'(Xy)
This product form for U;; implies that

U)I1U2Iz:U1IzU2In

Under condition (@) or (b) we have U], U, = U{,U;; We Lhen conpute

gngn _ pulUipnUs, — pupn
gugu prULpaUs,  papy
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An important special case of (he two lattice construction is where the two original
lattices are independent In that case py; = p',\pl,’, iz = /1’,\/7?, P o= pé\p,", and
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Py = p’z‘ pg It tollows by ditect substitution that
purn
P2
Then if either of the conditions of the ratio theorem fs satished,
quan _
quaqay

and from this it can be shown that the original two lattices are independent with respect
to (he risk-neutial probabilities as well as with respect to the original probabilities
That is, independence with respect to original probabilitics implies independence with
respect to risk-neutral probabilities *

Now let us retum to our otiginal problem In the double lattice we have four
successor nodes but only three assets For small At, the ratio formula gives the fourth
relation required to determine a set of four risk-neutral probabilities

An important special case of the two-lattice situation is that where one of the
lattices is a short 1ate lattice for interest rates This case can be treated by the same
technique, as illustrated by the Simplico gold mine example that follows

Example 16.4 (Double stochastic Simplico gold mine) Consider a 10-year lease
on the Simplico mine In evaluating (his lease we tecognize that the price of gold and
the interest rate are both stochastic, but we will assume that they are independent.

Recall that up to 10,000 ounces of gold can be extracted from this mine each
year at a cost of $200 per ounce Tle price of gold fs initially $400 per ounce and
fluctuates according to a binomial lattice that has an up factor of v = 1 2 and a down
factor of d = 9 The price obtained for sale of the gold produced in a year s assumed
to be the gold price at the beginning of the year, but tlie cash flow occuts at the end
of the year

In this version of the problem we assume (hat the term structure of interest
1ates fs goveined by a short rate lattice The initial short rate is 4%, and the lattice
is a simple up-down model with ¥’ =1 1 and d’ = 9 The risk-neutral probabilities
are given as .5 We shall use the small Ar approximation to asseit that the result of
the ratio theorem applies Then since the gold price fluctuations and the short rate
fluctuations are independent of each other, we conclude that the risk-neutral proba-
bilities are also independent. Hence the actual probabilities are irrelevant for pricing
purposes

We solve this problem by constructing a double lattice Each node of this lattice
tepiesents a combination (g,7) of gold price g and shott rate » Each of (hese nodes
is connected to four neighbor nodes with values (ug,u'r), (ng,d), (dg,u'1), and
(dg, d’r) The risk-neutral probabilities of these arcs are just the product of the risk-

2Briefly: Let Q be the 2 x 2 matrix with components I¢,;) Then the invariance condition says that Q is
singular. which means Q = ab” for some 2 x | vectors a, b. Normalization makes both of these vectors
have components that sum to 1; and these define the individual probabilities
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neutral probabilities for movement in the two elementary lattices For interest rates,
thesc are each 5 For gold, the probability of an up move is g, = (1 +1 —~d)/(u —d),
where ¢ is the (current) shott 1ate Hence the four piobabilities tor the double lattice,
corresponding to arcs leading to the nodes listed, are gi1 = 5qu, g1 = 5qu, g1 =
5(1 = gu), and g = 5(1 —gy)

The double lattice can be set up as a seties of 10 two-dimensional arrays Each
array comtains the possible (g, 7) pairs tor that petfod The mrays are then linked by
the risk-neutral pricing formula This formula simply multiplies the values at each ol
the four successor nodes by their risk-neutral probabilities, adds those plus the cash
flow for the end of the year, and discounts the sum using the current short rate The
values at time 10 are all zeto Figure 16 5 shows the values at the nodes for time
periods 9 and 8

The first column shows the possible g values and the fitst row shows the possible
1 values The entries in the main artays are the corresponding values (in millions of
dollars) of the lease A node in the period 8 array fs found from four nodes in the
period 9 array, as illustrated in the ligure

Working backward this way we find an mray with just one node at period zeto,

having a value ol $22 2551 million dollars

Period 9
g 00155 00189 00231 00283 00346 00423 00517 00631 00772 00943
206391 | [8355 18293 18217 18126 18016 17883 17724 17532 17304 17033
154793 [ 13274 13229 13174 13108 13029 12933 12817 12679 12514 12318
116095 ] 9463 9431 9392 9345 9288 9220 9137 9039 8921 8781
87071 | 66048 6582 6555 6523 6483 6435 6378 6309 6227 6129
653031 4461 4446 4428 4406 4379 4347 4308 4261 4206 4140
48978 | 28535 2844 2832 2818 2801 2780 2755 2726 2690 2648
36733 1648 1642 1635 1.627 1617 1605 1591 1574 1553 1529
27550 7435 0741 073820734 0730 0724 0718 0710 0701 Q690
206621 0065 0065 0065 0064 0064 0064 0063 0062 0061 0061
154 97 0 0 0 0 0 0 0 0 0 0
Period 8
g 00172 00210 00257 00314 00384 00470 00574 00702 00857 ¢
171993 1 29917 29812 29685 29531 20345 20121 28852 283529 28 144
128995 [ 21463 21390 21301 21194 21064 20907 20719 20493 20224
96746132925 15073 15013 14941 14853 14747 14619 14466 14283
72559 {21784 10336 10297 10251 10194 10126 10044 9946 9828
5442014492 6782 6760 6733 6701 6661 6613 6555 6486
40815 9058 4118 4107 4095 4080 4062 4040 4013 3980
306101 4123 2119 2118 2117 2115 2113 2110 2106 2100
22958, 1900 0620 0626 0633 0641 0651 0662 0675 0690
17219 0025 0026 0026 0027 0028 0030 0031 0033 0035

FIGURE 16 5 Arrays for two periads of the Simplico gold mine Each nade at period k has four successor nocles at

period &k + 1, as indicated by the conesponding shaded areas Values are in millions of dollars
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16.6 INVESTMENTS WITH PRIVATE UNCERTAINTY

Suppose a project requires an initial cash outlay and will produce an uncertain cash
flow at the end of one year Suppose also that the uncertainty consists of both private
uncertainty and market uncertainty Basically, market uncertainty can be replicated
with maiket participation, whereas private uncertainty cannot For example, the cash
flow of a gold mine lease depends both on the market uncertainty of gold prices and
on the private uncettainty of how much gold is in the yet unexplored veins

One way to assign a value to such a pioject is to make believe that the project
value is a price, and then set the price so that you would be indifferent between either
purchasing a small portion of the pioject or not This is termed zero-level pricing
since you will putchase the project at zero level Of course, it is assumed that you
have the option to purchase other assets, including at least a risk-free security with
total return R.

If there is only private uncettainty the zero-level price is just the discounted
expected value of the project (using actual probabilities) It cannot be priced any
lowet, for then you would want to purchase a small amount of it. Likewise, it cannot
be priced any higher, or you would want to sell (short) some of it The value is
therefoie

1
V=q¢ —E(c
<)+R (c1)

where ¢y and ¢; are the initial and final cash Nows, respectively

Notice that this is somewhat different than the formula for the price of market
assets Market assets already have prices, and you will likely want to include them in
your portfolio at a nonzero level (either long or shott)

Example 16.5 (When to cut a tree) Suppose that we can grow trees (for lumber)
The trees grow randomly, and the cash flows associated with haivest after 1 year or
after 2 years are shown by the (diagiam) tree on the left side of Figuie 16 6 Each arc
of the tree has a probability of 5 The uncertainty is private because the tree growth
depends only on local weather conditions and is not related to market variables

The initial cash flow of —1 must be paid to carry out the project The cash flow
figures shown at the end ol the period are those that will be received if the trees are cut
after 1 year Likewise, the hinal values shown aze the cash flows that will be 1eceived

30 30 FIGURE 16.6 When fo cut a tree. {a) Cash flow
generated at a node if the Irees are cut a1 that point
{b) Value a1 a node and best policy

(a) Possible cash flows (b} Values
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it the trees are not cut until after 2 years We wish to evaluate this project, assuming
that the interest rate is constant at 10% To do so we will need to determine the best
strategy for cutting the tees

We use the zero-level pricing method, and since there is more than one period,
we work backward in the usual fashion The expected value of the top two nodes at
the last time period is 26 Discounted by 10% this is a value of 236 Since this is
higher than 2 2, this is (he best value that can be attained if we arrive at the upper node
after 1 year We record Lhis optimal value on the values diagram in Figwe 16 6(b)
We also place a notation neat that node (hat we should not cut the trees if we airive
there Likewise, the expected value of the bottom two nodes at the last time period is
1 05. Discounted, 1is is 95, which is Iess than 1 0, so we would assign 1 0 at the next
backward node in the values diagiam, and place a notation there that we should cut
the trees if we arrive at that node The expected vajue of these two optimal one-period
values is 5(236 -+ | 0) = 1 68, which discounted is 1 52 IHence the overall value
is .52

General Approach

The preceding result concerning zero-level pricing of projects with private uncertainty
can be generalized to projects that are characterized as having both private unceitainty
and maiket uncertainty The piivate uncertainties include such things as unknown
production efficiency (due to new production processes), uncertainty in resources (such
as the amount of oil in an oil field), uncertainty of outcome (as in a research and
development project), and a component of the price uncertainty of commodities for
which (here is no liquid market (such as the future price of an isolated piece of land).
Market uncertainties are (hose associated with piices of traded commodities and other
assets

Formally, suppose that the states of e world are factored into two parts: a
market component and a nonmatket (private) component A general swate (or node
in the state giaph) therefore can be written as (s, s/') corresponding to the market
and nonmatket components at time ¢ For simplicity (although it is not necessary) we
assume (hat these two components are statistically independent

From a given state there are various successor states In the lattice framework
we index (he successor market states (which are nodes in the lattice) by / and the
nonmarket nodes by j The probability of the /i market node is p}* and the probability
of the jth nonmarket node is p! Since the two components are independent, the
probability of i and j together is p;, = p{’ pi We are now in the situation of a double
trce o1 double lattice

We also assume that the market poition of the system is complete in the sense
that there is a set of securities that spans all market states In this case we know that
here are unique risk-neutral probabilities g; for the market states

It the prices are such that the project itself enters the optimal porttolio at zero
level, U,‘IJ is independent of he index j, and by the ratio theorem of the previous
section, (e risk-neuual probahilities g, are independent Hence g,; has the form
qi = g/ pj, whete g}" is the risk-neutral probability for the market state, and p} is
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TABLE 16.1

Oif Production Possibifities for the Initial
5 Years of Operation (in Thousands of
Barrels per 5-Year Period).

