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PREFACE 

I
nvestment theory currently commands a high level of intellectual attention-fueled 
in part by some extraordinary theOletical developments in finance, by an explosive 
growth of information and computing technology, and by the global expansion 

of investment activity Recent developments in investment theory are being infused 
into university classrooms, into financial service organizations, into business ventures, 
and into the awareness of many individual investors This book is intended to be one 
instrument in that dissemination process 

The book endeavors to emphasize fundamental principles and to illustrate how 
these principles can be mastered and transtormed into sound and practical solutions of 
actual investment problems The book's organizational structure reflects this approach: 
the material covered in the chapters progresses from the simplest in concept to the 
more advanced Particular financial products and investment problems are treated, for 
the most part, in the order that they rail along this line of conceptual progression, their 
analyses serving to illustrate concepts as well as to describe particular features of the 
investment environment 

The book is designed 101 individuals who have a technical background roughly 
equivalent to a bachelor's degree in engineering, mathematics, or science; or who 
have some familiarity with basic mathematics The language of investment science 
is largely mathematical, and some aspects of the subject can be expressed only in 
mathematical terms The mathematics used in this book, however, is not complex­
for example, only elementary portions of calculus are required-but the reader must 
be comfortable with the use of mathematics as a method of deduction and problem 
solving Such readets will be able to leverage theit technical backgrounds to accelerate 
and deepen their study 

Actually, the book can be I ead at several levels, requiring different degrees of 
mathematical sophistication and having di ftet ent scopes of study A simple road map 
to these different levels is coded into the typography of the text Some section and 
subsection titles me set with an ending star as, for example, "26 Applications and 
Extensions ,0-" The stm indicates that the section Ot subsection is special: the material 

xiii 
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may be somewhat tangential 01 01 higher mathematical level than elsewhere and can 
be skipped at first teading This coding scheme is only approximate; the text itself 
often explains what is ahead in each section and gives guidelines on how the reader 
may wish to proceed 

The end~of~chapter exercises are an impol tant part 01 the text, and readers should 
attempt several exercises in each chapter The exercises are also coded: an exer~ 

cisc marked 0 is mathematically more difficult than the avetage exercise; an exercise 
marked G requires numericitl computation (usually with a spreadsheet program) 

This text was influenced significantly by the existence of computer spread­
sheet packages Almost all the essential ideas 01 investment science-such as present 
value, portfolio immunization, cash matching, project optimization, factor models, 
lisk-neutlal valuntion with binomial lattices, and simulation-can be illusttated easily 
with a spreadsheet package This makefi it posilible to provide a variety of examples in 
the text that are state~of~the~art in terms oj conceptual content Furthermore, students 
can formulate and solve realistic and challenging investment problems using readily 
available software This plGcess deepens understanding by !ully engaging the student 
in all aspects of the problem Many students who have taken this courSe have said 
that they learned the most when completing the course projects (which are the more 
ambitious of the exercises mal ked G) 

It has been fun to write this book, partly because I leceived so much encourage­
ment and help tram colleagues and students I especially wish to thank Graydon Batz, 
Kian Esteghamat, Charles Feinstein, Maritls Holtan, Blake Johnson, Robert Maxfield, 
Pau! McEntire, James Smith, Lucie Tepla, and Lauren Wang who all read substantial 
pOI tions ot the evolving manuscript and suggested impi ovements, The final version was 
improved by the insightfulleviews ot several individuals, including Joseph Cherian, 
Boston University; Phillip Daves, University of Tennessee; Jaime Cuevas Dermody, 
University of Strathc!yde; MYlOn Gordon, University of Townto; Robert Heinke!, 
University of British Columbia; James Hodder, University of Wisconsin; Raymond 
Kan, University of TOlOllto; Chris Lamoureux, University of Arizona; Duane Seppi, 
Carnegie Mellon University; Suresh Sethi, UnivelSity of Tmonto; Costas Skiadas, 
Northwestern University, and Jack TreynOl, Treynor Capital Management, Inc 

I also wish to thank my wife Nancy tor her encouragement and understanding 
ot houls lost to my word processor Finally, I wish to thank the many enthusiastic 
students who, by their classroom questions and dilligent work on the exercises and 
projects, provided important feedback as the manuscript took shape 

DA VID G L.uENBERGER 

April 1997 



INTRODUCTION 

TtaditiOnallY, investment is defined as the current commitment of resources in 
order to achieve latel benefits If leSources and benefits take the form of money, 
investment is the present commitment of money for the pUipose of receiving 

(hopefully more) money later In some cases, stich as the purchase of a bank certificate 
of deposit, the amount of money to be obtained latel is known exactly Howevel, in 
most situations the amount of money to be obtained later is uncertain 

There is also a broader viewpoint of investment-based all the idea of Oows of 
expenditures and receipts spanning a peliod of time From this viewpoint, the objective 
oj investment is to tailor the pattern of these flows over time to be as desirable as 
possible When expenditules and leceipts are denominated in cash, the net leceipts at 
any time period ale termed cash How, and the series of flows over several peliods 
is telmed a cash How stream. The investment objective is that of tailoring this cash 
flow stream to be mOle desiwble than it would be otherwise For example, by taking 
out a loan, it may be possible to exchange a large negative cash flow next month 
JOI a series of smaller negative cash Oows over several months, and this alternative 
cash flow stream may be preferred to the original one Often tuture cash flows have a 
deglee of uncertainty, and pan ot the design, 01 tailoring, of a cash flow stream may 
be concerned with controlling that uncertainty, pel haps reducing the level of risk This 
blOader definition of investment, as tailoring u pattern of cash flows, encompasses the 
wide assortment of financial activities more fully than the traditional view It is this 
broader interpretation that guides the presentation 01 this book 

Investment science is the applicntion 01 scientific tools to investments The 
scientific tools used ale pIimarily mathematical. but only a modest level of mathematics 
is lequiIed to understand the primmy concepts discussed in this book The purpose of 
this book is to convey both the principles 01 investment science and an understanding 
of how these pi inciples ctUl be used in pi actice to make calculations that lead to good 
investment decisions 

There is also an alt to investment Part 01 this aIt is knowing what to l.\nalyze and 
how to go about it This pan 01 the alt can be enhanced by studying the materiul in this 
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book However, there is ahlO an intuitive art of being able to evaluate an investment 
from an assortment of qualitative infOimation, such as the personality characteristics 
of the people involved (the principals), whether a proposed new product will sell well, 
and so forth This part of the all is not treated explicitly in this book, although the 
reader will gain some appi cciation for just what this art entails 

1.1 CASH FLOWS 

According to the broad interpretation, an investment is defined in terms of its resulting 
cash now sequence-the amounts of money that will flow to and fram an investor over 
time. Usually these cash flows (eithel positive or negative) occur at known specific 
dates, such as at the end of each quarter of a yea! of at the end of each yem The stream 
can then be described by listing the now at each of these times This is simplest if the 
flows are known deterministically, as in bank intelest receipts or mortgage pLlyments In 
such cases the stream can be desclibed by a series of numbers For example, if the ba­
sic time period is taken as one year, one possible stream over a yem, from beginning to 
end, is (-I, 12), corresponding to an initial payment (the investment) of $1 at tile be­
ginning of the yem and the receipt of $1.20 a year later An investment over four yems 
might be (-I, 10, 10, 10, I 10), where an initial investment of $1 leads to payment 
of $ 10 at the end of each year for three years and then a final payment 01 $1 10 Note 
that fOi a span of one year, two cash flow numbers are specified-one at the beginning 
and one at the end Likewise, the four-year example involves fi.ve cash now numbers 

Cash flow streams can also be represented in diagram form, as iIIustlated in 
Figure I I In such a figule a time axis is dwwn and a cash flow at a particular time 
is indicated by a verticl.1lline at that time, the length of the line being propOitional to 
the magnitude of the flow 

If the magnitudes of some future cash flows are uncertain (as is lrequently the 
case), a more complex representation of a cash now stream must be employed There 
are a few different techniques for doing this, and they are presented later in the book 
But whether or not uncertainty is present, investments are described in terms of caRh 
now streams 

A divelsity of investment issues can be stated in terms of cash now streams, 
such as the following: Which of two cash now streams is most preferable? How much 
would I be willing to pay to own a given stream? Are two streams together worth mOle 
to me than the sum of their individual values? If I can purchase a shale of a stIeam, 
how much should I purchase? Given a collection of available cash now streams, what 
is the most favorable combination of them? 

I I 
Time 

FIGURE 1 1 Cash flow slrcam, The cnsh flow stream of on 
investment can be represented by a diagmm In the example 
shown, the cash flows occur periodically The first of these 
flows is negative, representing a cash outlay, nncl the subse­
quent flows me nil positive 
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Other mOle complex questions also arise FOi example, sometimes the timing of 
all cash flows is not fixed, but can be influenced by the investor II I purchase stock 
in a company, I have a negative cash now initially, corresponding to my purchase 
payment; while I hold the stock, I perhaps receive dividends (relatively small positive 
cash Haws) on a regular basis; finally, when I sell the stock, I obtain a major cash 
flow However, the time of the last cash flow is not pledetcrmined; I am flee to 
choose it Indeed, investments sometimes can be actively managed to influence both 
the amounts and the timing of all cash flows FOi example, if I pUlchase a gold mine 
as an investment, I can decide how to mine it and thereby influence the cash flow 
every year Detennination of suitable management strategies is also part of investment 
science 

The view of investment science as the tailoring of ca;h flow streams gives the 
subject wide application FOI individuals it applies to pelsonal investment decisions, 
such as deciding on a home mortgage or planning fOI retilement It also applies 
to businesfl decisions, such as whether to invest in product development, whethel 
to build a new manufactUling plant, and how to manage cash resources Finally, it 
applies to government decisions, such as whethel to build a dam or change the tax 
rate Investment science guides us in the process of combining stocks, bondfl, Hnd 
other investment products into an ovetall package that has desirable properties This 
procesfl enhances total plOductivity by converting projects that in isolation may be too 
risky into members ot attHlctive combinations 

1.2 INVESTMENTS AND MARKETS 

At its root, investment analysis is a plOcess ot examining alternatives and deciding 
which altelnative is most ple1erablc In this respect investment analysis is flimilar to 
the analysis of other decisionfl-operating a production facility, designing a building, 
planning a trip, 01 formulating an advertising campaign Indeed, much 01 investment 
science relies on the same general tools used for analYflis of these other deciflions 

Investment problems diftel hom other decision problems in an impOitant respect, 
however: moSt investments are carried out within the fHlmework of a financial market, 
and these markets provide alternatives not found in other decision situations Thifl 
structure ifl what makefl investment analysis unique and unusually powerful 

The Comparison Principle 

Financial markets simplifY decision making through a concept that we tel m the com­
parison principle. 1'0 introduce this principle, consider the following hypothetical 
situation 

Your ullcle otter:;; you 11 speci<ll investment It you give him $100 now, he will 
repay you $110 in one year His repayment i:;; tully guanlnte~d by u trust fund of U S 
Tre,Jsury securilies, und hence then~ is virtually no risk to the investment AI:;;o Iher~ 
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i!i no moral or per!lonal obligation to make this investment You cun eilher accept the 
offer or not What should you do? 

To anaJyze this situation, you would certainly note that the investment offels 
10% intelest, and you could compme this rate with the prevailing tatc of interest 

that can be obtained eJsewhere, say. at YOul locaJ bank or from the US Government 
through, for example, a Treasury bill If the prevailing interest rate were only 7%, 

you would probably invest in this special otfer by your uncle (assuming you have 
the cash to invest) If on the other hand the prevailing intelest rate were 12%, you 
wouJd surely decline the offel From a pure investment viewpoint you can evaluate this 

0ppOitunity very easily without engaging in deep reflection 01 mathematical analysis 
If the investment offers a HHe above normal, you accept; if it offers a rate below 
normaJ, you decline, 

This analysis is an example of the comparison principle You evaluate the in­
vestment by comparing it with othel investments availabJe in the financiaJ market The 
financial market provides a basis for compmison 

If, on the other hand, your uncle offers to sell you a tamily portrait whose 
value is hugely sentimental, an outside comparison is not available You must decide 
whether, to you, the portrait is worth his asking price 

Arbitrage 

When two similar investment nltell1atives are both available in the market, conclusions 
stronger than the comparison principle hold FOI example, consider (idealized) banks 
that otfer to loan money or accept deposits at the same rate of intelest Suppose that 
the rate used at one bank for loans and deposits is 10% and at another bank the rate 

is 12% You could go to the first bank and borrow, say, $10,000 at 10% and then 
deposit that $10,000 in the second bank at 12% In one year you would ealn 2% at 
$10,000, which is $200, without investing any cash at your own This is a lorm of 

arbitrage-emning money without investing anything Presumably, you could even 
make more money by running your scheme at a highel level It should be clear that 

this kind of thing does not oCCUI-at least not very often The interest rates in the two 
banks would soon equalize 

The example of the two banks assumed that the interest rate tor loans and the 
interest rate paid fO! deposits wele equal within anyone bank Generally, of COUlse, 
there is a difference in these lutes However, in markets of high volume, such as the 
mmkets fO! US Treasury securities, the difference between the buying plice and the 
selling price is small Therefore two diflerent securities with identical properties must 

have approximately the same price-otherwise there would be an arbittage opportunity 
Otten it is assumed, for purposes of analysis, that no arbiu age opportunity exists 