Oil produced 0 20 40 60 100
Probability 3 2 3 1

the probability for the nonmarket state® (Which is also the risk-neutral piobability for
that state)}

Note that if there is no market component to a project, the pioject price (or value)
is determined by ils ordinaty probabilities; that is, as the discounted expected value
of its cash flows At the other extreme, if the project has no private component, ils
ptice is determined by the risk-neutral market probabilities; that is, as the discounted
risk-neutral expected value of its cash flows

Here is a comprehensive example illustrating how these ideas can be used to
evaluate a complex project. This example incorporates many of the concepts of this
book and is worthy of careful study as an integrated review

Example 16.6 (Rapido: a rapidly declining oil well} You are considering the pos-
sibility of investing in an oil well venture. If successtul, the well life is likely to be
about 25 years The geological formations and other data indicate that this might be
a favorable site Betoie any initial drilling, the best estimate of the initial flow from
the well if it is diilled is expressed as a list of possibilities and their probabilitics, as
shown in Table 16 | We shall take a petiod length of 5 years in our analysis (to keep
the problem size small enough to fit across a page) There are five possible levels of
oil flows for the fitst 5 yeats of opeiation, which are shown in the table

The initial drilling cost is $220,000 After drilling, the initial flow can be es-
timated quite accurately, and a decision is then made as to whether to complete the
well, making it ready for production The completion cost is $500,000 If the well
is completed, the oil flow will decline as the reservoir is depleted This decline can
be expressed as a tandom chance that at the end of each 5-year period the flow will
tall to the next lower category with a probability of 30% This is a very rapid 1ate of
decline for an oil well, and hence the name “Rapido ”

1t the well is operated, the 5-year operating cost is $400,000 of fixed cost plus
$5 per barrel in variable cost All oil pumped ftiom the well can be sold at the market
price for crude oil, which is currently $16 per barzel We wish to find a fair price for
this oil well venture, which has market risk associated with the future price of oil and
technical (private) risk associated with the uncertainty of oil production

The technical uncertainty regarding production possibilities is summatized by
the lattice shown in Figure 167

Next we must specify the market stiucture For simplicity, we assume that the
interest 1ate is constant at 7% per year or, equivalently, 40% for each 5-year period It

3The independence argument applies even i there are more than two states in each past of the double tree
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7 7 7 FIGURE 16.7 Technology of an oil well, There are
five passible levels of initial low, which correspond
3 3 3 1o the five nodes that are successors to the initial
node The specific successor will be determined by
7 7 7 the results of drilling Then after each subsequent
S-year period, the oil flow cither remains the same
3 3 3 (with probability 7) or decreases one level (with
5 7 7 probability 3)
3 3 3
7 7 7
3 3 3
1.0 1.0 1.0

remains to specify the relevant aspects ol the oil market For this purpose we would
fist like an estimate of the volatility of oil prices, Such an estimate can be detived
from a history of oil spot prices, but it is also possible to estimate the volatility directly
from a single day's record of option prices There are no options for spot oif, but we
can use options on oil tutures as a good substitute A fisting of these options is shown
in the left table of Figure 168

It we study the call options for August with strike prices of 1600 and 1700, we
can use the Black-Scholes formula to solve for the implied volatility and the implied
current futures price This leads to an estimate of o == 21% (see Exercise 7), and we
may assume that this is also the volatility of spot oil I we use the standard binomial
lattice approximation, we then set the up factor for oil at n = VA = 23 o 60

and the down factor d = 1/160 = 625 (It is a great suetch of imagination to
OoIlL METALS AND PETROLEUM
CRUDE OIL. (NYM) Lifevime Open
1,000 BBLS.; § PER BBL. Open High Low Setle Chg High Low Interest
Strike Calls-Settle Puts-Settle CRUDE OIL, Liglit Sweet (NYM) 1,000 bbls.: $ per bbl.

Price Jun  Hy Avg Jun Hy Aug Jun 1684 1730 1678 1729 + 43 2135 1402 124032

1600 133 12f
1650 086 086
1700 05) 058
1750 025 040
1800 011 025
1850 004 016

129
097
070
0350
034
024

004 021 042 Tuly na 1702 1660 1700 + 35 2078 (415 73360
010 036 0359 Aug nu 1690 1656 1688 + 30 2078 1435 34123

022 060 082 Sept na 168 1657 1683 + 27 2078 1450 28809

046 090 Dec 1657 1680 1635 1680 + 23 2125 1493 28690

082 125 Jun 1690 1687 1687 1696 + 18 2121 1573 17396

Dec 1718 + 16 2080 1650 10793

Estvol 3 794 Wed 18,173 calls 8,785 puts Jun 1740 1758 1740 1743 + 14 2026 1722 |4 698
+ 13 2040 1753 19072

Op intWed 211,586 cafls 170,88) puts Dec 1773

FIGURE 16.8 Quotes of oil future options and oll futures, May 6, 1994, Volatility can be estimated from option
prices Risk-neutral probabilities can be determined directly from fulures market prices Source: Wall Street Journal,

May 6, 1994
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consider Ar == 5 as “small”; however, we ale lreating this as a piototype model A
more complete model would use a smatfer Az.)

Now, usualty, the next step would be to calculate the risk-neutral probabilitics
for this lattice using the tormula ¢, = (R —d)/(u —d), giving g, = 80, but this is not
appropriate here Oil has a significant storage cost; hience replication using oil would
require paying storage costs This will change the formula for risk-neutrat probabilities
(See Section 13 9) In fact, oil is generalty not held as an investment, even though oil
storage is possible, because the expected rate of return for doing so is not high enough
to overcome thie high storage costs This tightness of the oil market is verified by the
right side of Figure 16 8, whicl shows that the prices of oit futures contracts do not
increase even as fast as the compounding of interest, as they would if markets were
not tight (See Section 103 ) Indeed, we note that increasing the settlement date by
2! years only increases the futures price by u fuctor of 17 73/17 29 = { 025 This is
equivalent to about 1% per yea

We can, however, use the futures price information to determine appropriate
risk-neutral piobabilities Given a spot piice of S, next period the price will be ei-
ther Sit or Sd according to our modet The current futures price for a contract that
expires in 5 years will be about F = 103§ Since the current value of a futures
contrict is zero, and the payoff in 5 years will be either Su — F o1 Sd — F, we must
have

0= g, S(1 6 — 1 05) + ¢gaS( 62 — 1.05)
This yietds
Gu = 44, ga = 56.

These are the values that we can use for the risk-neutral probabilities tor oil piice
states

We are now ready to carry out the backward recuision to determine the zero-
levet piice of the oil venture At the final period, from ¢ = 20 to t = 25, there
are 25 possible states, coiresponding to five oit flow components and five oil price
components at that time We think of these as being fatd out in a 5 by 5 array
At the previous period there are the sume five oil flow components and four off
price components, forming a 5 by 4 rectangle This pattern progresses backward
to period zero, just after completion of the well, where theie is a 5 by | rectan-
gle of states Then, also at year 0, but before initiat diifling, theie is only a single
node

All of this is shown in Figure 169 To construct this figure the possible oil piices
were [irst generated with a binomial lattice in the usual fashion, and these prices were
taid out acioss the top row of the array according to the year in which they may occur
The possible flows were faid out down the fast column of the anay

The backward calculation is a straightforward discounted expectation of cash
flow and value We assume for simplicity that all cash flow in a 5-year period occurs
at the beginning of that period Note that the final array consists only of profits from
production in the last petiod Earlier periods add curtent profit to a discounted 1isk-
neutral expected value of the next petiod's value For example, the top right-hand



16,7 BUYING PRICE ANALYSIS 463

1=0 te=35 == 10 1 15 o 20
Price 6 0 256 [ 625 16 41| 391 0 25.6 655 | 244 623 16 4 105 | Flow
1938 517 3994 | 67 1523 6713 {1 0 279 2756 9395 0 0 T00 3196 95861 100
860 167 2061 142 651 37351 0 61 1398 5418 0 0 260 1758 5591 60
288 469 1000 194 203 2085 | 0 88 694 3292 0 0 40 1038 3594 40
Toral 38 398 153 0 81 GIB | 0 0 822 1251 0 1] 0 319 13597 20
37 0 0 0 0 0 010 0 0 0 i 0 0 0 0 0

FIGURE 16.9 Rapido oil well evaluation. The possible oil prices shown in the second row were generated by a
binomial latiice, so the number of entries increases by one each period There are five oil-flow possibilities each
period Backward evaluation is straightforward, once the proper risk-neutral probabilities are determined

comner elenient in the array at ¢ == 15 is

1
v = flow x oil price — cost+ 7 (risk-ueutral vajue ot next period)

= 100 x 6554005 x lOO+|—'-J—(44x 7 % 9586 + 44 x 3 x 5591
+56 % 7x3196+.56 x 3 x 1758)

== 9395 (accounting for rounding etrors).

The ovetall zero-level price accounts for the option to either complete the well or not
The zero-level price is $31,700 Note how this rather complex problem is solved by
a simple spteadsheet analysis—an analysis which, however, embodies a good deal of
theoty

16.7 BUYING PRICE ANALYSIS

Frequently project opportunities arise in which investment must be either at a fixed
positive level o1 at zero level, with nothing in between An example is the opportunity
to participate in a joint venture where each participant must subscribe to a fixed
fraction of the project Another is the prospect of taking on a project alone, such as
the purchase of investment real estate In such situations the zero-level price may not
be the appropriate value, since the cash outlay required may represent a significant
portion of one's investment capital

A better concept of value in such situations is the buying price. The buying price
is defined as the piice that the investor would be willing to pay for participation in
the project at the specified tevel This price vy is best undeistood in terms of expected
utitity We first calculate the expected utitity that would be achieved without participa-
tion in the project Then we calculate the expected utility that would be achieved with
participation, including an additionat initial payment of an amount vy The vatue of vy
that makes these two expected utility values equal is the buying price. In other words,
if v is the price to be paid for the project, the investor is indifferent between having
the project or not This price is different than the zero-level price, which makes the
investor indifferent between no participalion and participation at a very small level
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Certainty Equivalent and Exponential Utility

The buying price of a project can be computed easily if it is assumed that the investor’s
utility function is of exponential form, U (x) == —e™"" for some @ > 0 The computing
procedure uses certainty equivalents rather than expected values

Let us briefly review the certainty equivalent concept Suppose (hat an investor
has a utility function U Suppose that X is a random variable describing the investor’s
wealth at the terminal point. Then the expected ulility of this wealth is E[U(X)] The
certainty equivalent is the (nonrandom) amount X such that U®) = E[U(X)]. We
often write CE(X) for the certainty equivalent of X

As a specific case suppose that [/(X) = —e~“¥ and suppose that the random
variable X has two possible outcomes X; and X» occurring with probabilities p; and
pa. respectively The expected utility is

ElUCO] = prU(X1) + paU(Xa) = ~pre™ %1 — ppe¥z
To find the certainty equivalent ¥ we solve
e tiX

¢ - ple—uh + p?L’—’A‘Y:

Taking the logaiithm of both sides, we obtain
1 ’
CE(X) = ¥ = ——In{p1e™ 4 pre™® ). (16 11)
a

This may look complicated, but it has a very spectal and important property

The special property of this form is that if a constant, say A, is added to a random
variable, the certainty equivalent incieases by this same constant This property is often
1eferred to as the delta property. Formally,

CE(X + A) = CE(X) + A

for any random vaiiable X and any constant A This property can be checked easily
for the two-outcome case by referencing (16 11)
Here is a general proof for exponential utility We have

E (e70X) = ¢ CE0
Therefose,
E[E_u(XH\)] = BB (pm0Y) gm0 aCE)  alCE(X ]
This says that
CE(X +A)=CE(X)+ A
This delta property only holds for utility functions that are exponential or linear
Delta property A utility function is linear or exponential if and only if fot all random
variables X and all constants A, the certainty equivalent satisfies

CE(X+A)=CE(X)+A.
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€y FIGURE 16.10 Simple project. This project has initial cash flow ¢y, followed
P at the end of the period by a cash flow of value either ¢; or 3

Co

Sequential Calculation of CE

Consider a one-period project having an initial known cash flow ¢ followed at the
end of the period by a random cash flow that takes one of the values ¢; o1 ¢» with
probabilities p; and pa, respectively There is also a risk-free asset with return R This
project is illusirated in Figure 16 10.

Assume that the investor has initial wealth X and uses an exponential utility on
final wealth Risk-free borrowing or lending is used to transfer any cash flow at the
initial time to a cash flow at the final time If the pioject is not taken, then the final
utility value will be U(R Xg) since the initial wealth is tiansformed by the risk-free
return

If the project is taken at a price vy, the expected utility of final wealth will be

prU{ler + R(Xg + co — vo)l} + paU{lea + R(Xo + o — vo) ]}

When the price vy is set correctly, the expected utility with the project will equal the
value without the project; namely, U (R X;). Setting the certainty equivalents of these
two equal to each other, we obtain*

CEler + R(xo + co = vp), c2 + R(xo + co ~ vp)] = RXg

Note that both tetms on the left contain R(Xg + co — vg) This is a constant, and by
the delta property it can be taken out of the CE expression We thercfore obtain

CEfet, ¢} 4+ R(Xo +co ~ vo) = RXo
Solving for vg, we obtain an expression for the buying price,
i
ug =CO+ECE[cl,L‘g] (16 12)

Note that this equation looks just like a net present value formula The certainty
equivalent is used to summarize the cash flow at the end of the period

Multiperiod Case

The preceding technique extends to cash flow processes defined over several periods,
but the 1isk aversion coefficient of the utility function must be adjusted each period

4As a shorthand notationr if ¢y and ca are cash flows in two final states, we write CEfcy,¢a] for the
corresponding certainty equivaient
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€3 FIGURE 16.11 Two-period project. The buying price can
be found by evaluating the certainty equivalent by a back-
ward process

Specifically, the risk aversion coefficient used to evaluate the certainty equivalent at
time t must be aRT™ instead of the original a. This reflects the fact that the effective
utility function for money X received at time ¢ is I/ (R7 ™ X) rather than I/ (X) because
X will be transformed to R7~'X at time T.

As an example of the full calculation, consider the two-period project shown in
Figure 16 11 To evaluate this project we work backward in the usual fashion. First
we calculate vy at the node where ¢; occurs by using the formula for the one-period
case; namely, vy == ¢y + (1/R)CEa[c3, ¢4}, where the subscript on CE denotes that the
appropriate tisk aversion coefficient at ¢ = 2 (which is a) is used Next vy is computed
at the ¢» node in an analogous fashion as vy = ¢; + (1/R)CEs[cs, cg} Finally, we find

i
v = o + 7 CEilur, val. (16 13)

This final certainty equivalent is computed with the risk aversion coefficient magni-
fied by one period of interest, and with the probabilities p; and p, for vy and va,
1espectively

Example 16.7 (When to cut a tree) Consider again the tree-cutting example treated
in the last section, but this time suppose that we are planning to puichase this project
ourselves We must buy the full project o1 none ot it The project cash flow possibilities
are shown in Figure 16 12(a) Recall that the figures at the intermediate nodes are the
cash flows that would be attained if the trees wete cut there and the process terminated
Also, all arcs have probability .5

30 30 FIGURE 16.12 Buying price for tree farm. (a)
29 23 Cash flow generated at a node if the trees are cut
> at that paint (b) Ceniainty equivalent at a nade and
best poli
22 Cut 27 PO
-10 10
i Cut
10 10
10 10

(a) Possible cash flows (b) Buying prices
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Assume that our utility function is U/(x) == —e~*' and the interest rate is 0%
per year, as in the earlier exampie The first step is to calculate the certainty equivalent
of the last two upper nodes This certainty equivalent is

-% In[ 5¢=3*3% 4 5p 22 0 4

When discounted one petiod, this becomes 2 18 Since this is less than the 2 2 value
that would be achieved by cutting the trees at that point, we decide to cut, and we
assign the buying price of 2.2 to that node. The node below that also retains the value
of 10, since it is clear that the discounted certainty equivalent of the lower last phase
is less than 1

Finally, we calculate the buying price at the first node. To calculate the certainty
equivalent, we must change the iisk aversion coefficient from a to aR, or in this
case from 3 10 33 Accordingly, the pioper utility function for this period is U (x) =
—e~33% Hence the certainty equivalent of the middie two nodes is

-%ln[ 5734 570 1 0

Discounting this and accounting for the original cash flow, we find vg = 10 This is
quite a bit lower than the zero-level price of .52 found in the last section The price
must be Jower to induce us to purchase the entire project rather than just a small
fraction of it

General Approach

Suppose now that states of the world can be factoted into independent market and
nonmarket compouents A general state at time ¢ is wiritten as in the last section as
(s, 5}"), corresponding to the market and nonmarket components We also assume
that the market portion of the system is complete; that is, there is a coniplete set of
assets that span all dimensions of the market. In that casc we know that there are
unique risk-neutsal probabilities ¢; for the market states

We assume that the investor has an exponential utility function for final wealth
The project has cash flows specified at ecach node

To find the buying price, we proceed recussively, starting at the final time At
the final time the buying price at any node is equal to the cash flow at that node. At
any other (previous) node (5%, 5/') of the backward process, two calculation steps are
required First, for each fixed market successor i, we compute the certainty equivalent
with respect to the nonmarket components j That is, we find the certainty equivalent
CE; such that U(RT™'CEy) = }_; pfU(R"~v;), where v;; is the buying price of the
successor node ij. Then we find the new buying price from

1
U;" "o L;" ny E Z g, CE;
i

In other woids, we use certainty equivalent calculation on the nommarket component
and risk-neutral pricing on the market coniponent
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Example 16.8 (Rapido oil well) We can analyze the Rapido oil well using a certainty
equivalent analysis Only a few modifications to the earlier zero-level price analysis are
requited We assume that a single investor is planning to finance the entire project
This investor has a utility function U(X) = —e ¥/1000 where X is in thousandg
of dollars This is realistic for an investor having a net worth of about $10 million
(20 years from now)

In order to find the buying price, we simply change the tisk-neutral discounting
formula to one that is a mixture of risk-neutral pricing of the market state (the oil
price) and a certainty equivalent of the technical factors (the flow level) We must
remember to update the effective utility function by the factor of R = 14 in the
exponent each period The results are shown in Figure 1613

The fnal array, at ¢ == 20, is identical to that of the earlier example, since that
array contains final cash flows The upper right-hand corner element of the array at
t =15 is evaluated as

v = flow x oil price — cost

+_11€ [9.CE(9586, 5591) 4 q4CE(3196, 1758)]

We have

CE (9586, 5591) = ~10, 000 x In{ 7¢7 %96 4 307 3¥1] = g2]1
CE (3196, 1758) = —10,000 x In{ 7e7 3% 4 307 7% = 2742
Then using ¢, = 44, and g4 = 56 from the earlier example, we obtain