This is the no~arbitrage assumption 
Ruling out the possibility 01 mbiuage is a simple idea, but it has profound 

consequences We shall flnd that the principle of no arbiuage implies that pricing 
lelations arc linear, that stock plices must satisfy certain IelLltions, and that the prices 
of derivative securities, such as options and futures, can be determined analytically 
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This one plincipie, based on the existence of well-developed l11a!kets, pelmeates a 
good pOI tion of modelll investment science 

Dynamics 

Another important iealUi e of financial l11ulkets is that they are dynamic, in the sense 
that the Same 01 similar financial insttumenH. are traded on a continuing basis This 
means that the future price of an asset is not lcgurded as a single numbel, but lathel as 
a process moving in time and subject to unceItainty An impOitant pall of the analysis 
of an investment situation is the chmacterization of this plOcess 

There me a few standatd ftamcwOIks that me used to represent plice plOcesscs 
These include binomial lattice models, ditfelencc equation models, and dilTcrcntial 
equation models, all 01 which nre discussed in this text Typically, a record at the past 
plices and other intollllation ale used to specil'y the pllIametels ot such a model 

Because markets are dynamic, investment is itseH dynamic-the value 01 an 
investment chnnges with time, and the composition of good pOlt1olios may change 
Once this dynamic charactel is undel1>tood and fonnalized, it is possible to strllctUie 
investments to take advantage of theil dynamic m\tllie so that the avel all portfolio 
value increl.u.es lupidly 

Risk Aversion 

Another principle of investment science is risk aversion. Suppose two possible invest­
ments have the same cost, and both ale expected to return the same amount (somewhat 
greater than the initial cost), whele the term e\jJected is defined in a probabilistic sense 
(explained in Chaptel 6) However, the return is certain for one of these investments 
and uncertain tor the other Individuals seeking investment rather than outlight spec­
ulation will elect the first (certain) alternative over the second (risky) alternative This 
is the risk aversion principle 

Another way to state this principle is in terms ot market rates of retUin Suppose 
one investment will pt\y a fixed leturn with certainty-say 10%-as obtained perhaps 
from a government-guaranteed bank certificate ot deposit A second investment, say the 
stock in a cOlporation, has nn uncertain return Then the expected rate of retum on thnt 
stock must be greater than 10%; otherwise investors will not purchase the stock In gen­
eral, we accept more Iisk only if we expect to get gleatel expected (01 average) return 

This risk aversion principle cHn be formalized (and made analytical) in a tew 
different ways, which me discussed in later chaptels Once a formalism is established, 
the risk avelsion pIinciple can be used to help analyze many investment alternatives 

One way that the Iisk aversion principle is formalized is thlOugh mean-variance 
analysis. In this apprOl.\ch, the unceItainty of the return on an asset is chmacterized 
by just two quantities: the mean value of the leturn and the valiance of the leturn 
The risk aversion principle then says thtH if several investment opportunities have the 
same mean but different varhlnces, a ratiom\1 (risk-averse) investol will select the one 
that has the smallest vruiance 
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This mean-variance method 01 fOlmalizing risk is the basis for the most well­
known method of quantitative portfolio analysis, which was pioneered by Harry 
Markowitz (who won the Nobel prize in economics for his work) This approach leads 
to a comprehensive theory of investment and is widely considered to be the foundation 
for modern pottfolio theory We discuss this important theory in Chapter 6 

A more genel al way to formalize the risk aversion principle is through the 
introduction of individual utility functions. This approach is presented in Chapter 9 

Later, in Chapter is, we find that risk aversion lakes on a new character when 
investments are made repeatedly over time In fact, shOit-telTIl variance will be found 
to be good, not bad This is one of the surprising conclusions of the comprehensive 
view of investment represented by investment science 

1.3 TYPICAL INVESTMENT PROBLEMS 

Every investment problem has unique features, but many fit into a few broad categories 
or types We brieOy outline some of the most impoltant plOblem types here Fuller 
descriptions of these general types and more specific examples appear in the relevant 
chapters 

Pricing 

Let us go back to our very first example 01 an investment situation, the first offer 
from your uncle, but now let us turn it around Imagine that thele is an investment 
opportunity that will pay exactly $110 at the end of one year We ask: How much 
is this investment wolth today? In othel words, what is the appropriate price of this 
investment, given the ovetall financial environment? 

If the current interest rate for one-yem investments is 10%, then this investment 
should have a plice at exactly $100 In that case, the $1 10 paid at the end of the year 
wouJd correspond to a late of letUln of 10% If the current interest rate for one-yem 
investments is Jess than 10%, then the price of this investment would be somewhat 
greatel than $100 In general, if the interest tate is 1 (explessed as a decimal, such 
as r = 10). then the plice of an investment that pays X after one ye.1 should be 
)(/0 + I) 

We determined the price by a simple application of the comparison principle 
This investment can be directly compmed with one of investing money in a one-year 
certificate 01 deposit (or one-year Treasury bill), and hence it must bem the Same 
effective interest rate 

This interest late example is a simple example of the genewl pricing problem: 
Given an investment with known payoff characteristics (which may be random), what 
is the reasonable price; or, equivalently, what pIice is consistent with the other se­
cUlities that are available? We shall encounter this problem in many contexts For 
example, early in our study we shall determine the applOpJiate price of a bond Later 
we shall compute the appropriate price of a share of stock with random return char­
llcteristics Still later we shall compute suitable prices of more complicated securities, 
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such as futures and options Indeed, the pricing problem is one 01 the basic plOblems 
of modern investment science and has obvious practical applications 

As in the simple interest rate example, the pricing problem is usually solved 
by use of the comparison principle In most instances, howe vel , the application of 
that principle is not as simple and obvious as in this example Clevel arguments have 
been devised to show how a complex investment can be separated into parts, each of 
which can be compared with other investments whose prices are known Nevertheless, 
whethel by a simple or H complex argument, compatison is the basis lor the solution 
of many pricing problems 

Hedging 

Hedging is the pfOcess of reducing the financial risks that either arise in the course 
of nmmal business operations or are associated with investments Hedging is one 
ot the most important uses of financial ITInrkets, and is an essential palt of modern 
industrial activity One lonn ot hedging is insurance wherc, by paying a Hxed amount 
(a premium), you can pfOtect yourself against certain specified possible losses-such 
as losses due to fire, theh, or even adverse price changes-by ananging to be paid 
compensation for the losses you rncur More general hedging can mise in the following 
way Imagine a large bukelY This bakery will pUlchase floUl (made hom wheat) and 
other ingredients and translorm these ingredients into baked goods, such as bread 
Suppose the bakclY wins a contract to supply a large quantity of bread to another 
company over the next year at a fixed price The bakery is happy to win the contract, 
but now faccs risk with respect to flour priccs The bakcry will not immediately 
purchase all the flour needed to satisfy the contract, but will instead purchase flour 
as needed during the yeHl Theretore, il the plicc of flour should inclease pan way 
dUling the year, the bakery will be lorced to pay mOle to satisfy the needs of the 
contract and, hence, will have a lower plOfit In a sense the bakery is at the mcrcy of 
the flour market II the flour price goes up, the bakery will make fess plOfit, perhaps 
even losing money on the contract If the flour price goes down, the bakery will make 
even more money than anticipated 

The bakery is in the baking business, not in the flour speculation business It 
wants to eliminate the tisk associated with flour costs and concentlate on baking It cun 
do this by obtaining an appfOpriate number of wheat tutures contracts in the lutures 
mal kct Such a contract has small initial cash outlay and at n set future date gives 
a profit (or loss) equal to the amount that wheat prices have changed since cnteling 
the contract The price of nour is closely tied to the price 01 wheat, so it the price of 
floUl should go up, the value 01 a wheat fluUles conti act will go up by a somewhat 
comparable amount Hcnce the net effect to the bakery-the prollt from the wheat 
futulcs contracts tog ethel with the change in the cost of flour-is nearly zero 

There arc many other examples 01 business risks that can be reduccd by hedging 
And there <He many ways that hedging can be canied out: through futures contracts, 
options, and other special arrangements Indeed, the majOl use, by far, of these financial 
instrumcnts is I'm hedging-not lor speculation 
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Pure Investment 

Pure investment refers to the objective ot obtaining increased future return for present 

allocation of capital This is the motivatIon underlying most individual investments in 
the stock market, for example The investment problem arising from this motivation 
is referred to as the portfolio selection problem, since the real issue is to determine 

where to invest available capital 
Most approaches to the pure investment pfOblem rely on the risk aversion prin­

ciple, tOl in this problem one must carefully assess one's preterences, deciding how to 
balance risk and expected reward There is not a unique solution Judgment and taste 

are important, which is evidenced by the vast amount of literature and advice directed 
each year to helping individuals find solutions to this problem 

The pure investment problem also charactedzes the activities ot a profit-seeking 

firm which, atter all, takes existing capital and transforms it, through investment­
in equipment, people, and operations-into profit Hence the methods developed for 

analyzing pure investment problems can be used to analyze potential projects within 
firms, the overall financial structure of a firm, and even mergers of firms 

Other Problems 

Investment problems do not always take the special shapes outlined in the preceding 
categories A hedging problem may contain an element of pure investment, and con­
versely an investment may be tempered with a degree 01 hedging FOitunately, the 
same principles of analysis ale applicable to such combinations 

One type of problem that occurs frequently is a combined consumption-invest­

ment problem For example, a married couple at retirement, living off the income from 
their investments, will most likely invest differently than a young couple investing for 
growth of capital The requirement for income changes the nature of the investment 
problem Likewise, the management of an endowment for a public enterprise, such 
as a university must considel growth objectives as well as consumptionlike objectives 

associated with the current operations of the enterprise 
We shall also find that the tramework of an investment problem is shaped by 

the formal methods used to treat it Once we have logical methods lor representing 
investment issues, new problems suggest themselves, As we progress through the book 

we shall uncover additional problems and obtain a deeper appreciation for the simple 

outlines given here 

1.4 ORGANIZATION OF THE BOOK 

The OIganization of this book reflects the notion that investment science is the study 
of how to tailor cash flow streams, Indeed, the cash flow viewpoint leads to a natUlal 
partition of the subject into lour main parts, as follows 
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such as futures and options Indeed, the pricing problem is one 01 the brrsic plOblems 
of modell1 investment science and has obvious practical applications 

As in the simple interest late eXJmple, the pricing problem is usurrlly solved 
by use of the comparison principle In most instances, however, the application of 
that principle is not tiS simple and obvious as in this example Clever a1guments have 
been devised to show how a complex investment can be separated into palts, each 01 
which can be compared with other investments whose prices are known Nevertheless, 
whether by a simple or n complex ar gumem, compar ison is the basis for the solution 
of mHny pricing problems 

Hedging 

Hedging is the process 01 reducing the financial risks that either arise in the COlllse 
of normal business operations or are associated with investments Hedging is one 
of the most important use~ of financial markets, and is an essential part of modern 
industrial activity One torm ot hedging is insurance where, by paying a fixed amount 
(a premium), you can protect yourself against certain specified possible losses-such 
as losses due to flie, theft, or even advelse plice changes-by arranging to be paid 
compensation for the losse~ you incUl More general hedging can arise in the toll owing 
way Imagine a large bakery This bakery will pUlchase floll! (made 1'10111 wheat) and 
other ingredients and transform these ingredients into baked goods, such as blead 
Suppose the bakery wins a contract to supply a lalge quantity of bread to another 
company over the next year at a fixed price rhe bakery is happy to win the contract, 
but now faces risk with respect to flour prices The bakery will not immediately 
purchase all the flour needed to satisly the contract, but will instead purchase flolll 
as needed during the year Therefore, if the price of Hour ~hould increase pHit way 
dUling the year, the bakery will be Imced to pay l110re to satisfy the needs 01 the 
contract and, hence, will have a lower profit In a sense the bakely is at the mercy of 
the nOll! market It the floll! price goes up, the bakery will make less plOfit, perhaps 
even losing money on the contract II the flour price goes down, the bakery will make 
even more money than anticipated 

rhe bakery is in thc baking business, not in the nour spcculation business It 
wants to eliminate the risk associated with flour costs and concentrate on baking It can 
do this by obtaining an appropriate number ot wheat futurcs contruct~ in the futUles 
market Such a contract has small initial cash outlay and at a set future date gives 
a profit (or loss) equal to the amount that wheat prk'cs havc changcd since entering 
the contract The price of floul is closely tied to the price 01 wheat, so if the price of 
flour should go up, the value of a wheat futures contract will go up by a somcwhat 
comparable amount Hence the net effect to the bakely-the profit hom the wheat 
futures contracts together with the change in the cost or flour-is nemly zero 

Thcle Hie mnny other examples of business Iisk~ that cnn be reduced by hedging 
And there are many ways that hedging can be canied out: through futures contracts, 
options, and other special arrangements Indeed, the major u~e, by far, 01 these financial 
instruments is to! hedging-not for speculation 
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Pure Investment 

PUle investment refers to the objective of obtaining increased future return for present 
alfocation of capital. This is the motivation underlying most individual investments in 
the stock market, for example The investment problem arising hom this motivation 
is refen ed to as the portfolio selection problem, since the real issue is to deter mine 
where to invest available capital. 