44 x 8211 4 .56 x 2742
14

[
i

100 x 65 5 — 400 — 5 100 4
9331

Note that the initial buying price is negative, which indicates that the project
is too big for this investor to take on alone It is a good project, as shown by the
zero-level analysis, but only when a smaller share is taken or a smaller risk aversion
coefficient is used

t=0 f== 5 =10 fe= 15 =120
Price t6 HY 2356 6.25 t6 4§30t t0 256 655 1 244 625 16 a1 (05 | Flow
1.900 512 3.926 | 668 (514 6624 | 0 278 2748 9.33t 0 4 700 3.496 9.586 | 100
89 165 2041 47 649 3710 | 0 608 1,396 5402 [ [ 260 1.758 5.591 &0
281 467 985 (21 201 2063 | 0 879 62 3.276 o 0 40 tO3R 3594 40
Totat M5 398 150 4 81 610 | 0 o 819 a2 4 0 0 309 1597 20
~5 o o 0 1] o cio 1] o ¢ |o o o 4 0 0

FIGURE 16 13 Certainty equivalent analysis of Rapido oil well. A complex problem is treated by a single spreadshest
model Vertical pairs are combined by certainty equivalents, and horizontal pairs of these are combined by risk-neutral
probabtlitics
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16.8 CONTINUOUS-TIME EVALUATION™

N

The principles of evaluation discussed in this chapter can be applied to problems
formulated in continuous time as well a5 in discrete time The evaluation equations are
more compact and the results are neater in continuous time However, inplementation
in a form for actual computation is likely to involve approximation The underlying
framework is analogous to the description of an underlying state graph used in discrete
time, as described in Section 16 [, but involves rather advanced probability theory
With only a slight loss of rigor we can present the main results

The Risk-Neutral World

As a simple case consider a single stock whose price is governed by the Ito equation
dS = (S, )dr +0(S, Hdz

where z is a standardized Wiener process Suppose also that there is a constant interest
rate 7 To price a security that is a derivative of the stock price it is useful 1o have the
risk-neutral probability structure. This is given by

dS =15 dt + (S, 1)d?

where Z is again a standardized Wiener process In other words, we just change the
factor (S, 1) to + S This result was proved for the case a(S, 1) = ¢ in Section 13 4

This single-asset result extends nicely to the case of several asset price processes
For notational simplicity we state the result for just two underlying assets

General risk-neutral world result  Suppose two assets have prices Sy and Sz governed
by
dSy = py(Sy, 82, 1) dr + o1 (Sy, 52, 1) dzy + 012(Sy, $2,1) d2 (16.14)
dSy = pa(Si, S, 1) dt + i (S1, 2, 1) dzy 4+ 00(S1, Sa,t)dz (16 15)

where 2y and 23 are independent standar dized Wiener processes Suppose the 1isk-free
rate is 1 Then the risk-neatral world generated by these assets is defined by

dSy = 18ydr + 031 (Sy, S2.1) i + 012(Sy, S, 1)dE (16 16)
dSy = 1 Sadt 4+ 03 (Si, S2, 1) dE + 02a(S1, Sa, 1) d%, (1617)

whete again 2y and 2 are independent standardized Wiener processes

Suppose that § is the price of any derivative of the nwo assets; and suppose that
this derivative has cash flow process 8(8y, Sa, t) and final value S(Sy, Sa, T') Then the
price of the derivative asset at any timet < T is

7
NOES |:/ TSy, S, u) die e IUS(S, S, 7)]
I}

wheie B, denotes expectation with 1espect to the tisk-uentral wotld as seen at time 1
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Proof: In essence, this result says that S(t) is equal to the discounted risk-
neutral expected value of all future cash flows. It is a powerful result because
(in its generalization to n underlying assets) it applies broadly to any set
of underlying securities It is a general pricing result in the continuous-time
framework

The result can be inferred directly from the resulis concerning double
lattices Roughly, the proof is this: If o112 and oy are both zero, the two
original processes are independent Then we know (by taking Ar — 0 in a
double lattice) that the resulting risk-neutral processes are also independent
Hence we just apply the result for a single process twice If oyy = 031 are
not zero, then a linear change of variables can be found so that the two
new processes, say S; and 8%, are independent We apply the result to these
two independent piocesses The drift coefficient for both of these will be »
in the risk-neutral world Then we tansform back to the original variables
These original variables will also have drift coefficient 1 because both of the
transformed variables have this coefficient B

In other words, as in the case of a single security, we just change the drift terms
from ;(S1, S2,1) to 1S; The result generalizes in the obvious way to many assets

Interest Rate Processes

The preceding result can be extended to the case where interest 1ates are themselves
stochastic Suppose, in particular, that pricing of interest rate derivatives is based on
the risk-neutial short rate process

dr = (1, 0)dt +0(,1)dZg (16 18)

where %o is a standardized Wiener process, which is independent of the processes
in (16 14) Then the risk-neutral world is found by simply appending (16 18) to the
system (16 16) using the process 7 as the interest rate in the security price equations

For a security that is derivative to Sy, S2, and r the pricing equation is as follows:

General pricing equation A deiivative secm ity with cash flow process 8 and final
value S(T) has a value deteimined by the risk-neutral pricing equation

7 s 7
Sty = E, {/ exp |:/ -1 (u)du:l §ds +exp |:/ -1 (u)du:I S(S1, Sa, T)]

Example 16.9 (The Continuco gold mine) The Continuco gold mine is operated
continuously It can extract gold at a rate of up to 10,000 ounces per year with an
operating cost of $200 per ounce The price of gold is governed by the standard
geometric Brownian motion process

dg = ldgdr + 25gdz
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with initial value go = $400 Interest rates are determined by a 1isk-neutral piocess
for the short 1ate, which has the Ho-Lee form

dr = 005dr + 01dz

with initial value 1 = 04 Interest rate fluctuations are independent of gold price
fluctuations What is the value of a 10-year lease of the Continuco mine?

One way to solve this problem is by simulation, using the processes of the
risk-neutral world We would simulate the equations

dg = 1gdr + 25gd2

d 005dt + 01 d2g

i

with gy = 400 and 1y = 04, using two independent random number generators for
AZ and AZg

After a forwaid 1un of a particular simulation, the corresponding cash flow
stream is evaluated by a backvard simulation (which, howevei, is not stochastic) The
appropriate backwaid simulation is

dS§ =1 8dt —cdt (16 19)
with §(7) == 0 The cash flow ¢ is
¢ == max (g ~ 200, 0) x 10,000

The differential equation (16.19) is solved backward using the time paths of g and s
found in the forward simulation run The value of §(0) obtained is one estimate of
the value of the mine A good overall estimate of the value is obtained by averaging
many particulat values found on different runs

Note that the simulation equation (16 19) is equivalent to

1 .
S(t) = / exp </ -1y du) cds
I3 14

Another way to solve the problem is to set up a lattice and use backward risk-
neutral valuation (See Exercise 10)

16.9 SUMMARY

Evaluation of an investment oppottunity reduces to the evaluation of its cash flow
streatn, but account must be made of the impact of this stream on an overall optimal
portfolio As a first step of analysis, a model of the cash flow process of the investment
and its 1elation to other relevant assets must be developed One general model is a
graph with a number of states (o1 nodes) at each time point There must be enough
nodes to represent all important states

Once this graph is established, it is possible to determine an optimal portfolio,
which maximizes the expected utility of final wealth This optimai portfolio implies
a set of risk-neutral probabilities that can be used to value a new asset whose cash
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flow stream can be represented within the same graph The price obtained this way
is the piice at which an investor with the given utility function would be indifferent
between including the asset or not. It is a zero-level price

The construction of a graph to represent a group of assets can be a chattenge
One approach is to start with binomiat lattice representations of each assct separatety,
and combine them into a double, triple, or multilattice in such a way as to capture the
covariance stiucture of the assets. This method is straightforward and has some useful
theoretical properties, but it can lead to high-dimensionat structures. At every period,
the combined lattice will have more states than there are securities, so risk-neuiral
probabilities are generally not unique Those probabilities are unique, however, il At
is small Once the risk-neutral probabilities are determined, the price of a security can
be found by the backward process of discounted risk-neutral valuation

Private uncertainty is treated differently from market uncertainty because there
are no associated market prices Usually this means that the actuat private probabilities
should be used just like risk-neutial probabilities to determine the zevo-tevel price of
an asset.

The buying price of a project or asset is the price that an investor would pay
to accept the project or asset in full (o1 a specified portion of it) This price depends
on the investor’s utility function and is usualty lower than the zero-level price If the
utility function for final wealth is exponential, a backward evatuation process can be
used to find the buying price This procedure uses certainty equivalents to evaluate
private uncertainty and risk-neutial prices to evaluate matket uncertainties This is
because the private uncertainty cannot be hedged, but the market uncertainty can

Atlmost alt of these valuation ideas can be applied to continuous-time models, and
the formulation is more compact However, computational techniques usually invotve
approximation by discrete-time modets

1. (A siue iree) A cenainn underiying staie graph is a tree where each node has three succes-
sor nodes, indexed @, &, ¢ There are two assets defined on ihis iree which pay no dividends
except ai the yerminal time 7 At a certain period 1 is known tha the prices of the 1wo
assets are mubiiplied by faciors, depending on the successor node These faciors are shown
in Table 16 2

TABLE 16.2
a b ¢
Security I 12 10 08
2 12 13 14

(a) Is there u short-lerm riskless assei {or ihis period?
(b) 1s i1 possible 10 consiruct an arbitrage?
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2. (Node separation) Consider a short iaie binomial fantice where the risk-free rale at r = 0
is 10% At =1 the rate is either 109 (for the upper node} or 09 (for the lower node)
Trace out the growth of %1 invesied risk free a1+ = 0 and rolled over a1 ¢ = 1 for one
more period The values obtained a1 ¢ = | and ¢ = 2 correspond to Ry; and Ry; Show thay
these faciors cannoi be represenied on a binomial laitice, but rather a full wee is required
Draw the iree

3. (Bond valumion) Assuming ihe shori rae process of Exercise 2 and risk-neusral proba-
bitities of 5, consider a zerg-coupon bond that pays $1 at time ¢ = 2 Find the value ai
time ¢ = 0 of this bond in two ways:

() Using the short rae lattice and equation (16 1)
(») Using the iree for R, and equation (16 2)

4. (Optimal option valuation®) Find 1he values of the 5-mont call opiion of Example 162
using the same irfnomial Iatiice used in thar example bui employing ihe utility function
U(x) =/~ What is o?

n

(Gold carrelation)  Suppose 1hat in the double siochasiic Simplico gold mine example 1he
real probability of an up move in gold is 6 and the real probability of an up move in the
short rate is 7 Suppose also 1hat gold price and shori rate fluctuaiions have a correlation
coefficient of — 4 Find the appropriaie ¢,,'s

B

{Complexico minc®) Use the informmion abouy the Complexico niine of Example 12 8,
Chapier 12, but assume that gold prices and interest raies are governed by the models of
Example 164 Find ihe value of the Complexico lease

h

(Simultaneous solution)  Caleulae 1he volatility and the current price of oil futures implied
by the calt 1600 August and the call 1700 August of Figure 16 8 by using the Black—Schales
fornwia with 7 = 25

™

. (Defauli risk®) A compuny issues a 10% coupon bond thar majures in 5 years However,
this company is in wouble, and #1 is estimated thay each year there is a probability of |
thar it witl defaul that year (Once it defaulis, no [urther coupons or principal are paid )
What is the value ol the bond?

{a) Assume the term siructure of finerest is flay at 10%

(b) Assume that the shori rate is curremlty 10% and ihe the shori rase is niultiplied by chiher
12 or 9 each year with risk-neutral probabilities of 5 Defauls risk is independeni of
the interest raie

9. (Aulomobile choice) Mr Smith wants to buy a car and is deciding between brands A
and B Car A cosis $20,000, and Mr Sniith estimates that o the rase he drives he will sell
it afier 2 years and buy another of the same type for ihe same price The resale price will
be either $10,000 or $5,000, each with probability 5, at the end of each 2-year period
Car B cosis $35,000 and will be sold atier 4 years with au estimaied resale price of either
$12,000 or $8,000, each with probability 5 The yearly maienance costs of the 1wo cars
are constant each year and identicat for the two cars Mr Smith has an exponential wility
function with risk aversion coefficient of ubout @ = 1/51, 000 now Real interest is constant
at 5% Which car should he decide is beuter from an economic perspective over a 4-year
period, and what is ilic certainty equivalent of the difterence?
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10. (Continuco imine simulation®) Evaluate ihe Continuco gold mine lease by simulation,
using Ar = 25

11. (Gavin’s final) Mr Jones was considering a new grapefruit venture that would generate a
random sequence of yearly cash flows He asked his son, Gavin, “People tell me 1 should
use a cost of capital figure 10 discount the stream They say it's based on the CAPM Have
you given up on that? T haven’y heard you talk abow it for awhile ”

Gavin replied, “Special conditions are required to justify it for more than one period
We had a complicated final exam question on i1 ”

Consider a two year model The risk-free rate for each is ¢+ The (random) rales of
return for the Markowitz portfolio in the two years are ¢ and ¢, respectively, and they
are independeny There is a single random cash flow x, at the end of the second year
Denote by xay and vy the random variable x, given the informiuion at times zero and
one, respectively, and let Eq and E; denote expectation a1 times zero and one Likewise
let ¥y and V; denote the value at time zero and one, respectively, of receiving x, at
iime 2 Assume that Eq{E; [x2;]} = Eg[xap] and that covixay,/ Vy, 1] is independent of the
information received at time one Show that the value aj 1ime zero of receiving x, at time 2
is

Eq[xa0]
4t + 80 =0l 41 +B:(Fa— 1))

Vo=

where

By = cov[Vi/ Va, 1i1/a},
Find V; and B,

Much of the material in this chapter is relatively new The overall siruciure of multiperiod
invesimenis is presented comprehensively in Duffie [{] Construction of mubltivarfable Iattices
has been approached in several ways See for example [2-3] The theory here was presenied
in [4] The buying price analysis is adapied fiom Smith and Nau {5}
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Review of Financial Suudies, 3, 523~546
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5 Smith, T E, and R F Nau (1995), “Valuing Risky Projects: Optien Piicing Theoty and
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Appendix A
BASIC PROBABILITY THEORY

A.1 GENERAL CONCEPTS

As discussed in Chapter 6, & random variable x is described by its probability density
function. If v cau take on only a finite number of values, say, vi, ¥a, , vu, then
the density function gives the probability of each of those outcome values We may
express the probability density function as p(£), and it has nonzero values only at
values of £ equal to vy, X2, . , X, Specifically,
p(v,) = prob(y;);

that is, p(x;) is the probability that .v takes on the value v, We always have p(£) = 0
for all ¥ Also, 3, p(v,) = |

If the random variable v cun take on a continuum of values, such as all real
numbers, then the probability density function p(£) is also defined for all these values
The interpretation in this case is, roughly, that

p(E)dE = prob(§ < x < § +df)
The probability distribution ol the random variable v is the function F(£)
defined as
F(§) = prob(x < §)

It follows that F(~00) =0 and F(00) == | In the case of a continuum of values, if
F is differentiable at &, then d F (§)/dE = p(&)

Two random variables v and y aie desciibed by their joint probability density
or joint probability distribution. The joint distribution is the function F defined as

F(E,m) = prob(x <&, v =)

The joint density is defined in terms of derivatives, or if there are only « finite number
of possible outcomes, the joint density at a pair v;, v; is p(x;, y;) equal to the proba-
bility of that pair occurring In general, n random variables are defined by their joint
probability distribution defined with respect to » variables.

475
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From a joint distribution the distribution of any one of the random variables
can be easily recovered For example, given the distribution F(&,7) of v and y, the
distribution of  is

Fo(§) = F(§,00)

The random variables x and y are independent if the density function factors
into the form

p&,m = p&)ps(n)

This is the case for the pair of random variables defined as the outcomes on two fair

tosses of a die For example, the probability of obtaining the pair (3, 5) is é b é

The expected value of a random variable v with density function p is

E(x) = / £ pl€)dt

If B(x) is denoted by ¥, the variance of x is

var(x) = / (¢ ~7)p&)de

Likewise the covariance of x and y is

cov(x, y) = / / &~ —F)p&, ndédy

It is easy to show that if x and v are independent, then they have zero covariance

A.2 NORMAL RANDOM VARIABLES

A random variable x is said to be normal or Gaussian if its probability density
function is of the form

1 3 2
o Ty

1
p&) = NP

In this case the expected value of v is ¥ = p and the variance of x is ¢® This density
function is the characteristic “bell-shaped” curve, illustrated in Figure A |

A normal random vaiiable is normalized or standard if ¥ = 0 and ¢” = |
Thus a standard normal randont variable has the density function (wtitten in terms of
the variable 1)

-ty

e

1

plx) =

V2
The corresponding standard distribution is denoted by N and given by the expression

1 Yo
NGy = — et dE
V2T oo

There is no analytic expression for N (x), but because of its importance, tables of its
values and analytic approximations are available
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FIGURE A1 Normal distribution. The expected value is u
and the variance is a2

L L i {

=30 p~20 p-a " p+o p+20 430

To woik with more than one normal 1andom variable it is convenient to use
matrix notation We let x = (v, va, ,X,) be a vector of n random variabtes The
cxpected value of this vector is the vector X, whose components are the expected
values of the components of x The covariance matrix associated with x is the 51 x n
matrix Q with components [Q),, = cov(x,, v,) H x is regaided as a column vector
and x7 is the corresponding row vector, then Q can be expressed as

Q=E[x~Hx~D7]
Il the 1 variables are jointly normal, the distribution of x is

I e OV (XX
PO = g
If two jointly normal random variables are uncorrelated, then it is easy to see
that the joint density function factors into a product of densities for the two separate
variables Hence if two jointly normat random variables are uncorrelated, they are
independent
A most important property of jointly normal random variables is the summation
property Specifically, if' v and y are jointly normal, then all 1andoms variubles of the
form ax + By, wherc @ and g are constants, are also normal This result is easily
extended to higher order sums In fact if x is a column vector of jointty normal random
variabtes and T is an s x n matrix, then the vector Tx is an m-dimensional vector of
jointty nornial random variables

A.3 LOGNORMAL RANDOM VARIABLES

A random variable £ is lognormal it the randont variable Inz is normal Equivalently,
if v is normal, then z = e* is lognormal In concrete terms this means that the density

[unction {o1 z has the form
— A (ng-ny
e 2

p&) = s
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We have the following values:

E(z2) = "t (A D)
E(Inz) = v (A.2)
var(z) = e (¢ — 1) (A3)

vai(lnz) = o’ (A4)

It follows {rom the summation result for jointly normal random variables that
products and poweis of jointly lognormal variables are again lognormal Foi example,
il # and v are lognormal, then z = ¥*v# is also lognormal
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CALCULUS AND OPTIMIZATION

his appendix reviews (e essential elements of calculus and optimization math-
ematics used in the text.

B.1 FUNCTIONS

A function assigns a value that depends on its independent variables Usually a function
is denoted by a single letter, such as f If the value of f depends on a single variable
v, the corresponding function value is denoted by f(x) An example is the function
f(x) = x> —3x We can evaluate this function at ¥ =2 a5 f(2) =27~ 3 x 2 = —2
Although a function is most properly called by its name, such as f, it is sometimes
convenient, and quite common, to refer to f(x) as a function, even though f(x) really
is the value of f at v

A function may be defined only for certain numerical values In many cases, fo1
example, a function is defined only for integer values, in which case the independent
vaiiable is usually denoted by 4, j, k, m, o1 1 An example is the function d(n) =
1/(1 + 1)", which is the discount function

Functions of several variables are also important For example, a function g may
depend on two variables x and y, in which case the value of g at v and v is g(x, v)
An example is g(x, y) = X4 3y — 2

Certain types of functions are commonly used in investment science These
include:

1. Exponential functions An exponential function is a function of a single variable
of the form
F) = ac™

where @, b, and ¢ are constants. Veiy often the constant ¢ is ¢ = 2 7)82818 |
the base of the natuial logarithm

The exponential function also arises when the variable is restricted to be an
integer, such as the function k(») = (1 +)", which shows how capital grows under
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compound intetest In this case the function is said to exhibit geometric growth, o1
to be a geometric growth function

. Logaritbmic functions The naturat logaiithm is the function denoted by In, which

satisfies the relation

eln o) . ¥

Some important values are tn(1) = 0, In(e) = I, and n(0) = ~o0

. Linear functions A linear {unction of a singte variable x has the form f(x) = ax,

where a is a constant A function f of several variables xq, x3, , v, is linear if
it has the form

flx,xa, L x)=ax+axn+ - +an,

for some constants ay, az, s

. Inverse functions A function f has an inverse function g if for every x therc

holds g(f (x)) = x. Often the inverse function is denoted by f~!