Most approaches to the pUle investment problem rely on the risk aversion prin­
ciple, tor in this plOblem one must carefully assess one's preferences, deciding how to 
balance risk and expected reward There is not a unique solution Judgment and taste 
arc important, which is evidenced by the vast amount of IiteratUle and advice directed 
each year to helping individuals find solutions to this problem 

The pure investment plOblem also chmactel izes the activities of a profit-seeking 
firm which, after all, takes existing capital and tmnsforms it, through investment­
in equipment, people, and operations-into profit I-Ience the methods developed fOl 
analyzing pure investment problems can be used to analyze potential projects within 
firms, the overall financial structure of a firm, and even mergers of firms 

Other Problems 

Investment problems do not always take the special shapes outlined in the preceding 
categories A hedging problem may contain an element of pure investment, and con­
versely an investment may be tempered with a degree of hedging Fortunately, the 
same principles of analysis are applicable to sllch combinations 

One type of problem that occurs frequently is a combined consumption-invest­
ment problem For example, a married couple at retirement, living oft the income from 
their investments, will most likely invest diftelently than a young couple investing for 
growth of capital The requirement for income changes the nature of the investment 
plOblem, Likewise, the management of an endowment for a public enterprise, such 
as a university must consider growth objectives as well as consUlnptionlike objectives 
associated with the cunent oper ations of the enterprise 

We shall also find that the framework of an investment problem is shaped by 
the formal methods used to tIeat it Once we have logical methods for representing 
investment issues, new problems suggest themselves. As we proglCSS through the book 
we shall unCOver additional problems and obtain a deeper appreciation for the simple 
outlines given here 

1.4 ORGANIZATION OF THE BOOK 

The organization of this book reflects the notion that investment science is the study 
of how to tailor cash flow streams, Indeed, the cash flow viewpoint leads to a natUlal 
partition ot the subject into lour main parts, as lollows 
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Deterministic Cash Flow Streams 

The simplest cash tlow streams are those that are deterministic (that is, not random, 
but definite) The filst pan of the book treats these Such cash flows can be lcpresented 
by sequences such as (-I, 0, 3), <.LI;) discussed earlier Investments 01 this type, either 
with one or with several peliods, are analyzed mainly with various concepts 01 intelest 
rate Accordingly, interest late theory is emphasized in this first part of the book This 
theory provides a basis 1m a fairly deep understanding of investment and a framework 
tor addressing a wide variety of important and intelcsting problems 

Single-Period Random Cash Flow Streams 

The second level of complexity in cash tlow streams is associated with streams having 
only a single period, with beginning and ending flows, but with the magnitude 01 the 
second flow being uncertain Such a situation occurs when a stock is purch~Ll;)ed at the 
beginning of the year and sold at the end of the yem The amount received at the end 
ot the year is not known in advance and, hence, must be considered uncert<tin This 
level ot complexity captures the essence ot many investment situations 

In order to analyze cash flows of this kind, one must have a formal description 
of uncertain returns. There are several such descriptions (all based on probability 
theory), and we shall study the main ones, the simplest being the mean-variance de~ 
scIiption One must also have 11 formal description of how individuals assess uncel'tain 
returns We shall consider such assessment methods, Starting with mean-variance anal­
ysis These single-peIiod uncertain cash flow situations are the SUbject of the second 
part at the book 

Derivative Assets 

The third level of complexity in cash flow streams involves stremllS that have 1 an­
dom flows at each of several time points, but where the m;set producing a stream is 
functionally related to another asset whose price characteristics are known 

An asset whose cash flow values depend functionally on another asset is telll1ed 
a derivative asset. A good exmllple is a stock option To describe such an option, 
suppose that lawn 100 simes 01 stock in company A This asset, the 100 shm'es, is 
a basic asset. Now suppose that I have gtanted you the light (but not the obligation) 
to buy, at say $54 pel shate, all 100 01 my shmes in thlee months This tight is a call 
option on 100 shares of stock in company A This option is an asset; it has value, and 
that value may change with time It is, however, a dclivative of the stock of company 
A because the value 01 the option depends on the plicc 01 the stock It the stock 
price goes up, the option value also goes up Othel derivative assets include futures 
contracts, othcl kinds ot options, and vatious othel financial contracts One example 
seen by many home buyelS is the adjustable-rate mortgage, which peIiodically adjusts 
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interest payments according to an interest rate index Such a mortgage is a derivlltive 
of the securities that determine the interest rate index, 

The third part of the book is devoted to these derivative assets Analysis of 
these assets is often simpier than that for assets with general multiperiod uncertain 
cash fiows because properties of a derivative can be traced back to the underlying 
basic asset The study of derivative assets, however, is an important and lively aspect 
of investment science, one for which strong theoretical results can be derived and 
important numerical quantities, such as implied plices, can be obtained 

General Cash Flow Streams 

Finally, the fourth part of the book is devoted to cash flow streams with uncertain 
cash flows at many different times-flows that are not functionally related to other 
assets As can be expected, this final level of complexity is the most dif ficult part 
of the subject, but also the one that is the most important The cash flow streams 
encountered in most investments have this general form 

The methods of this part of the book build on those of emlier parts, but new 
concepts are added The fact that the mix of iIwestments-the portfolio structure-can 
be changed as time progresses, depending on what has happened to that point, leads 
to new phenomena and new opportunities, For example, the growth rate of a portfolio 
can be enhanced by employing suitable reinvestment strategies, This part of the book 
represents some of the newest aspects of the field 

Investment sciencc is a practical science; and because its main core is built on 
a few simple principles, it can be eusily learned and fruitfully applied to interesting 
and important problems It is also an evolving science, which is expanding rapidly 
Perhaps the reader, armed with a basic understanding of the field, will contribute to 
this evolution through either theory or application 
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THE BASIC THEORY OF 
INTEREST 

I nterest is frequently called the time value oj mOllev, and the next tew chapters 
explore the structure and implications of this value In this first chapter on the 
subject, we outline the basic elements of interest late theory, showing that the the­

ory can be translated into analytic 101m and thus used as a basis for making intelHgem 
investment decisions 

2.1 PRINCIPAL AND INTEREST 

The basic idea of interest is quite familiar If you invest $1 00 in a hank account that 
pays 8% interest per year, then at the end of I year you will have in your account the 
principal (your original amount) at $1 00 plus interest at $ 08 for a total of $1 08 
If you invest a larger amount, say A dollars, then at the end of the year your account 
will have grown to A x 1.08 dollars In general, if the interest rate is 1, expressed as 
a decimal, then your initial investment would be multiplied by (I + I) ahel I year 

Simple Interest 

Under a simple interest rule, money invested for a period different hom I year 
accumulates interest proportional to the total time of the investment So after 2 years, 
the total interest due is 21 times the original investment, and so forth In other words, 
the investment ploduces interest equal to 1 times the original investment every year 
Usually paltial years ale treated in a proportional manner; that is, after a fraction f 
ot I year, interest ot 1 f times the original investment is earned 

The general rule for simple interest is that if an amOllnt A is lett in an account 
at simple interest 1, the total value after 11 years is 

v = (I +/lI)A 

If the propOi tional rule holds tor tractional years, then after any time t (measured ill 
years), the account value is 

V=(I+II)A 

13 
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The account grows linearly with time As shown in the preceding formula, the 
account value at any time is just the sum of the original amount (the principal) and 
the accumulated interest, which is plOpOitionai to time 

Compound Interest 

Most bank accounts and loans employ some form ot compounding-producing com­
pound interest Again, consider an account that pays interest at a tate of r per year 
If interest is compounded yemly, then after I yea!, the first year's interest is added to 
the original principal to dcflne a largel principal base for the second year Thus during 
the second year, the account earns imel eH 011 il1te1 e\( This is the compounding effect, 
which is continued year atter year 

Under yearly compounding, money left in an account is multiplied by (I + I) 
after I yea! After the second yea!, it grows by anothel factor at (I + I ) to (I + I )' 
Aft!!1 11 years, such an account will grow to (l + 1 )'1 times its original value, and 
this is the analytic explcssion for the account glOwth under compound interest. This 
expression is said to exhibit geometric growth because of its 11th-power form 

As 11 increases, the growth due to compounding can be subslantial For example, 
Figure 2 f shows a graph of a $100 investment over time when it earns 10% interest 
under simple and compound interest rules The figure shows the characteristic shapes 
of linear growth tor simple interest and of accelerated upward growth for compound 
interest Note that under compounding, the value doubles in about 7 years< 

There is a cute little rule that can be used to estimate the effect of interest 
compounding 

-- Simple 
==Compound 

8 10 12 14 16 18 20 22 24 

Years 

FIGURE 2,1 Simple and compound inler­
eSI Simple inlerest leads 10 linear growlh 
over lime, whereas compound inieresl leads 
to an ;)(Celeraled incre,1se defined by geomel­
ric groVVlh The figure shows bOlh cases for an 
inleresl r,lle of 10% 
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The !Jevell-tell Iltle MOllev illl'e.\led at 7% pel vem dOllblcJ ill aPP,oxillU1lelv 10 
yems Al.w. money illve\!ed at 10% pel veal double\ ill approximatelv 7 ),em s 

(More exactly, at 7% and 10 years, an account increases by a factor 01 197, whereas 
at 10% and 7 years it increases by a factor of 1.95) The rule can be generalized, and 
slightly improved, to state that, for interest rates less than about 20%, the doubling 
time is approximately 72/ i, where i is the interest rate expressed as a percentage (that 
is, 10% interest conesponds to i 10) (See Exercise 2 ) 

Compounding at Various Intervals 

In the preceding discussion, interest was calculated at the end of each year and paid to 
the account at that time Most banks now calculate and pay interest mote frequently­
quaIleJiy, monthly, or in some cases daily Thi.s more frequent compounding raises 
the effective yearly rate In this sitUtltion, it is traditional to still quote the interest tate 
on a yearly basis, but tl,en apply the appropriate proportion 01 that interest rate over 
each compounding period For example, consider quarterly compounding Quarterly 
compounding at an interest rate of I per year means that an interest rate ot 1/4 is 
applied every quarter Hence money left in the bank for I quarter will grow by a 
factor 01 I + (r /4) during that quarter It the money is left in for another quarter, 
then that new amount will grow by another factor 01 I + (r /4) After I year the 
account will have grown by the compound factor of [I + (r /4)J" For any r > 0, it 
holds that [I + (r /4)]"1 > I + r Hence at the same annual rate, the amount in the 
bank account after 4 quarters of compounding is greater than the amount after 1 year 
without compounding 

The effect 01 compounding on yearly growth is highlighted by stating an ef~ 

fective interest rate, which is the equivalent yearly interest rate that would produce 
the same result after I year without compounding For example, an annual rate of 
8% compounded quarterly will produce an increase of (I 02)" I 0824; hence the 
effective interest rate is 8 24% The basic yearly rate (8% in this example) is termed 
the nominal rate. 

Compounding can be car"Iied out with any trequency The general method is 
that a year is divided into a fixed numbel of equally spaced periods-say m periods 
(In the Case of monthly compounding the periods are not quite equal, but we shall 
ignore that here and regard monthly compounding as simply setting III 12) The 
interest rate tor each of the 111 periods is thus I/m, where 1 is the nominal annual 
rate fhe account grows by I + (r /m) dllling I period Aftel k periods, the growth is 
[I +(r/m)J', anJ hence aftel a lull year of 111 periods it is [I +(r /m)J'" The effective 
interest rate is the number I' that satisfies 1 + I' [1 + (1/111 )]", 

Continuous Compounding 

We can imagine dividing the year into smaller and smaller periods, and thereby apply 
compounding monthly, weekly, daily, or even every minute or second This leads 
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TABLE 2cl 
Continuous Compounding 

Interest rate (%) 

Nominal I 00 500 10 00 2000 3000 5000 7500 10000 
Effective 101 5 13 10 52 22 14 3499 6487 III 70 17l 83 

The 1I0mil/(/1 IIItell.!Ji mJe\ ill rhe top roll' (orre\'/1tJl/d. /ll/der (o1I(i1ll101/,\ com· 
1WIII/dillg. to II/!.! eJJc(.lil'l.' ra(c!\ \IJOII'II ill rhe Jl!umd 10\1' The illOl!mc clue to 
LOIII!JOlmdilIR II qllire dramalit (I( hugl! lIomil/al r(J(t'\ 

to the idea of continuous compounding We can detcllnine the effect ot continuous 
compounding by considering the limit of Oldinary compounding as the number 111 of 
periods in a year goes to infinity To determine the yearly effect of this continuous 
compounding we use the fact that 

u!!.mC(JI + (J /m)]W e
r 

where e 27818 is the base of Ihe natUlallogarithm Thc effective rate of interest 
1 f is the value satisfying I + r' er If the nominal intelesl rate is 8% per year, 
then with continuous compounding the growth would be e 08 1,083.3, and hence 
the effective interest late is 833% (RecaIi that quartelly compounding produces an 
effective late of 824%) Table 2 1 shows the effect of continuous compounding for 
vatious nominal rates Note that as the nominal late increases, the compounding effect 
becomes more dr amatic 

We can also calculate how much an account will have grown unel any arbitrary 
length of time We denote time by the variable I, measured in yems TI1US I 1 
corresponds to I year, and I 25 cOlIesponds to 3 months Select a time I and divide 
the year into a (large) n11mber 1/1 of small periods, each of length 1/1/1 Then I:::: k/I/I 
for some k, meaning that k periods approximately coincides with the time I If 111 is 
very large, this approximation can be made very uccurate Therefore k :=:::::: wI Using 
the general formula for compounding, we know that the growth factor for k periods is 

[I + (1/111)1' = [I + (I/I/I)J"" = {[I + (1/II1)J'"I' --> en 

where that last expression is valid in the limit as In goes to infinity, cOllesponding to 
continuous compounding Hence continuous compounding leads to the familiar expo~ 
nential growth CUlve Such a curve is shown in FigUle 2 2 for a 10% nominal interest 
late 

Debt 

We have examined how a single investment (say a bank deposit) glows over time 
due to intelest compounding It should be clem that exactly the same thing happens 
10 debt It I bonoll' money from the biwk at an intelest rate 1 and make no payments 
to the bank, then my debt increases accOJding to the same formulas Specifically, if 
my debt is compounded monthly, then after k months my debt will have grown by a 
factor of [I + (I /12) l' 
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FIGURE 2.2 Expollential growth curve; cOllfinuous 
compoUlld growth, Under conl;nuotls compounding at 
1 D'X" the value of $1 doubles in abotll 7 yems In 20 
yems it grows by a factor of ilbotll B 

Although we have treated interest as a given known value, in reality thew are many 
different rates each day Diftetent rates apply to different cflCufllstunces, different user 
classes, and different period, Most .ates me established by the forces at supply and 
demand ill broad markets to which they apply These rates are published widely; a 
snmpling for one day is shown in Table 2 2 Many of these market rates are discussed 

TABLE 2,2 
Market Interest Rates 

Interest rates (August 9, 1995) 

U S I rCl.lsury bUb and \lotes 
1-momh bfll 
6-monlh biIl 
I-yeur bill 
1-year note (% yield) 
IO-year note (r/o yield) 
3D-year bOlld (% yield) 

Fed tu nds nUe 
Discount rate 
PIime tate 
Comtnercial paper 
Certificates of deposit 

I month 
2 mouths 
I year 

Banker's m:ceptam:es (30 days) 
London late Eurodollars (I month) 
London Interbank offered rate (I l1Iomh) 
Federal Hotne Loan Mortgage Corp (Freddie Mae) (30 yeats) 

lIIal/l' different /'{/(e\ (/pph' 0/1 (/II\' gil't'll day 711il' 1\' (/ \{Imp/illg 

539 
539 
536 
605 
649 
692 
56875 
526 
875 
584 

5 17 
524 
528 
568 
575 
588 
794 
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mote fully in Chapters 3 and 4 Not all interest rates are broad market rales There may 
be pdvate rates negotiated by two private parties, Or in the context of a finn, spedal 
rates may be established for internal transactions or tor the purpose of evaluating 
projects, as discussed laler in this chapter 

2.2 PRESENT VALUE 

The theme ot the pteVfOUS section is that money invested today leads to increased 
value in the future as a result of intefest The fOfmulas of the previous section show 
how to detefminc this future value 

That whole set of concepts and formulas CHn be reversed in Lime to calculate the 
value that should be assigned flOW, in the present, to money that is to be feceived at a 
laler Hme This feversal is the essence of the extremely imponant concept ot present 
value. 

To introduce this concept, consider two situations: (1) you will receive $110 
in I yem, (2) you receive $100 now and deposit it in a bank account fOf I year 
at 10% interest Cleaf"ly these situations are identical after I year-you wHl receive 
$110 We can restate this equivalence by saying that $110 received in I year is 
equivalent to the receipt of $100 now when the interest ,ate is 10% Or we say that 
the $110 to be received in I year has a present value of $100 In general, $1 to be 
received a yem in the future has a present value of $1/0 + 1), whefe , is the interest 
rale 

A similar ttansfollnation applies to future obligations such as the repayment of 
debt Suppose that, fOf some reason, you have an obligation to pay someone $100 in 
exactly I year This obligation can be regarded as a negative cash flow that occurs at 
the end of the year To calculate the p,esent value of this obligation, you determine 
how much money you would need l1n1l' in order to cover the obligation This is easy 
to determine It the CU[lent yearly interest rate is r, you need $100/0 + I) II that 
amount ot mone y is deposited in the bank now, it wHi grow to $100 at the end of the 
yeat You Clln then fully meet the obligation The present value of the obligation is 

therefore $100/(1 + 1)< 
The pfocess of evaluating future obligations as an equivalent present value is 

altefnatfvely referred to as discounting. The present value ot a tuture monetary amount 
is less than the face value of that amount, so the future value must be discounted to 
obtain the present value The tactof by which the futUfe value must be discounted is 
called the discount factor. The I-year discount factor is d, 1/(1 + I), where r is 
the I-year intetest fate So if an amount A is to be received in I year, the present 
value is the discounted amount d l A 

The tormula for presenl value depends on the inlcrest rate that is available 
from a bank or othef source II that source quotes rates with compounding, then 
such a compound interest late should be used in the calculation of present value 
As an example, suppose that the annual interest tate, is compounded at the end of 
each of III equal periods each year; and suppose that a cash payment of amount 
A will be received at the end 01 the "th period Then the appropriate discount 
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factor is 

[I + (! /111)]' 

The pfesent value 01 a payment ot A to be received k periods in the future is dJ.A, 

2.3 PRESENT AND fUTURE VALUES Of STREAMS 

The pfcvious section studied the impact of interest on a single cash deposit 01 loan; that 
is, on a single cash lIow We now extend that discussion to the case where cash flows 
occur at several time periods, and hence constitute a cash flow stream or sequence 
FiIst we require a new concept 

The Ideal Bank 

When discussing cash lIow streams, it is useful to define the notion ot an ideal bank. 
An ideal bank applies the same I ate 01 interest to both deposit, and loans, and it has 
no service charges or transactions lees Its interest rate applies equally to any size of 
principal, tram I cent (or traction thel'eof) to $1 million (or even more) Furthermore, 
separate transactions in an account are completely additive in their effect on tuture 
balances 

Note that the definition 01 an ideal bank does 1101 imply that interest rates tor 
all tlansactions arc identical For example, a 2-yem celtificate of deposit (CD) might 
ofter tl higher rate than a I-year CD However, the 2-year CD must offer the same 
fate as a loan that is payable in 2 years 

If an ideal bank has an inter est I ate that is independent 01 the length ot time 
tot which it applies, and that interest is compounded according to nOfmal rules, it is 
said to bc a constant ideal bank. In the fest ot this chapter, we always assume that 
intelest fates afe indeed constant 

fhe constant ideal bank is tlte refcrence point used to describe the outside fi­
nancial mat ket-thc public market for money 

Future Value 

Now we retm n to the study ot cash now SUeams Let us decide on a fixed timc cycle 
for compounding (for example, yeady) and let" period be the length at this cycle We 
assume that cash flows OCCUI at the end 01 each period (although some flows might be 
zero) We shall take each cash flow and deposit it in a constant ideal bank as it anives 
(It the flow is negative, we covel it by taking out a loan) Under the terms of a constant 
ideal bank, the final balance in OUt account can be found by combining the results of 
the individual fiow.li Explicitly, consider the cash flow stleam (xo, \'f, , Xli) At the 
end ot 1/ periods the initial cU.lih now ro will have grown to xo( I + I yl, where, is the 
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interesl rate pel peliod (which is the yearly rale divided by the number of pedods per 
year) The nexl cash flow, x" received after the firsl period, will al the final time have 
been in the account for only 11-1 periods, and hence it will have a value ot Xf (I +r )II-f 
Likewise, the next flow .\1 wHl coIled inlerest during 11 - 2 periods and have value 
X2( 1+, )n-2 The final flow XI/ wfJI not collect any interest, so will remain Xli The lotal 
value at the end of II periods is therefore FY xo(l + I)" + x,(I + 1)"-' + + x,,, 
To summarize: 

Future value oj a stream Given a ca~1I flow \IWG111 (Xo, .rf, 

1 each peliod, tbe rull11e value oj the ~/lea11l i~ 

FY ,'0(1 + I)" +'" (I + I )"-' + + x" 

Example 2.1 (A short stream) Consider the cash flow stream (-2, l, I, I) when 
the periods are years and the interest rate is 10% The future value is 

FY -2 x (I 1)3 + I x (l I)' + I x I I + I 648 (2, I) 

This formula for future value always uses the interest rate per period and assumes 
that interest rates are compounded each period 

Present Value 

The present value of a general cash flow stream-like the future value-can also be 
calculated by considering each flow element sepal ately Again consider the stream 
(.to, tf, , .t1l ), The present value of the first elementxo is just that value itselt since 
no discounting is necessary The present value ot the flow .\ 1 is .\'1/( I + 1), because 
thal flow musl be discounled by one period (Again the inleresll ate I is the per-period 
late) Continuing in this way, we find that the present value of the entire stream is 
PY xo+X,/(I+I)+",/(I+I)'+ +X,,/(I+l)" Wesummarizelhisimporlant 
result as follows 

Presellt value of a !;tream Gh'en Q [(1'1h /1011' \tleam (xo,.\(, 

late I pel peIind. the pJe\ellt \I{llue oj tl1i\ [Q'Ih /1011' \tleQ11I i\ 

PY Xo + + + + (22) 

Example 2.2 Again conside, the cush now slream (-2, I, I, I) Using an interesl 
rate of 10% we have 

PY 
I I I 

- 2+ II + (jI)" + (jI)" 487 
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The plesent value of a cash flow slfeam can be regufded as the pfcsenl payment 
amounl that is equivalent to the entire SlIeam Thus we can think of life entire stream 
as being replaced by a single flow at the initial time 

Thele is another way to inletptet the formula tot pfcscnl value that is based 
on ltanstortning the formula tot fUlufe value FUlUle value is the amounl ot fUlure 
payment that is equivalent to the cnthe stream We can think ot life stream as being 
lIUnsforfned into that single cash flow at period 11 The present value ot this single 
equivalellt flow is obtained by discounting it by (I -1- I)" That is, the plesent value 
and the future value are related by 

PV 
FV 

In the plevious examples 101 the cash now slleam (-2, I, I, I) we have 487 PV 
FV /(1 1)3 648/1 331 487 

Frequent and Continuous Compounding 

Suppose that 1 is the nominal annual interest rate and interest is compounded at 111 

equally spaced periods pel yeU! Suppose that cash nows oceul inititllly and at the 
end of each period tor a total ot 11 periods, forming a sUeHfn (Xn,Xf, ,XII) Then 
according to the preceding we have 

PV t X" 
kd. [I + (1/111)1' 

Suppose now that the nominal interest rate 1 is compounded continuously and 
cash Hows occur at times In, If, ,1/1 (We have h kim for the stleam in the 
previous pmagraph; but the more general situation is allowed here) We denote the 
cash now at time" by tUd In that case, 

" PV L t(l,)e-'" 
k::::tl 

This is the continuous compounding tormula tOf pfesent value 

Present Value and an Ideal Bank 

We know that au ideal bank can be used to change the pattern of a cash flow slf eam 
FOI example, a 10% bank can change the stream (1,0,0) into the stream (0,0, I 21) 
by receiving a deposit of $1 now and payiug principal and interest of $1 21 in 2 yenrs 
The bank can <lIso wOfk in a feverse fashion and Uaffstofm the second .stream into the 
first by issuing a loan 101 $1 now 
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In general, if an ideal bank can transform the stream (xo, xl" , XII) into the 
stream ()'I), )'f, , hI)' it can also transform in the reverse direction Two streams 
thaI. can be transformed into each other are said to be equivalent streams. 