As an example consider the function f (x) = ¥? This function has the inverse
Ny = VY. Clearly FHF)) = +/¥2 = x As another example, il f is the
logarithmic function f(x) = In(x), then the inverse function is f”‘(y) ¥
because e == ¢ It is also true that il g is the inverse of f, then f is the inverse
of g Foi example, we know that In(e*) = v

. Vector notation When working with several variables it is convenient to regard

them as a vector and write, for example, x = (x;,x2, . ,.x,) We then write the
value of a function of these variables as f(x).

B.2 DIFFERENTIAL CALCULUS

It is assumed that the reader is familiar with differential calculus We shall review a
certain number of concepts that are used in the text

L

2.

Limits Differential calculus is based on the notion of a limit of a function If the
function value f(x) approaches the value L as x approaches vy, we write
= lim f(x).
e

An example is im0 1 /v =0
Derivatives Given a function £, the derivative of f at x is

df(x) . flex+ Ax) ~ f(x)

e 225 [ S

dx Av—D Ax

Sometimes we write f'(x) for the derivative of f at x It is important to know
these common derivatives:
(a) If 7(x) = x", then f'(x) = nx""!
(b) I f(x) = €™, then f'(x) = ae""
(¢) 0 f(a) ==In(x), then f'(x) = 1/x
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3. Higher order derivatives Highe:r order derivatives are formed by taking deriva-
tives of derivatives For example, the second derivative of f is the derivative of
the function f’ We denote the nth derivative of f by d" f/dx" In the special case
of the second derivative we often use the alternative notation f"

As an example, consider the function f(v) = In(x) The fust derivative is
£(x) = 1/x; the second derivative is f”(x) = —1/x?

. Partial derivatives A function of severat variables can be difterentiated paitialty

with respect to each of its arguments We define
n S, Lnt A L, LX) (L X, LX)

3f (i X v _ tir
av, Av—0 Ax

=

Foi example, suppose f(v,y) = v>+3xy —y* Then af(x, v)/8v = 2v +3v and
af(x,y)/dy =3x — 2y
We write the total differentiat of f as
af af af
df = —dvy + —dx; ~edy
f o, Xy + pres X2+ + o, Xy
5. Approximation A [unction f can be apptoximated in a region near a given point
xp by using its derivatives The following two approximations are especialty useful:
(@) flw+Aax) = f'(w)Ax + O(Ax)
() 1o+ Ax) = fx)dx + 5" () (Ax)? + O(Bx)?
whete O(Av)? and O(Ax)? denote terms of order (Ax)? and (A ), respectively
These appioximations apply only to ordinary functions with well-defined deriva-
tives They do not apply to functions that contain Wiener processes (See Chap-
ter 11)

B.3 OPTIMIZATION

Optimization is a very useful tool for investment problems This section reviews only
the barest essentials; but these are sufficient for most of the work in the text

1. Neeessary conditions A function f of a single variable v is said to have a
maximum at a point xq if f(vp) = f(x) for all v If the point vy is not at a
boundary point of an interval over which f is defined, then if vy is a maximum
point, it is necessary that the derivative of f be zero at vg; that is,

f'(x0) =0
This equation can be used to find the maximum point v,
For example, consider the tunction f(x) = —1?+12x To find the maximun,

we set the derivative equal to zero to obtain the equation —2v + 12 = 0 This has
solution x == 6, which is the maximum point

A similar result holds when the function f depends on seveial variables At a
maximu point (with none of the variables at a boundary point) each of the partial
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derivatives of f must be zero In other words, at the maximum point,

af(xy, Yo, .. LX)

ax| 0
af (i, X, %)
_.a—vz,._ =0
af(xy, xa, LX) -0

axy
This is a systern of » equations for the n unknowns xi, x2, ,x,
2. Lagrange multipliers Consider the problem of maximizing the function f of
several variables when there is a constraint that the point x must satisfy the auxiliary

condition g(xy,xy,...,x,) = 0. We say that we are looking for a solution to the
following maximization problem:

maximize f(xy, ¥a, ,Xy)
x
subject to g(x1, ¥3, ,x,) =0

The condition for a maximum can be found by introducing a Lagiange multiplier
A We form the Lagrangian

= f(x ¥, ) = Ag(vy Y, V)

We can then treat this Lagrangian function as if it weire unconstrained to find the
necessary conditions for a maximum Specifically, we set the partial derivatives
of L with respect to each of the variables equal to zero This gives a system of n
equations, but there are now n+1 unknowns, consisting of x{,x2,. , v, and A We
obtain an additional equation from the original constraint g(vi,xy, ,x,) = O.
Therefore we have a system of n + 1 equations and » + 1 unknowns

If there are additional constraints, we define additional Lagrange multipliers—
one for each constraint For example, the problem

maximize f(xy, xa, LX)
X
subject to g(r1, 2, LX) =0
vt v, %) =0

can be solved by inwoducing the two Lagrange multipliers A and p The La-
grangian is

L= [y, v, %) —Aglenva,  ox) = phivn v, %)

The partiat derivatives of this Lagrangian are all set equat to zero, giving 7 equa-
tions Two additionat equations e obtained from the original constraints Therefore
there are 71 4+ 2 equations and n + 2 unknowns
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Some pioblems have inequality constraints of the form g(vy, 2, LY <
0 If it is known that they are satisfied by strict inequatity at the sotution [with
g(xy, X2, , %) < 0], then the constraint is not active and can be dropped from

consideration; no Lagrange multiplier is needed If it is known that the constraint is
satisfied with equality at the sotution, then a Lagrange multiplier can be introduced,
as before Iu this case the Lagrange multiplier is nonnegative (that is, A > 0)



ANSWERS TO EXERCISES

he answers to all odd-numbered exercises are given here ! If the exercise in-
volves a proof, a very brief outline or hint is given

CHAPTER 2

. (a) $1,000; (b) $1,000,000

. (a) 304%; (b) 19 56%; (c) 19 25%.
. PV = $4,682,460

Lx <33

. $6,948.

11. NPV = 29 88 and NPV, = 31.84; hence recommend 2
IRR| = 15 2% and IRR; = 12 4%; hence recommend

13. (b) c = 940, 1 = 64%.
15. No inflation apptied: NPV = —§435,000; inflation applied: NPV = $89,000

=2 Y IR VYRR

CHAPTER 3

. $4,638 83

. (@) 95 13 years; (b) $40,746; (c) $38,387

. YTM < 9 366%

. The annual worths are Ax = $6,449 and Ay = $7,845
. 9t 17

11, D = l’i, Dy = t/r

13. dP/dx = ~DP

15 C=T1*

o N U e

'Compilarion of these answers was [he resull of a massive project by a number of devoled individuals We
do nol guaranfee thal fhey are free from errors Please report errors fo the author
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CHAPTER 4

CHAPTER 5

CHAPTER 6

CHAPTER 7

ANSWERS TO EXERCISES 485

1 75%

3. P =659

5.4a) fy = [0D0n = s/ = 1); (¢) ¥() = x(©)e !

7. P=3764

9. (1+1)(1+ f,)/7" = (141) implies (1 + f, ;)’™" = (1 + 1), which impties

f,‘ g =1

11. PV = 9497
13, vy =~ ~13 835, v, = 30995
15, ap = /{1 + 1002 b= 1/ 410

1. Approximate: projects {, 2, 5; optimal: projects |, 2, 3

3. NPV = $610,000 achieved by projects 4, 5,6, 7 o1 1,4, 5,7

5. 16 in lattice, 40 in tree

7. Critical d* = $(¥/5 ~ 1) & 618 Values r = 33 and + = 25 give d = 75 and

o B I

d = 8, so solutions are the same

. () PV = $366,740; enhance 2 years, then normal
11.

Use hint and solve for §

R=Q2Xo~ X0/Xo

. {a) o = 19/23; (D) 137%; (c) 114%
L (a) (15 % 10° 4+ 5u)/(10° + 5u); (b) 3 million units, O variance, 20% return
) w=(50, 50 w=(}{1) ©w=(,5 5

L= [T /40] " = 1

. (@) F = 07+ 50; (b) c = 64, bortow $1,000 and invest $2,000; (¢) $1,182
) LTy 216 (D) 12Ty 2 16

-1
9 t 2
. B = xi0f (Z et ,\'ja;)



486  ANSWERS TO EXERCISES

7.

@A=1 (Dyo= 002/(03 —~a,?’); (c) zero-beta point is efficient but below MVP;
()7 = 10%

. The identities tequire simple algebra

CHAPTER 8
1. (a) {1 44%; (b) o = 16.7%.
3. Normatized v = (217, 263, 360, 153); eigenvalue = 311 16; principal compo-
nent foliows market weil.
5. (@) o(F) = 0; (b) a(6%) = V2 /Vn— 1.
7. Method. Index haif-monthly points by i. Let r; and p; be returns for full month
and half month starting at i Assume p;’s uncorrelated Then r; = p; + piii-
Show that cov{i;, riq1) = %az Find error in 7 = % Z,zil r;. Ignoring missing
haif-month terms at the ends of the year, the method gives same tesuit as the
ordinary method
CHAPTER 9
1. $108,610
3. a(x)
5. a= (A"~ B U~ (B, b=[BUA)~AUBYWIUA) ~UBL
7. C=(3+e)?/16, e=4/C -3
9.0 =b/W.
11. $1,500
13. From hint: R; ~ R = cW[E(Rys, R)— Ry Rl = cW[cov(Rur, Ri}+ Ry (Ri ~ R)}
This implies R, — R = y cov(Ry, R;) for some y. Apply to Ry to solve for y
d Rd i _(Rd\ E(d)
15, P=E|l— ] =E = B = ] = e
() =elaw) = 7:(7) -5
CHAPTER 10
1. $442.02.
3. 5%.