How can we tell whether two given streams are equivalent? The answer to this 
is the muin theorem on present value 

Main theorem 011 present Jla/ue Tlte CQy/i flow ~trea111'i x (xo, Xf, ,XII) and 
Y (vo,)lf. ,h,) me equivalent for a cOla/anI ideal bank willi iUlclcst lale 1 Ij Gnd 
on!), if tlle ple~elll valul!\ oj tlie t .. va slieallH, evaluated allhe bank's ill/erc'll Jale, are 
equal 

Proof: Let Vx and Vy be lhe present values of lhe x and y streams, respec­
tively, Then the x stream is equivalent to the stream (vx, 0, 0, ,0) and the 
y stream is equivalent to the stream (vy, 0, 0, ,0) 

It is clear that these two streams are equivalent if and only if Vx :=: Vy 

Hence the original streams are equivalent if and only if Vx = Vy I 

This result is impOltant becnuse it implies that plesent value is the only number 
needed to characterize n cash flow stream when an ideal bank is available< The stream 
can be transformed in n variety of ways by the bank, but the present value remains 
the same So if someone offers you a cash flow stream, you only need to evaluate its 
corresponding plesent vnlue, because you can then use the bank to tailor the stream 
with that present value to any shape you desire 

2.4 INTERNAL RATE Of RETURN 

Internal rate of return is another important concept of cash flow analysis It per­
tains specifically to the entire cash flow stream associated with an investment, not 
to a partial stleam such as a cash flow at a single period The streams to which 
this concept is applied typically have both negative and positive elements: the neg­
ative flows con espond to the payments that must be made; the positive flows to 
payments received A simple example is the process of investing in a certificate of 
deposit tor n fixed period of I year Here there are two cash flow elements: the 
initial deposil or pnyment (a negative flow) and the final redemplion (n positive 
flow) 

Given a cash flow stream (.\{), XI, , \'/1) associated with an investment, we 
write the present value formula 

" PV=L 
k=O 

If the investment that cOflesponds to this stream is constructed from a series of deposits 
and withdrawals from a constnnt ideal bank at intelest rate I, then from the main 
theorem on plesent value of the previous section, PV would be zero The idea behind 
internal rate of retUln is to tum the procedllJe around Given a cash flow stream, we 
write the expression for present value l.JJ1d then find the value of I that renders this 
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present value equal to zelo Thal vulue is culJed the inteJnai rate ot lelum because it 
is the interest late implied by the inlelnai slrucltlle of the cash now slleum The idetl 
can be applied to any series of cash flows 

The preliminary 100mai definition ot the intern"1 r"te ot return (lRR) is as 101-
lows: 

bzternal rate oj I elllnz Let (.to, XI , x~, , \'11) be a [mil flow .\11 ealll J hell I he ill-

lellw/late aj lelll"l (4IhL\ .\llealll i.~ a 11lIIllbei I wlL\jving the equation 

o + + (23) 

Eqlllt'a/elll/y, ill; a IIlI/lI/m I ,lCI/i;jl'illg 1/(1 -i-I) = ( [Ihal iI, I (I/() - 11, whew 
L .wtL~fie.~ the po/vl/omial eqllation 

(24) 

We call this a pleliminmy definition because there may be L1mbiguily in the 
solution ot the polynomial equation of degree II We discuss this point shOJtly First, 
howevel, lel us illuslwte the compulation of the inlewul rale of relurn 

Example 2.3 (The old stream) Consider ag"in the cash flow sequence (-2, I, I, I) 
discussed earlier The inlerntll lllte 01 return is fOllnd by solving the equation 

o = -2 + ( + c' + c l 

Thc solution can be found (by tri"1 Hnd enor) to be ( 81, and thus lRR = (I/e) 
I n 

Notice that the intelJlaltate of relurn is defined wilhoultefelence lo a prevailing 
interesl rute It is delermined enlirely by the cash flows ot lhe slleam This is lhe reason 
why it is called lhe illtellwl rale of relurn; it is defined internally withoul reference lo 
the external fin"nci"1 world It is the rate that an ideal bank would have to apply to 
generate lhe given stream f10m an inilial balance ot zelO 

As poinled out, equution (24) fO! the inlemal rate of letUlTI is a polynomial equa­
tion in C ot deglee n, which does nol, in general, have an analylic solution However, it 
is almo~l always easy to solve the equation with a computet From algebraic theory il 
is known lhal such an equation always has at least one lOol, and may have as many as 
II rools, but some 01 all ot these lOots may be complex numbers FOllunately lhe most 
common fOlln ot inveslmenl, where there is un initial cash outlay toll owed by several 
positive Hows, leads to a unique positive solulion Hence the inlernal rale ot relurn 
is then well defined and relatively easy to calculate (See Exercise 4) The formal 
slatement ot the exislence ot the positive rool embodies lhe main lesull concerning 
the intelnallate of letUlTI 

Maill theorem oj illterllal rate oj 7'etUlIl Suppose the emir flow .Hleam (.to, \'1, 

XII) 11m ,\"0 < a and '"k ~ a 1m all k, k = 1,2, , n, with atlemt mw tellll being 
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f(e) FIGURE 2.3 Function for proot If '1'0 < 0 
and "'J.. 2: 0 for all k, 1 .::: k .::: n, with at 
least one term being strictly posilive, then 
the function f(c) will slart below the hori­
zonlal axis and increase monotonically as c 
increases Therefore there mUSl be a unique 
positive solution c salisfying f(c) = 0 

~·Ilictl\' pmitivl! TheIl Ihel e i~ a lI11iqul! pori/ive lOot 10 the equation 

FIIl/hellllOle, if E~=o rk > a (meaning that tire lolal amollnt le/llIlled etceeds the 
illitial illVe'llment), fhell the cOlle~polldillg inlelllal rale of Ie/mil I = (lIe) - I i~ 

positive 

Proof:" We plot the funclion t (c) = .\'0 + Xli. + X2c2 + + x'le ll , as shown 
in Figure 2.3 Note that f (0) < 0 However, as c increases, the vulue at f (c) 

also incleases, since at least one of the cash flow tellTIS is slriclly positive 
Indeed, it increases without Iimil as l.' increases to infinily Since the funclion 
is continuous, it muSl cross lhe axis al some value of l. It cannol cross more 
lhan once, because it is slriclly increasing Hence lhere is a unique real value 
co, which i~ positive, for which f (co) 0 

It L~=() x.{ > 0, which means that there is a net positive (nondrscounled) 
cash now, then t (I) > 0 This meuns that the solution Co satisfying t «0) 0 
must be less thun I Therefore 10 (I/co) - I > 0, where 10 i~ the internal 
rate of return I 

If some (or all) solultons lo lhe equation for inlernal rate of relurn are complex, 
the inlelpl'etalion of lhese values is nol simple In general it is reasonable to select the 
solulion lhal has the Imgest leal part and use that leal parl to detelmine the intemal 
rale of leluln In plUctice, however, lhis is nol often a seIlom. issue, since suitable lcal 
roots typically exist 

2.5 EVALUATION CRITERIA 

Thc essence of investmenl is seleclion flom a number ot altemalive cash flow slreams 
In Oldcl lo do this inlelligently, lhe altelnative cash flow slreams musl be evalualed 
accOlding lo a logical and stnndard clilelion Sevelnl diffelenl cliteIia ale used in 
practicc, but lhe lwo mosl importanl melhods me those based on present value and on 
inlelnallale of leturn 
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Net Present Value 

Present value evaluates alternatives by simply ranking them according to their present 
values-the higher the present value, the more desirable the alternative When one 
uses present value this way, one must include all cash flows associated with the 
investment, both positive and negative To emphasize that, the expression net present 
value (NPV) is frequently used Net present value is the present value of the benefits 
minus the present value of the costs Otten, to emphasize this partition ot benefits and 
costs, the ter ms present worth of benefits and present worth of costs are used, both 
of which are just present values Net present value is the difference between these 
two terms To be worthy of consideration, the cash flow stream associated with an 
investment must have a positive net present value 

Example 2.4 (When to cut a tree) Suppose that you have the opportunity to plant 
trees that latel can be sold tor lumber This plOject requires an initial outlay of money 
in ordel to pUlchase and plant the seedlings No other cash flow OCCUIS until the trees 
are harvested However, you have a choice as to when to harvest: after I yem or after 
2 years It you hmvest after I year, you get Y0ul retUlTI quickJy; but if you wait an 
additional year, the trees will have additional growth and the revenue generated flom 
the sale of the trees will be greatel 

We assume that the cash flow streams associated with these two altematives are 

(a) (-1,2) cuteurly 

(b) (-1,0,3) cut later 

We also assume that the prevailing interest rate is 10%, Then the associated net present 
values are 

(ll) NPV -I -I- 2/1 I 82 

(b) NPV = -I -I- 3/(1 1)' 148. 

Hence according to the net present value critelion, it is besl to cut later 

The net present vulue criterion is quite compelling, and indeed il is generally 
legarded as the single best measure of an investment's merit, It has the special advan­
tage that the present values of different investments can be added together to obtain a 
meaningful composite This is because the present value of a sum ot cash flow streams 
is equal to the sum of the present values of the conesponding cash flows Note, for 
example, that we were able to compare the two investment alternatives associated with 
tree tarming even though the cash flows were at different times In genelal, an investor 
can compute the present value ot individual investments and also the present value ot 
an entire portfolio 
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Internal Rate of Return 

Intemal rate of return cun also be used to rank altelnative cash flow streams The rule 
is simply this: the higher the intetnal rate of return, the more desirable the investment 
However, a potentilll investment, OJ projecl, is presumably nol worth considering unless 
its intelnal rate of letllln is greater than the prevailing interest rate If the internal rate 
ot return is greatel than the prevailing interest late, the investment is considered better 
than what is available externaIly in the finuncial mmkct 

Example 2.5 (When to cut a tree, continued) Let liS nse the internal rate of retUITI 

mel hod to evaluate the lWO tree hat vesling proposals considered in Example 2 4 The 
equations tor the inlernal lute 01 retUln in the two cases are 

(a) -I +2[ 0 

(b) -1+.3['=0 

As usual, c = 1/(1 + I) These have the following solutions: 

(a) c 
2 1+1 

I = I 0 

v'3 I 
,=v'3-I'" (b) [ 

1+1 
; 

In olher words, for (0), cUl early, the inlernal rale of return is 100%, whereas 
tor (b) il is aboul 70% Hence under the inlernal rate of teturn criterion, the best 
alternalive is (0) Note that this is opposite to the conclusion obtained from the net 
present value crilerion 

Discussion of the Criteria 

There is considerable debate as lo which ot the two criteria, net present value or 
intetnal rate ot retuln, is the most applOpriate for investment evaluation Both have 
attHlctive tealures, and both have limitations (As shown, they can even give con­
flicling lecommendalions) Net plesent value is simplest lo compute; il does not have 
the ambiguity associated wilh the several possible rools ot the internal rate ot return 
equation Also net present value can be broken into component pieces, unlike internal 
rate ot retull1 Howevel, intelnallate of relUin has the advantage lhat it depends only 
on the properties of the cash flow stream, and not on the prevailing interest rale (which 
in practice may not be easily defined) In tact, the two methods both have appropriate 
toles, but in cliffelent situations 

The primary diilerence between the lWo criteria can be explained in terms of lhe 
"when to cut a tree" example We must look beyond the single cycle of tree tarming 
lo a series of cycles Suppose that the plOceeds of the firsl hat vest ate used to plant 
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additional trees, stHlling a long seties ot expansion in the tree falming business Un­
der plan (0), clit eurly, the business call be doubled every yea! because the leventte 
leceived at the end of the year is twice that required at the beginning In plan (b), 

cut later, the business can be tdpled every 2 yems by the same reasoning T Jipling 
every 2 ye,ms is equivalent, in the long run, to incleasing by a 1uctor of v'3 cvelY 
yeat The yemly growth rates 01 these two plans, taclOls of 2 and J], lespectively, 
are each equal to I plus the internal lutes ot retUi n 01 the plans-and this equality 
is tlUe in general So in this kind 01 situalion, where the proceeds 01 the investment 
c(ln be repeatedly Icinvested in the same type 01 project but scaled in size, it makes 
sense lo select thc plOject with the hugcst internal late ot return-in Older to get the 
grentest growth 01 cnpi tal 

On the othel hand, suppose that this investment is a one-timc opportunity and 
cannot be lepeated Here the net plesent value method is the appropriatc criterion, 
since it compares the investment with what could be obtain cd through normal chan­
nels (which otter the prevailing rate 01 interest) 

It is widely agreed (by theorists, but not nccessi.uily by plactitionels) that, ovel­
all, the best cliterion is that based on net present value If used intelligently, it will 
plOvide consistency and ralionality In the case of culting the uces, 101 example, an 
enlightcned prescnt value analysis will agree with the result obtained by the intemal 
rate ot letUIl1 cIitelion II" the two pO.'-isible 1utUlc5 ale developed fully, conesponding 
to the two cutting policies, the plesent value crilelion, applied to the long serics 01 
expanding cash flows, would also direct that plan (a) be adopted 

There moe many othel lactOis that iniluence a good present value analysis-and 
peilulps make such nn annlysis mOle complex tfwn suggested by the dilecl torma1 
statement 01 the cIitclion One significant issue is thc -"election of the inlelest rate 
lo be used in the calculation In praclice, lhcle mc several diffelcnt "lisk-Iree" rates 
ot inlerest in the financial mmkel: the lute paid by bank cellificates 01 deposit, lhe 
3-month US Tlea:-lUlY bill lale, lind the ratc paid by the highest grade commetcial 
bonds ale exnmples Flllthell110lC, the lUtes 1m borrowing ale typically slightly highel 
than those 10r lending The diffelence betwecn all these choices can be .'-icvelUl PCI­
centagc points In busincss dccisions il is common to use a figure called the cost of 
capital as the bnseline rale This tigllIe is the rate 01 rctliln that thc company mllsl 
olTel to potcntial investOls in thc company; that is, il is the cost the company musl 
pay to get additional funds 01 sometimes it is laken to be the lale 01 letliln expected 
on alternativc desiHlble plOject.'-i Howevcl, some 01 these cost 01 capitul figUies ale 
derived f rom uncertain cash flow streams and ale nol lef1l1y applOpriale measures of 
a lisk-hee intelest !ate FOI present value calculations il is best lo use !ales lhal lep­
lesent true intelest rates, since we assume lhat the cash Hows me cerlain Somc ot thc 
apparent differences in lhe.'-ie lUtes are explained and justified in Chapter 4, but stilt 
thele is lOom 101 judgment 