5. Thereis no cash flow at7 = 0 At T the flow is §/d(0, M)+ 3 075" c(k)/dlk, M)~

F, which must be zero

7. ~$100 34

9. (@) Viealryy = | —d( — 1, i); (0) Vo;) = d(0, i ~ 1) ~d(0,§); (¢} | ~d(0, M)
11. (a) $3 971 million;(b) 8 64%
13. —131,250 Ib orange juice; Opew = 714054,



CHAPTER 11

CHAPTER 12

CHAPTER 13

15.
17.

ANSWERS TO EXERCISES 487

Short $163,200 Treasury futures
Proof based on cov{y, v?) = E{vv?) — E{(xv)E{v) = 0 Both E{xy®) and E(v)
are zero by symmet1y

1. Assuming Ar small, p = 65, 1 = 1106, d = 905; without small Ar approxi-
mation, p == 64367, u =1 110035, d = 90086 Probabilities of nodes (from the
top with small approximation) are 179, 384, 311, 111, 0I5

3. (@) Use (v — vp)* = 0; (b) 15% and 9 54%; (¢) arithmetic foi simple interest,
geometric for compound Usually geometric is best

5. vai(u) = (7 — 1)

7. dG = ($a ~ §p1)Gdt + 1bG dz

9. To first order both have expected vatue S{ri41) = (1 + nA)S()

1. Cost is nonnegative

3. 0=(5—K)~0+ K=5if $>K Likewise Q=0—(K-H+K=Sif S<K

5. $2 83 American, $2 51 European

7. C(8,T)z max[0, $ ~ KB(T)] — Sas T — oo Clearly C(§,7) < § Hence in
the imit C = §

9. §7

11. Offer is close: low by about 3%
13. Almost identical! One-month inteival: $4 801; halt-month: $4 796
15. $6 73

1. $257

3, 0= 251

5. C(63) = $6 557, A = 759, ® =602

7. = %% - d’\;(sd*) - N'(d,)‘?%l B ::;(—j% For ® use I and Exercise 6

9. a = —cov(x, v)/var(y)

11, («) $53; (b) 3204
13. $42 42 million
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CHAPTER 14

CHAPTER 15

CHAPTER 16

1. (a) Yes, use portfolio weights % % to get | 2 risk free; (b) yes, use weights —
3. (a) and (b) $ 8678

S.qu=1qg2=36 g4 = 4 gn= 14

7. §=%1681, 0 =20 6%

9. Car B prefeired by certainty equivalent difference of $370.74.
1L v, E(xa1) b= cov(xy/Vi, 12)

¥ R s

(a) 91 72; (b)9095

Do backward evaluation on futures price lattice
600,615,629, 644,659, 674, 6.89, 705, 719, 735 percent
767, 8829,9799, 1066, 113, 1193 are ay through as
$162,800.

— 1 2.2
. Fty=1 —5at + g0t

y:
max {$ 20 + (1 =)} + $infe/2 + (1 ~a)]} gives o = }

P

L (@) @ = pi = putafri fork <nm; (Dyoy = F, 00 = 0,03 = 3
. Dow Jones average outperforms Mr Jones.

(a) Conditions are

E(" "f> =0, ot E(; Py — 1 fE(Pg) = 0,

f+1n
of  cov(r,, Po) + FE(Py) =0,
. cov(r,, Fy)
01 Fj=rp e
E(Ry)

(b) We have

cov[n,-\/ At L/ + podr 4+ ng/ AI)]
E[1/(1 + poAl + nav/ A )
To fist order (p; — 1 7)A1 = 0, oAt

(i —1p)01 =

T A1)

3
9

L
3

’

L
3



INDEX

A Betting whieel, 148, 171
Bid price, 5t
Accrued interest, 51, 67 Binomia} coefficient, 314
Additive modet, 299-300 Binomia} iattice, 113
Adjustable-rate mortgage, 44, 392-395 for interest rates, 385-389
American optioi, 320 model of stock prices, 297-299, 313-313
Amortization, 47 for options, 366-368
Aunuaf wortly, 49, 69 Binomiai options theory, 327-337, 346
Annuity, 44, 4547, 133 Biuomial tree, 111
Antithetic variable, 364 Biweekly mortgage, 68
AFR, 47-48 Black-Derman-Toy model, 400, 407, 413
Arbitrage, 4, 446 Black and Karasinski model, 407
type A, 240-241 Biack-Sclioies equation, 330, 351-335, 376-377
type B, 241-242 and jog-optimal pricing, 438—440
Arbitrage argument, 78, 388 Black-Scholes formuta, 355-336
Arbitrage Pricing Theory (APT), 207-211, 223 Blur
and CAPM, 211 of a, 218
Are, 111 of history, 212
Aristotfe, 319~ of mean, 214-216, 223
Arrow~ﬁau 'coetf}cicn(, 233 Bond, 49-66, 383
As you like it option, 349, 369 accrued interest, 51

Asian option, 369-370 atiable, 68, 3183
Ask price, 51 oo
Asset, 137, 445446
At tlie njoney, 323

coupon payments, 50

derivatives, 389

{ace value, 50

futures, 383

B toug or short, 57
options, 383

Backward equation, 408—409 par, 0

Backwardation, 282 price forula, 53

Bulloow paynient, 44 price sensitivity, 6061

Banker’s dcceptance, 42 price-yield curve, 53-57

Benefit—ost ratio, {04 putaple. 183

Bermudan optioy, 368 q!mmy of, 51-52

Beta, 179181 yield, 52-57

Beta book, 2{8-219 zero coupon, 43, 61

489



490 INDEX

Braiich, til

Brownian motion, 306-308
Buli spread, 346

Butterfly spread, 325
Buying price, 463468

C

Calcutus, 479483
Call, 319
Biack~Scholes formula, 355356
perpetual, 348
Callable bond, 413, 68
Capital asset pricing modet (CAPM), 173196,
192193, 196-197, 253
and APT, 211
certainty equivalent form, 188-190
derivation, 194
as factor madel, 205-207
formulg and derivation, 177~178
pricing form, 187-190
Capital budgeting, 103~108
Cupital market line, 175-177
Cupitalization weights, 174
Carrying charges, 291~292, 371-373
Cash flow, 1-3
free, 126128
in graphs, 1{3~114
Cash flow stream, 13
Cash matching, t08-i11

Certainty equivalent, 188190, 233234, 253, 254,

464469
Certificate of Deposit (CD), 41
Characteristic line (or equation), 205-207

Cotlateralized mortgage obligations (CMOs), 402406

Commercial papes, 41
Comparison principle, 3-4, 77

Complexico gold mine, [19~121, 132, 339--340, 349,

473

Compound interest, 14-16
Concave functions, 231-232
Contango, 282
Continiico gold mine, 470471, 474
Control variate, 364, 379380
Convezgence, of futuzes prices, 278
Convexity, 6566, 70
Corporate bonds, 43
Correlation coefficient, {45
Cost of carry, 269-272
Coupon payments, 50
Covariance, 144—145, 476

continuous time, 428

matrix, 164
Cox, Ingersoll, Ross model, 407

Curse of dimensionality, {14
Cycle probiems, 29-30, 68

D

Debt subordination, 43

Default, 41, 5152, 473

Delta, 358-359

Deita property, 464

Dentand deposit, 41

Derivative (calcutus), 480481

Derivative security, 9, 263264
syithetic, 360

Digital option, 369

Discount factor, 18, 74-76, 85

Discownting, 18

Diversifiable risk, 201

Diversification, 151-153

Dividend, 371-373
discouut modet, 124-125
and optiotts, 333, 347
process, 443

Dollars, 32

Double lattice, 452458

Dow Jones Average, 442

Down and outer option, 370

Drift, 398

Dugation, 5762, 9194, 67, 7t
Fisher-Weil, 9193
modified, 60, 67
quasi-modified, 93

Dynamic model, [11

Dynamic programming, [11, 129, {34
running, 15~-121

Dynamics, 5
for interest rates, 406408
of several stocks, 428

E

Early exercise, 327, 332-333
Effective interest rate, {5
Efficient frontier, 157, 167168

contipuous time, 430435
Elementary prices, 396-397
Equal and oppasite hedge, 282
Equitibrium, 175
Equivalent utitity functious, 230-231
Estimation

of medn, 214-216, 223

of sigma, 217, 223
Euradotiar, 42
European option, 320
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Excess retumn, 179 Geometric growth, 14
Excrcise, 319 Geometric mean, 316
early, 327, 332-333 Gold mine
Exotic options, 368-370 Complexico, 119-121, 132, 339340, 349, 473
Expectations dynamics, 83-90, 96-97, 278-279, 291 Continuco, 470471, 474
Expectations theory, 81-82, 96-97 Simplico, 28, 76, 337-339, 341-343, 349, 456457
Expected excess return, 179 Gordon formuta, 125
Expected value, 142, 476 Graph, {t1
Exponential growth, 16 for assets, 443
Exponentiaf wiility, 229 Growth efficiency proposition, 427

and certainty cquivalent, 464—468
F H

HARA utility, 256

Factor loading, 199
Harmony theorem, 121~124, 133, {91-192

Factor model, 198-207, 223

and CAPM, 205-207 Heath, Jarrow, Morton model, 413

multifactor, 203204 Hedge, 7, 282-290

single-factor, 198203 minimim-variance, 283-286
Failacy (of multi-period CAPM), 221222, 227 non?inear. 287-290
Fama-French study, 437438 optimal, 285-287
Feasible region, 155-157 perfect, 282

continuous time, 430435 Ho-Lee model, 398—400, 407, 413
Financial instrument, 40 Hult and White modet, 407