Anothel faclO! to considcl is lhat present value by itselt docs not !evenl much 
about the rale 01 leturn Two altell1l.llivc inveslmcnts mighl each have a net present 
value of $100, but one might lequire an investment 01 $100 wheleas the other lequiles 
$1,000,000 Clearly these two alternatives should be viewed ditferently Net present 
value is nol the whole StOiY (but wc ncvel said it was) It 101l11S a solid stmting point, 
but onc musl supplement its use with additional Sll uctUie 
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2.6 APPLICATIONS AND EXTENSIONS· 

This section illustrates how the concept~ of this chaptel can be used to evaluate real 
investment Oppot tunities and projects Often cleative thinking is required to capture 
the essence of a situation in a fOim that is suitable for analysis 

Not all of these applications need be read during the first pass thlough this 
chapter; but as one leturnS to the chaptel, these examples should help clalify the 
undellying concepts 

Net Flows 

In conducting a cash flow analysis using either net present value or internal rate of 
return, it is essential that the net 01 income minus expense (that is, net profit) be used 
as the cash fiow each period. The net profit usually can be found in u straightforward 
manner, but the process can be subtle in complex situations In particular, taxes often 
introduce complexity because certain tax-accounting costs and profits are not always 
equal to actual cash outflows or inflows Taxes are considered in a later subsection 

Here we uSe a relatively simple example involving a gold mine to illustrate net 
present value analysis Various gold mine examples are used throughout the book to 
illustrate how, as we extend our conceptual understanding, we can develop deeper 
analyses of the same kind of investment The Simplico gold mine is the simplest of 
the series 

Example 2.6 (SimpIico gold mine) The Simplico gold mine has a gleat deal of 
remaining gold deposits, and you aTe part of a team that is considering leasing the 
mine from its owners for a period of 10 years Gold can be extracted from this mine 
at a rate of up to 10,000 ounces per year at a cost of $200 pel ounce This cost is the 
total operating cost of mining and refining, exclusive of the cost of the lease Currently 
the market price of gold is $400 per ounce The intelest rate is 10% Assuming that 
the price of gold, the operating cost, and the intelest rate remain constant ovel the 
10-year period, what is the present value of the lease? 

This is fairly straightforward. We ignore the lease expense and just find the 
present value of the operating profits It is clear that the mine should be operated at 
full capacity every year, giving a profit of 10,(}00 x ($400 - $200) $2 million per 
year We assume that these cash flows OCCUI at the end of each year 

The cash fiow stream therefole consists of 10 individual fiows of $2M (that is, 
$2 million) at the end of each year The present value is accordingly 

py 
iO $2M 80l)k 

·Seclions mllrked by sian; may be skipped <II !irsl reading 
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This can be evaluated either by direct summation or by using the formula for the sum 
of a geometric series The result is 

and this is the value of the lease 

Cycle Problems 

When using interest rate theory to evaluate ongoing (repeatable) activities, it 1:-; essential 
that alternatives be compared over the same time horizon The difficulties that can arise 
(rom not doing this ure illustrated in the tree cutting example The two altematives in 
that example have ditterent cycle length" btn the nature of the possible repetition of 
the cycles wa, not clear Iy 'pelled out or iginally 

We ilIustrate here two ways to account properly [or different cycle lengths The 
first is to repeat each alternative until both terminate at the same time For example, 
if a first alternative lasts 2 years and a second lasts 4 years, then two cycles ot the 
first alternative are comparable to one of the second The other method tor comparing 
altemutives with different cycle lengths is to assume that an aItemative wiII be repeated 
indefinitely Then a simple equation can be written 10r the value ot the entire infinite­
length stream 

Example 2,7 (Automobile purchase) You are contemplating the purchase of an 
automobile and have nan owed the field down to two choices Car A costs $20,000, is 
expected to have a low maintenance cost of $1,000 pel year (payable at the beginning 
01 each year after the first year), but has a useful mileage life that for you ttanslates 
into 4 years Car B com $30,000 and has an expected maintenance co,t of $2,000 per 
year (after tIle first year) and a u,eful lite of 6 yems Neither car ha, a ,alvage value 
The intere't rate i, 10% Whicll car ,hould you buy? 

We analyze this choice by assuming that similar alternatives will be available 
in the fu ture-we are ignoring inflation-so this purchase is one of a sequence ot car 
purchases To equalize the time horizon, we assume a planning period of 12 years, 
conesponding to three cycles of car A and two of car B 

We analyze simple cycles and combined cycles as follows, 
Car A: 

One cycle 

I hree cycle, PYA] 

] I 
= 20,000+ I,OOOL: --I 

'~I (I I) 
$22,487 

PY A [I + ~ + (I \ )8 ] 

= $48,336 
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Cat B: 

One cycle PYa 

Two cycles PY01 

5 I 
10,000 + 2,000 k~ (Tl)k 

$37,582 

PYa [I + 

$58,795 

Hence car A should be selected because its cost has the lower present value over the 
common time hor izon 

Example 2.8 (Machine replacement) A specialized machine essential for a com­
pany's operations costs $10,000 and has operating costs of $2,000 the first year. The 
operating cost increases by $1,000 each year thereafter We assume thot these oper­
ating costs occur at the end of each year The interest rate is 10% How long should 
the machine be kept until it is replaced by a new identical machine? Assume that due 
to its specialized nature the machine has no salvage value 

This h; an example where the cash flow stream is not fixed in advance because 
01 the unknown replacement time We must also account for tIle cash flows of the 
replacement machines l1lis can be done by writing an equation having PV on both 
sides For example, suppose that the machine is leplaced every year Then the cash 
fiow (in thousands) is (-10, -2) followed by (0, -10, -2) and then (0,0, -10, -2), 
and so torth However, we can write the total PV of the costs compactly as 

PY 10+2/11 +PY/I I 

because after the first machine is replaced, the stream from that point looks identical 
to the or iginal one, except that this continuing stream starts I year later and hence 
must be discounted by the effect of I yefLf's interest The solution to this equation is 
PY = UO 01, in OUI original units, $UO,OOO 

We may do the Stlme thing assuming 2-year rcphlcement, then 3 years, and so 
forth The general approach is based on the equation 

PYlel", PY, ,yd, + ( A ) k PYlol", 

whele Ie is the length of the basic cycle This leads easily to Table 2 .1 
From the ttlble we see that the smallest present value of cost occurs when the 

machine is replaced after 5 ye<lrs Hence that is the best replacement policy 

Taxes 

Taxes can complicate a cash How value analysis No new conceptual issues arise; 
it is just that taxes c<ln obscme the true definition of cash flow If a uniforlTI tax 
rate were applied to all revenues and expenses as taxes and credits, respectively, 
then recommendations flom betore-tax and atter-tax nnulyses would be identical TIle 



TABLE 2.3 

Machine Replacement 

Replacement year Present value 

3 
4 
5 
6 

130,000 
82,381 
69,577 
65,358 
64,481 -
65,196 

Ihe lotal prCI'cllt va/lit! iI [ol/lld /01 I'(lf­

iOlo t'cpJaU:lJwllt jreqlw/lciel' Tht; be~1 
policy COfleJjJou(/1 to tlw jrequuu.y JUlI'­

illg Ihe l/lwl1e\l to/a} pri:I'1:1II \'(//lle 
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present value figures from the latter analysis would merely all be scaled by the same 
[actor; that is, all would be multiplied by I minus the tax rate The internal rate of 
return figures would be identical Hence rankings using either net present value 01 

internal rate of return would remain the same as those without taxes For this reason 
taxes are ignored in many of our examples Sometimes, however, the cash flows 
required to be reported to the government on tax forms are /lot true cash flows This 
is why firms often must keep two sets 01 accounts----one for tax purposes and one for 
decision-making purposes There is nothing illegal about this practice; it is a reality 
introduced by the tax code 

A tax-induced distortion 01 cash flows frequently accompanies the treatment of 
property depreciation Depreciation is treated as a negative cash flow by the govern­
ment, but the timing of these flows, as reported for tax purposes, rarely coincides with 
actual cash outlays The 10110wing is a simple example illustrating this disclepancy 

Example 2.9 (Depreciation) Suppose a firm purchases a machine [or $10,000 This 
machine has a useful life of 4 years and its use generates a cash flow of $3,000 each 
year The machine has a salvage value o[ $2,000 at the end ot 4 years 

The government does not allow the full cost of the machine to be lepOited 
as an expense the first year, but instead lequiles that the cost of the machine be 
depleciated over its useful life Thele are several depreciation methods, each appli­
cable under various cilcumstances, but for simplicity we shall assume the st!uight­
line method In this method a fixed pOition of the cost is lepOited as depreciation 
each year Hence corresponding to a 4-year life, one-fourth of the cost (minus the 
estimated salvage value) is reported as an expense deductible from levenue each 
yem 

It we assume a combined federal and state tax rate of 43%, we obtain the cac;;h 
flows, before and after tax, shown in Table 24 The salvage value is not taxed (since 
it was not depreciated) The present values for the two cash flows (at 10%) are also 
shown Note that in this example tax IUles convert an otherwise profitable opelation 
into an unprofitable one 
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TABLE 2A 
Cash Flows Before and After Tax 

Year Before~tax cash flow Depreciation Taxable income Tax After-tax cash flow 

-10,000 -10,000 
3,000 2,000 1,000 430 2,570 
3,000 2,000 1,000 430 2,570 

3 3,000 2,000 1,000 430 2,570 
4 5,000 2,000 1,000 430 4,570 

PV 876 -487 

FI-o/JI a prCIClIll'(lluc Irjell'fJoillt, lax fIIlc\ for trca/lIICl1t (~r depredation Wlz {.(}flI'a/ a po/cllliallr projitab/e 
1'l!ltlllle ill/o all1111jJlojiMh/e O//I! 

Inflation 

Inflation is I.lnothel factor that often causeS confusion, mi5ing from the choice between 
using actual dollar values to desclibc cash flows and using values expressed in purchas­
ing power, determined by reducing inflated future dollar values back to a nominal level 

Inflation is characterized by an increase in general prices with time Inflation can 
be dcsclibed quantitatively in terms of an inflation rate f Prices I year [rom now 
will on average be equal to today's plices multiplied by (I + f) Inflation compounds 
much like interest does, so aftel k year s 01 inflation at rate f, prices will be (I + f)' 
times their original values Of course, inflation rates do not remain constant, but in 
planning studies future rates are usually estimated as constant 

Anothel way to look at inflation is that it erodes the purchasing power of money 
A dollar today does not purchase as much bread or milk, for example, as a dollar did 
10 years ago In other words, we can think of prices increasing or, alternatively, of 
the value 01 money decreasing If the inflation rate is f, then the value of a dollar 
next year in terms of the purchasing power of today's dollar is 1/(1 + f) 

It is sometimes useful to think explicitly in terms of the same kind 01 dol­
lars, eliminating the influence 01 inflation Thus we consider constant dollars or, 
alternatively, real dollars, defined relative to a given reference year These are the 
(hypothetical) dollars that continue to have the same purchasing power as dollars did 
in the reference yeac These dollars are defined in conLrast to the actual or nominal 
dollars that we really Use in tI ansactions 

This leads us to define a new interest rate, termed the real interest rate, which 
is the rate at which real dollms increase i1 left in a bank that pays the nominal rate 
To undelstand the meaning of the real intelest rate, imagine depositing money in the 
bank at time zelO, then withdrawing it I year later The purchasing powel of the bank 
balance hus probably increased in spite 01 inflation, and this increase measulCs the 
real rate 01 interest 

If one goes thlOugh that thinking, when I is the nominal interest rate and f is 
the inflation rate, it is easy to see that 

1+1 
1+10 = 1+ f 
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where 10 denotes the real rate of interest This equation expresses the fact that money 
in the bank increases (nominally) by I + I, but its purchasing power is dellated by 

1/(1 + f) We can solve for 10 as 

1-
10= 

+ 
(25) 

Note that fOi small levels 01 inflation the real late of interest h; approximately equElI 
to the nominal late of interest minus the inflation rate 

A cash flow analysis can be carlied out using either actual (nominal) doll;:lIs or 
real dollms, but the danger is that a mixture of the two might be used inadvertently 
Such a mixture sOl11etimes oeeUiS in the planning studies in lmge corporations The 
operating divisions, which are primadly concerned with physical inputs and outputs, 
may extrapolate real cash flows into the future But corpOiate headquarters, being 
primarily concerned with the financial market and tax rules, may find the use of 
nominnl (that is, actual) cash flows more convenient and hence may discount at the 
nominnl rate The result can be Un undelvaluation by headquarters of project proposals 
submitted by the divisions lelative to valuations that would be obtained if inflation 
were treated consistently 

We illustrate now how an analysis cnn be carried out consistently by using either 
real or nominal cash flows 

Example 2.10 (Inflation) Suppose that inflation is 4%, the nominal interest rnte is 
10%, and we huve a cash flow of real (or constant) dollars as shown in the second 
column of Table 25 (It is common to estimate cash flows in constant dollars, rel­
ative to the present, because "ordinmy" price incleases can then be neglected in a 
simple estimation of cash flows) To determine the present value in real terms we 
must use the leal lUte of intolest, which flOm (25) is 10 = ( 10 04)/104 = 
5.77% 

TABLE 2.5 

Inflation 

Year Real cash flow PV @5.77% Nominal cash flow PV @10% 

0 -10,000 -10,000 -10,000 -10,000 
1 5,000 4.727 5,200 4,727 

5,000 4,469 5.408 4,469 
3 5,000 4,226 5,624 4,226 
4 3,000 2,397 3,510 2,397 

Total 5,819 5,819 

'j he projeued )WI/ ((11/1 j/()!\'\ of fIn" l"ecO/u/ colUlII1I hm'(' f/le PU'I"NIf I'a/uc\ (/f fIn 
rea/ /TIf(' ofhlferclf 1/,011'11 ill flit' flzifd (o/mllll Tlze/Olllf/l (0/1/1(1/1 Ji\f~ flit' ('mlij/owl 
f/rat would oaw ml(lel ,1% illj/afioll a/ld f/leir //l"{;I"ellf l'll/lIe\ (/f fhe /Os(, )/(//Ili//(// 

U/ft' of illfefelf art gil'ell ill fire jifth willi/ill 
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Alternatively, we may convelt the cash flow to actual (nominal) terms by inflating 
the figures using the appropriate inl1ation factors Then we determine the present value 
using the nominal intelest late of 10% Both method~ produt.'e the same result 

2.7 SUMMARY 

The time value 01 money is expressed concretely as an inle!est rate The l~year in~ 

teresl rate is the price paid (explessed as a pcrt.'entagc oj principal) for bonowing 
money 1'01 I year In simple interest, the intelest pnyment when bonowing money in 
subsequent years is identical in magnitude to that oj the Iilst yea! Hence, fO! example, 
the bank balance resulting hom a single deposit would grow linearly year by year In 
compound interest, the interest payment in subsequent years is based on the balance 
at the beginning of that yeal Hence the bonk balance lesulting flOm a single deposit 
would glOw geometr ienlly yem by year 

A useful applOximation is that the numbel of years lequired 101 a deposit to 
double in value when compounded yearly is 72/ i, where i is the interest rate expIessed 
as a percentage For example, at 10%, money doubles ill about 7 year.s 

Interest can be compounded at any trequency, not ju~t yearly It is even possible 
to compound continuously, which leads to bank balances that grow exponentially with 
tinle When inteIest is compounded mOle frequently than yearly, it is useful to define 
both a nominal rate and an eflective annual rate or interest The nominal rate is the rate 
used fOi a single period divided by the length (in years) of a period The effective rate 
is the rate that, if applied without compounding, would give the same total balance for 
money deposited for one full year The effective rate is Imgel than the nominal rate 
For example, an 8% nominal annual I ate conesponds to an 8 24% effective annual 
rute under qum terly compounding 

Money Ieceived in the future is worth less than the same amount 01 money 
received in the present because money Ieceived in the plesent can be loaned out to 
earn intelest Money to be received at a futUie date must be discounted by dividing 
its magnitude by the factor by which present money would glOw if loaned out to that 
futUie date There is, accordingly, a discount 1actOI 101 each future date 

The present value 01 a cash flow sHeam is the sum of the discounted magnitudes 
of the individual cash flows of the stream An ide[ll bunk can transform 1:1 cash flow 
stlearn into uny other with the same pIesent v[llue 

The internal lUte of return of a cash flow stleam is an inteIest rate that, it used to 
evaluate the present value of the Stleam, would cuuse th[lt present value to be zero In 
genel<.ll, this rate is not well defined However, when the cash flow stlearn hns an initial 
negative flow 101l0wed by positive nows, the internal rate of letUIn is well defined 

Present value and internal rate of return ale the two main methods used to 
evaluate plOposed investment projects thl.1t genelnte detelillinistic cash now streams 
Undel the plesent v.liue lramework, if there me sevelal competing altelnatives, then the 
one with the highest pIesent value should be selected Under the inteInallute of return 
criterion, the alternative with the largest internal rate of retUin should be selected 

Analyses using these methods are not alwuys stl<lightforwmd In pmticular, con~ 
sideration of various cycle lengths. taxes, and inflation each Iequire careful attention 
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L (A nice inherilance) Suppose $1 were invested in l776 <It 31% interesl cOn1{Xlunded 
yearly 

(0) Approximately how much would that investment be wonh today: $1,000, $10,000, 
$100,000, or $1,000,000'1 

(b) Whm if the inlerest ratc were 669'0? 

2. (The 72 nile) The number ot years II required for an investment 1.11 imerest rate I to double 
in value musl satisfy (1 + I yl = 2 Using In 2 = 69 and the approximation In( I + I ) ~ I 

valid ror small" show that /I ~ 69/i, where i is the interest rate percentage (that is. 
i = 100,) Using the better approximation In( 1 +, ) ~ , - !/2, show that lor, ~ 08 there 
holds 11 ~ 72/i -

3. (Effective nltes) Find the corresponding effective rates for: 

(a) 3% cOnlpounded monthly 
(b) 18% compounded monlhly 
(t) 18% compounded quarterly 

4. (Newton's method 0) The IRR is generally calculated using an iterMive procedure Sup~ 

pose that we define I (A) = -ao + {{I A + 02A 2 + + {{nAil, where all {{I' S arc positive and 
11 > I Hefe is an iterative technique that generates a sequence AO, AI' A2. ,Ak, ot 
estimates that converges to the root X > 0, solving / (X) = 0 Start with <Iny AO > 0 close 
to the solution Assuming A~ has been colcl1lated, evaluate 

and define 

t (Ad = {{I + 2a2Ak + 3aJAi + + IlllnArl 

A - A _ J(Ad 
k+1 - k r(A~) 

This is Newton's method It is based on approximating the function / by a line tangent to 
its graph at Ab as shown in Figure 1. 4 Try the procedure on J(A) = -I + A + A1 Start 
with AO = I and compute four additional estimates 

fiGURE 2.4 Newton's method 

71 
/ 1 

/ 1 
/ 1 

°Exercises rollowed by 0 arc Inillhcnlatic;.lily more difficult thull nvcmgc 
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5. (A prize) A major lottery advertises thilt it pays the winner $10 miiHon However, this 
prize money is paid at the rate of $500,000 each year (with the first payment being imme­
diate) fot a total of 20 payments What is the present value of this prize at 10% interest? 

6, (Sunk costs) A YDltng couple has tmtde u nonrefundable deposit of the first month's 
rent (equal to $1,000) 011 U 6-month apartment lease The next day they find a diftelcnt 
apartment that they Hke just as well, but its mOllthly rent is only $900 They plun to be in 
the apartment only 6 months Should they switch to the new aparttnent? What jf they plan 
to stay 1 year? Assume an interest rate of 11% 

7. (Shortcut) Gavin Jones is inquisitive and tJetermined to learn both the theory and the 
application of investtnent theory He pressed the tree farmer for additional information and 
lemned that it W<lS possible to delay cutting the trees of Example 24 for another year The 
farmer said th.lt, from a present value pers~ctive, it was not worthwhile to do so Gavin 
instantly deduced that the revenue obtnined must be less than x What is .\"7 

8. (Copy machines m) Two copy machines me available Both have llseful lives of 5 years 
One machine can be either leased or purchased outright; the other mUst be purchased 
Hence there nre :1 total ot three options: A, B, Imd C The details are shown in Table 26 
(The first year's maintenance is included in the initial cost There are then four additionul 
maintenance payments, occurring at the beginning of each year, lollowed by revenues from 
resale) The plcsent vulues ot the expenses of these three options using a 10% interest rate 
are also indicated in the table According to a present value analysis, the m:lchine of least 
cost, as measured by the present value, !-Ihould be selected; that is. option B 

TABLE 2.6 

Copy Machine Options 

Option 

A c 

Initial outlay 6,000 30,000 35,000 
Yearly expense 8,000 2,000 1,600 
Resale value a 10,000 12,000 
Present value (@10%) 31,359 30,131 32,621 

OptlfJ/l A /\ a feme, ofJIiom 8 mlf/ C III e fJun./wH!,\ (~r 
two II/remaril'!' I/j(l(.!lillf'\ All hfll'e 5-1'cm /i\'e~ 

It is not possible to compute the IRR for any 01 these aitelnatives, because III! cash 
nows are negative (ex.cept for the resale values) However, it is possible to calculate the 
IRR on an incremental basis Find the IRR corresponding to a change from A to B Is tI 

ch,mge I rom A to B justified on the b'lsis of the IRR! 

9. (An appraisal) You are considering the purchase of a nice home It is in every way perfect 
lor you and in excellent condition. except lor the root The rool has only 5 years of life 

C!)Excrciscs roil owed by m rcqlllre mlmericui cOlnpululion 
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remaining A liew root would last 20 years. but would cost $20,000 rile house is expected 
to last torever Assuming that costs will remain COilstant and that the interest rate is 5%, 
what value would you a!-\sign to the existing roof? 

10. (Oil depletiol1lillowanc(8) A wealthy investor spends $1 million to dlill nnd develop 1m 
oil well that has estimated reserves ot 200,000 barreLs The well is to be operated over 
5 years, producing the estimated quantities shown in the second column of r able 27 It is 
estimated thut the oil will be sold lor $20 per banel The net income is also shown 

Oil Investment Details 

Barrels 
Year produced 

80,000 
70,000 
50,000 
30,000 
10,000 

Gross Net 
revenue income 

1,600,000 1,200,000 
1,400,000 1,000,000 
1,000,000 500,000 

600,000 200,000 
200,000 50,000 

Option 1 Option 2 

352,000 400,000 

Depletion Taxable 
allowance income Tax 

Aftel-lax 
income 

400,000 800,000 160,000 840,000 

A depletion allowance. for tux purposes, e,Ul be computed iII either of two ways each 
year: 22% of gross revenue up to 50% of net income before such deduction (optioll I), 
or the investment cost of the product, equal in this case to the unit cost ot the reserves. 
$5 per burrel (option 2) The allowance is deducted lrom the net income to determine the 
taxClble income T he investor is in the 45% Lax br.'l.cket 

(a) Complete fuble 27 (Ind show that the total depletion .'I.l1owance exceeds the original 
investment 

(b) Calcuillte the PY und the IRR for this investment Assume an interest rate of 20% 

11. (Conflicting reCOI11n1endatiom;Hl) Consider the two projects whose cash flows are shown 
in Table 2 R Find the IRRs of the two projects and the NPYs at 5% Show that the IRR 
.'I.nd NPY figures yield difrerent recommendl.1tions C<ln you explain this? 

TABLE 2 U 

Years 

0 

Project I -100 10 30 30 10 30 
Project 2 -150 42 42 42 42 42 

12. (Domination) Suppose two competing projects have cash flows of the form (-A" B,. 
BI> . B,) .'I.nd (-A:,: Bl • B:,:, , B:,:), both with the same length and A,. fh. B" B:,: 

all positive Suppose BdA, > Bl/fh Show that project I wm have a higher IRR than 
project 2 
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13. (Crossing 0) In general, we say th.'!.! two projects with cash flows XI and VI> j = 0, 1,2, . 
II, CIon if ,\"o < Yo and L.;I..,O ri > L:=n)'/ Let Pr{d) and P.l'(d) denote the present values 
of these two projects when the discount factor is d 

(a) Show that there is a crossover v<llue £. > 0 such that Pr(c) = Py(e) 
(b) For Exercise II, calculate the crossover value £. 

14. (Depredation choice) In the United States the accelerated cost recovery system (ACRS) 
must be used for depreciation of assets placed into SCI vice afteI December 1980 In this 
system, assets ilre classified fnto categories specifying the effective ttlx life The classific<t~ 
tion of "3~yC<lI propelty," fot example, includes automobiles, tructOIS for huuling highway 
nailers, light trucks, and certnin mnnUfaCtllling tools The percentnges of the cost for 3~year 
propeay that can be deducted for ench of the first 3 yeals ufteI purchase (including the year 
of purchase) me 25%, 38%, und 37%, respectively The tux code also ullows the alternate 
ACRS method, which fOI 3-year plopelty means thnt the stInight~line percentage of 33t% 
can be used for 3 years 

Which of these methods is prcfelred by un individual who wishes to maximize the 
present value of depreciution? How docs the choice depend on the assumed rate of interest? 

15, (An eIroneous nnalysis) A division of ABBOX COIporation hus developed the concept 
of n new product Plodllction of the product would lequire $10 million in initial cnpltlll 
expenditure It is anticipllted thut I million units would be sold each year for 5 years, nnd 
then the product would be obsolete and production would cense Each year's production 
would require 10,000 hours of lnbm and 100 tons of raw mllterial CUHently the average 
wage rate is $30 pel hour and the cost of the raw mnteIial is $100 per ton The product 
would sell fOf $330 per unit, and this price is expected to be maintained (in real terms) 
ABBOX management likes to usc a 12% discount rate for pIOjects of this type and faces 
II 34% tax HIte on profit The initial capital expenditure can be depreciated ill a suaight­
line fashion over 5 years In its first nnalysis of this project, management did not npply 
inflation factors to the extrtlpolated levenues nnd opeHlting costs What present vulue did 
they obtain? How would the nnsweI chlmge if nil inliation rate of 4% were applied! 