Finite state madel, 247-251
Finite-difference mcethod, 364-366

Firm valuation, [24-128 1
Fisher~Weil duration, 91-93
Fixed-income securities, 40~67 Ideal bank, 19, 2i
Fixed-proportions strategy, 418 Idiosyncratic risk, 182
Floating rate bonds, 90-91 Immunization, 62-66, 67, 71, 94-96, 294, 400402
Forward contract, 263, 264-273 In the money, 323
Forward cquation, 395-397 Independence, {44
Forward market, 2635 Tndex fund, 183
Forward price, 265, 266-272 NG
v 202, 20b-Af s Inflation, 32~34

Farward rates, 77-80

Forward value, 273, 274

Forwards, on interest 1ates, 389-391

Free cash flow, [26~128

Function, 479

Future value, 19-20

Futures contract 275-282, 335-336
on interest rates, 389~391 r(':zil, 32

Futures—{orward equivalence, 278~281, 390-391 simple, 13

Futures market, 276-277 Interest rate caps, 383-384

Futures options, 335-337 Interest rate derivatives, 382—411

Internal rate of return, 22-24
main theorem, 23

Information, 220-221

Intercept, 199

Interest, 13-34
compound, 14
effective, 15
nominal, 13,32

G Invariance theorem, 87-88
Inverted yield curve, 72
Gummy, 359 Investment scicence, 1, 3
Gaussian random variable, 476477 Investment wheel, 417419, 423425, 441, 442
Generalized Weiner process, 307-308 Tto process, 307308

Geometric Brownian motion, 309, 310 Tto’s lemma, 312-313
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I

Jensen's index, 186

K

Kelly rule of betting, 421, 443
Knockout option, 369, 370

L

Lagrange multipliers, 158, 482
Lagrangian, 158
Lattice
binomial, 113
trinomial, 131
Law of large numbers, 420
LEAPS, 369
Leveling, 391395
LIBOR, 264, 383
Limits, 480

Linear pricing, 188190, 240-242, 343~344

Liquidity prefetence, 82, 101
Logarithmic utility, 229, 254, 419
Lognormal
prices, 301303, 309
random variables, 304-305, 477-478
Log-optimal portfolio, 432
Log-optimal pricing, 245-247, 253
and Black~Scholes equation, 438—440
discrete time, 443
formula (LOPF), 435438
of option, 4350
Log-optimal strategy, 425
Long bond, 57
Long position, 265
Lookback option, 369

M

Macautay duration, 57-62
Margin, 320
Murgin account, 276

Margin calt, 277

Market portiotio, 174

Market segmentation, 82~83

Market uncertainty, 458—63

Marking to market, 276

Markowitz problem, t57-162, 169, t72
Martingale, 373-375

Mean, 142

Mean biur, 214-216

Mean reversion, 407

Mean—variance theory, 137170
Mininwum-v,
Minimum-variance point, 156
Minimum-vatiance set, 156
Modified duration, 60
Money market, 17, 41, 71
Monte Carlo simulation, 363364
Mortgage, 43—

adjustable rate, 44

biweekly, 68

Mortgage-backed security, 44, 383

Multiperiod fallacy, 221-222
Multiperiod securities, 444447
Multiplicative model, 300-303
Municipal bonds, 43

Mutual fund, 163

N

Net present value, 25
Newton's method, 35

No arbitrage, 4, 388
Nominal {nterest, 15
Nondiversifiable risk, 201
Nonlinear risk, 287290
Nonsatiation, 157
Nonsystematic risk, 182~183

Normal random variable, 217, 239-240, 476477

prices, 300
Notional principal, 273

(6]
One-fund theorem, 166-168

Optimal hedging, 285-287
Optimal management, [14-121

Optimal portiolio growth, 417440

Optimal pricing, 448-452
Optimization, 02
conditions, 481-482
portfotio, 108
Option, 263, 319~346, 351377
American, 320
calt, 3t9
European, 320
exercise, 319, 327, 332-333
exotic, 368-370
on futures, 335-337
pay later, 380
premium, 319
put, 319
strike price, 320
Out of the money, 323

iance hedge, 283-286



P

Par, 50, 55
Path dependent, 371
Pay tater option, 380
Perfect hedge, 282
Performance evatuation, t84-187
Perpetuat annuity (perpetuity), 433
Perpetual call, 348, 353
Perpetuai put, 378
Plain vanilla swap, 273
Pottfolio chioice thearem, 242243
Portfolte diagram, 153155
Portfolio insurance, 362
Porttatio pricing theorem, 244
Positive state prices, 249-251, 257
Power utility function, 230
Premium, 7

catl, 3119
Present vatue, 18-22

main theorem, 22

net, 25
Present worth, 25
Price process, 445
Price of risk, 176
Price sensitivity, 60, 67
Price~yietd curve, 53-57
Pricing form of CAPM, t87-190
Principat, 13

notionat, 273
Principat component, 225
Private uncertainty, 458—463
Probabitity, 475-478

density, 142, 475

distribution, 475
Put, 319, 333-334

perpetuat, 378
Put~calt parity, 325-326, 346, 347

Q

Quadratic program, t6t
Quadratic utitity, 230

and mean-vyriance criterion, 237-239
Quasi-modified duration, 93

R

Random variables, 4, 475
independent, t44

Randormn watk, 305~307

Rapido oit well, 46063, 468

Rate of return, 138

INDEX

Ratio theorem, 453
Real options, 337-343
Rebalance, 63, 359
Rendleman and Bartter modet, 406
Reptication, 360362
Repo rate, 269
Retumn, 138
asset, 137-141
portfotio, 140
Risk
diversifiabie, 20t
nontinear, 287-290
systematic, 201
Risk aversion, 5, 157, 231-234
coefficient, 233, 256
Risk-free asset, 165
short term, 446-447

493

Risk-neutrat pricing, 251252, 253, 255, 344-3435,

357, 409, 447-448
Risk-neutral probabitities, 25t-252
existence of, 448
for options, 329
Risk-neutral utitity, 229
Risk-neutrat world, 46947t
Running amortization, 48
Running dynamic programming, 11512t
Running present vatue, 88~90

S

Security, 40
Secuity market line, 181183
Setf-Anancing, 360
Seven-ien rule, 15
Seventy-two rute, 13, 34, 35
Sharpe index, 187
Short bond, 57
Short position, 265
Short rate, 85-86, 385

tattice, 385~389
Short sales, 138
Shorting, 138
Short-term risk-{ree rate, 446447
Simple interest, t3

Simptico gold mine, 28, 76, 337-339, 341343, 349,

456457
Simutation, 3t1-312
Sinking fund, 43
Specific risk, 182
Spot market, 265
Spot price, expected, 281282
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Spot rate, 73~77, 96

curve, 74

fotecasts, 83-85
Standard deviation, 143
State graph, 444-447
State prices

elementiry, 248

positive, 249-251
Stationary process, 419
Storage costs, 371-373, 291292
Strike price, 320
Swaps, 273275, 384, 411412
Swiptions, 384. 412
Synthetic derivative, 360
Systematic tisk, 181183, 201

T

Taxes, 30-32
Term structure, 7297, 386-188, 397400
explanations, 80-83, 96, 104
Theorem
CAPM, 177178
equivitence, 87
existence of probabilities, 448
floating rate, 9t
forward price, 267, 269
Iutures—Jorward equivatence, 278-279
growth efficiency proposition, 427
harmony, 124, 133, 191~192
Hto's lemma, 312313, 318
tog-optimat pricing, 245-247
one fund, 167
partfolio choice, 242-243
paitfolio pricing, 244
positive state prices, 249-250, 257
present vatue, 22
1atio, 455
simpte APT, 209
two fund, 163, 43t
Theta, 359
Tight markets, 271-272
Tilting, 220-221, 226-227
Time value of money, t3, 34
Totat retur, 138
Tracking, 17t
Trading strategy, 446
Tree cuiting, 25, 26, 349, 458-460, 466468
Trinoniiat tatiice, 13t
for options, 366-368
Two-fund theorem, 162-165, 431t
Type A arbitrage, 240~241
Type B arbitrage, 241-242

u

US Treasury securities, 42
Uncorretated, 145
Undertying security, 264
Utitity functions, 228~240
concave, 23t-232
equivatent, 23023t
exponential, 229
togarithmic, 229, 254, 419
and mean-variance criterion, 237-240
power, 230
quadratic, 230
specification of, 234-237

v

Valuation of firm, §24-128

Variance, 43, 476

Variance reduction, 364

Vasicek model, 407

Volatility parameter, 398

Volatility pumping, 422425, 429-430

w

Weights, 140

capitatization, 174
Weiner process, 305-308, 318
Welt-diversified, 210
Wheet

betting, t48, 171

of fortune, 146

investment, 417419, 42325, 441, 442
When to cut a tree, 25, 26, 458459, 466—467
Wiite an option, 320

Y

Yieid, 52-57
Yield cuive, 72
inverted, 72

z

Zero-beta asset, 194, 196
Zero-coupott bond, 43, 61, 77
Zero-level pricing, 438—463
Zero-one variable, 103



	Contents

	Preface

	1 Introduction

	Part I Deterministic Cash Flow Streams

	2 The Basic Theory of Interest

	3 Fixed-Income Securities

	4 The Term Structure of Interest Rates

	5 Applied Interest Rate Analysis

	Part II Single-Period Random Cash Flows

	6 Mean-Variance Portfolio Theory

	7 The Capital Asset Pricing Model

	8 Models and Data

	9 General Principles

	Part III Derivative Securities

	10 Forwards, Futures, and Swaps

	11 Models of Asset Dynamics

	12 Basic Options Theory

	13 Additional Options Topics

	14 Interest Rate Derivatives

	Part IV General Cash Flow Streams

	15 Optimal Portfolio Growth

	16 General Investment Evaluation

	Appendix A Basic Probability Theory

	Appendix B Calculus and Optimization

	Answers to Exercises

	Index