The theOIY of intelest, compounding, present value, and internal rate of return is covered ex~ 
tensively In mnny excellent textbooks A few investment~oriented texts which discuss general 
notions of interest nrc [1-5] The usc of the concepts of NPY nnd fRR for ranking investment 
alternatives is developed in detnfi in the field of engineeIing economy Excellent texts in that 
field include [6-9] A more advanced study of interest is [IOJ, which contains a continuous~time 
version of the "when to cut a tree" exnmpic, which inspired the example given in Section 25 
Exercise 10 is a modification of an example in [6] 
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40 

An interc$t rate is a price, or rent, tor the most popular ot all traded commod­
ities-money The one-year interest rate, [or example, is just the price that 

, .must be paid for borrowing money for one year. Markets for money are 
well developed, and the conesponding basic market price-interest-is monitored by 
everyone who has a serious concern about financial activity 

As shown in the previous chapter, the market interest rate provides a ready 
comparison [or investment alternatives that produce cash flows This comparison can 
be used to evaluate any ca:.;h flow stream: whether mising trom tlansactiolls between 
individuals, associated with business projects, or generated by investments in securities 

However, the overall market associated with interest lates is more complex 
than the simple bank accounts discu~sed in the last chapter Vast assortments ot bills, 
notes, bonds, annuities, futures contracts, and mortgages are part of the well-developed 
markets for money These market items rue not real goods (or hard assets) in the sense 
of having intrinsic value-such as potatoes or gold-but instead are traded only as 
pieces of paper, or as entries in a computel database These Items, in general, are 
leferred to as financial instruments. Their values are derived from the plOmises they 
represent If there is a well-developed mat ket for an instrument, so that it can be traded 
freely and easily, then that instrument is termed a security. There are many financial 
instruments and securities that are directly lelated to interest rates and, therefore, 
provide access to income-at a price defined by the appropIiate interest rate 01 rates, 

Fixed-income securities are financial instruments that are ttaded in well-develop­
ed mmkets and promise a fixed (that is, definite) income to the holder over a span of 
time In our terminology, they represent the ownership of a definite cash flow stream 

Fixed~incomc securities are important to an investOl because they define the 
market for money, and nlOst investors participate in this market These securities are 
also important as additional compmison points when conducting analyses of invest­
ment opportunities that ate not traded in markets, such as a firm's research projects, 
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oil leases, and royalty fights A complchenstve study of financial rnstmments most 
nutUlally statts with a study of fixed-income securities 

3.1 THE MARKET FOR FUTURE CASH 

The classification ot a security as being a fixed-income security is actually a bit vague, 
Originally thts classification meant, as previously stated, that the security pays a fixed, 
well-defined ca..-';;h flow stream to the OWllCI The only uncertainties about the promised 
stream were associated with whether the issuer of the security might default (by, 
say, going bankrupt), in which case the income would be discontinued or delayed 
Now, however, some "fixed-income" secuIities promise cash flow~' whose magnitudes 
ale tied to vmious contingencies or fluctuating indices For example, payment levels 
on an adjustable-rute mortgage may be tied to an interest Hlte index, or corporate 
bond payments may in pmt be govemed by a stock price But in common pat lance, 
such variations ale allowed within a broadel definition of fixed-income securities fhe 
general idea is that a fixed-income security has u cash flow streum that is fixed except 
for variations due to well-defined contingent circumstances 

There are many different kinds of fixed-income securities, und we cannot provide 
a comprehensive survey ot them here However, we shallinention some ot the principal 
types of fixed-income securities in order to indicute the general scope ot such securities 

Savings Deposits 

Probably the most tamilim fixed-income instrument is an interest-beadng bank de­
posit These are otfered by commercial banks, savings and loan institutions, und credit 
unions In the United States most such deposits are guaranteed by agencies of the fed­
eral government The simplest demand deposit pLlyS a late of interest that varies with 
market conditions Over an extended period of time, I-iuch a deposit is not strictly of a 
fixed-income type; nevertheless, we place it in the fixed-income category The interest 
i.\ guaranteed in a time deposit account, where the deposit must be maintained for 
H given length ot time (such as 6 months), or else a penalty fOf early withdrawul is 
assessed A similar instrument is a certificate of deposit (CD), which is issued in 
standard denominutions such as $ 10,000 Large-denomination CDs can be sold in a 
market, and hence they qualify us securities 

Money Market Instruments 

The term money market refers to the market for short-term (I yeal or less) loans 
by corporutions and financiul intermediaries, including, tor example, banks It is a 
well-organized market designed for large amollnts of money, but it is not ot great 
impOltance to long-term investors because of its short-term and specialized nature 
Within this mm ket commercial paper is the telm used to describe unsecured louns 
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(that is, loans without collateral) to corporations The largel denominations of CDs 
mentioned earlier me also pmt of this IllUlket 

A banker's acceptance is a Illore involved money market instrument If com­
pany A sells goods to company B, company B might send a written promise to 
company A that it will pay [or the goods within a fixed time, such as 3 months Some 
bank accept'! the promise by promising to pay the bill on behalf of company B Com­
pany A can then set! the banker's acceptance to someone else at a discount before the 
time has expired. 

Eurodollar deposits arc deposits denominated in dollars but held in a bank 
outside the United States Likewise Eurodollar CDs arc CDs denominated in dollars 
and issued by banks outside the United States A distinction between these Eurodollars 
and regular dollars is due to differences in banking regulations and insurance 

US Government Securities 

The US Government obtains loans by issuing various types of fixed-income securities 
These securities are considered to be of the highest credit quality since they are backed 
by the government itself The most Important government securities are sketched here 

U.S. Treasury bills are issued in denominations of $10,000 or more with fixed 
terms to maturity of 13, 26, and 52 weeks They are sold on a discount basis Thus 
a bill with a face valliC of $10,000 may sell fO! $9,500, the difterence between the 
price and the tace value plOviding the interest A bill can be redeemed for the tull face 
value at the maturity date New btHs are offered each week and are sold at auction 
They are highly liquid (that is, there is a ready market fOi them); hence they can be 
easily sold prior to the maturity date 

U.S. Treasury notes have maturities of I to 10 yeals and ale sold in denom­
Inations as small as $1,000 The owner of such a note receives a coupon payment 
every 6 months until maturity This coupon payment represents an interest payment 
and its magnitude it-> fixed throughout the life of the note At maturity the note holder 
receives the last coupon payment and the face value of the note Like Treasury bills, 
these notes are sold at auction 

U.S. Treasury bonds are issued with maturitIes of more than 10 years They 
are similw: to Tleasury note...;; in that they make coupon payments However, some 
Treasury bonds are callable, menning that at some scheduled coupon payment date 
the Treasury can force the bond holder to redeem the bond at that time for its face 
(par) value 

U.S. Treasury strips are bonds that the U S Treusury issue~ in stripped form 
Hele each of the coupons is issued separately, as is the principaL So a 10-year bond 
when stripped will consIst of 20 semiannual coupon securities (each with a sepa­
late CUSlpl) and an additional principal security Each of these securities genemtes a 

I The Commiucc on Uniform SecuriI[cs Idenlificalion Procedl[re~ (CUSIP) assigns idenlifylllg CUSIP num· 
ben, and codc,~ 10 nIt flectlrlIiefi 
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single cash flow, with no intermediate coupon payments Such fI security is termed a 
zero~coupon bond. 

Other Bonds 

Bonds are issued by agencies 01 the tederal govclnment, by state and local govetn­
ments, and by COl pOI ations 

Municipal bonds are issued by agencies ot state <lnd local governments fhere 
are two main types: general obligation bonds, which are backed by a governing body 
stich us the state: nnd revenue bonds, which are backed either by the revenue to be 
generuted by the project thut will initially be [unded by the bond issue or by the agency 
responsi ble for the project 

The intelest income associated with municipal bonds is exempt hom tcderal 
income tax and from state and local taxes in the issuing state This feature means that 
investors ale willing to accept lower interest lutes on these bonds compared to other 
securities of similar quality 

COlporate bonds are issued by corporations tor the purpose of raising capital 
for operations and new ventures They vary in quality depending on the strength of 
the issuing corporation and on certain tel1tures of the bond itself 

Some corporate bonds are traded on an exchange, but most are traded over-the­
counter in a network of bond dealers These over-the-countel bonds are less liquid in 
the sense that there may be only a few trades per day of ,I particulru issue. 

A bond canies with it an indenture, which is a contract of terms Some reatures 
that might be included are: 

Canable bonds A bond is callable if the issuer has the right to repurchase the 
bond lit a specified price Usually this call price falls with time, and often therc is an 
initial call protection period wherein the bond cannot be called 

Sinking funds Rather than incur the obligation to pay the entire face vlIlue o[ a 
bond issue at maturity, the issuel may establish tI sinking fund to spread this obligation 
out over time Under slIch an arrangement the issuer may rcpllrchase a certain fraction 
ot the outstanding bonds cach yeat at a specified price 

Debt Suhordination To protect bond holders, limits may be set on the amount 
01 additionHI bOl1owing by the issuer Also the bondholders may be guaranteed that 
in the event of b:.mkruptcy, payment to them takes priority over payments ot other 
debt-the other debt being subordinated 

Mortgages 

To u typical homeowner, a mortguge looks like the opposite of a oond A future 
homeowner usually will .\ell i.I home mortgage to genet ate immediate cash to pay 
for <l home, obligating him- 01 herself to make periodic payments to the mortgage 
holder The standard mortgage is structured So thtlt equal monthly payments ar'e made 
throughout its term, which contI usts to most oonds, which have <l final payment equal 
to the face vnlue at mnturity Most stundnrd mortgages allow for early repayment ot the 
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balance Hence trom the mortgage holder's viewpoint the income sLIeam generated 
is not completely fixed, f;ince it may be terminated with an appropriate lump-sum 
payment ut the discretion of the homeowner 

There are many varintions on the standard mOItguge There may be modest­
sized periodic payments tor ,everal years followed by a final balloon payment that 
completes the contract Adjustable .. rate mortgages adjust the effective interest rate 
periodically <lccording to an interest rate index, and hence these mortgages do not 
really generate fixed income in the strict senSe 

MoJtgages are not usually thought of as securities. since they are wtitten as con­
tracts between two parties, fOl example, a homCQWnel and a bank However. mortgages 
,ue typically "bundled" into large packages and u aded among financial institutions 
These mortgage-backed securities are quite liquid 

Annuities 

An annuity is a contract that pays the holder (the annuitant) money periodically, 
according to a predetermined schedule or formula, over a period of time Pension 
benefits often take the f01m of annuities Sometimes annuities are sttuctured to pIDvide 
a fixed payment every year t01 as long I1S the annuitant is alive, in which case the 
price of the annuity is based on the age of the annuitant when the annuity is purchased 
and on the numbel ot years until payments are initiated 

Thew are numerous variations Sometimes the level ot the annuity payments is 
tied to the earnings ot a large pool of funds ft om which the annuity is paid, sometimes 
the payments vary with time, and so torth 

Annuities UTe not really securities, since they are not traded (The issuer certainly 
would not allow a change in annuitant if payments are tied to the life of the owner; 
likewise, an annuitant would not allow the annuity company to transter their obligation 
to another company which might be less solvent) Annuities are, howevel, considered 
to be investment opportunities that ale available at standardized lUtes Hence from an 
investor's viewpoint, they ,<;erve the Slime IDle as othel fixed-income instt uments 

3.2 VALUE FORMULAS 

Many fixed-income instruments include an obligation to pay a stream of equal periodic 
cash flows This is characteristic of standard coupon bonds that pay the holder a fixed 
sum on a legular basis; it also is characteristic 01 standard mortgages, ot many annu­
ities, of standmd automobile loans, and of other consumer loans It is theretore useful 
to recognize that the present value ot such a constant stleam cun be determined by a 
compact formula This formula is difficult to evaluate by hand, and hence professionals 
wotking each day with such financial instruments typically have available appropriate 
tables, handheld calculators, 01 computer programs that lelate present value to the 
magnitude and telill of periodic payments Thele are, tor example, extensive sets of 
mortgage tables, bond tables, annuity rate tables, and so forth We shall develop the 
basic tormula hele and ilIustrnte its use 
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Perpetual Annuities 

As a step toward the development oj the formula we consider an interesting and con­
ceptually useful fixed-income instrument termed a perpetual annuity, or perpetuity, 
which pays a fixed sum periodically tOlel'el For example, it might pay $1,000 every 
Janumy I forever Such annuities are quite rare (although such instruments actually 
do exist in Great Britain, where they are called consols) 

The present value of a perpetual annuity can be easily derived Suppose an 
amount A is paid at the end of each perIod, starting at the end ot the first peliod, and 
suppose the peJ~peJiod interest rate is J Then the present value is 

P=L 
k=l 

The terms in the summand represent a geometric series, and this series can be summed 
easily using a standard forn1uln Alternatively, if you have forgotten the standard 
Jormula, we can derive it by noting that 

P=L 
k::::1 

A A 00 

=-+L 
1+1 k=2 

A P 
=--+--

1+1 1+1 

We can solve this equation to find P 
result: 

A /1 Hence we have the following basic 

Perpetual anlluity forllluia lhe pJe.~el1t value P of a pel petual {lJInuitv th{lI pav.~ {lIl 
amouHt A even' peliod, begillning Ol1e peJiod [10m the ple.~el1t, is 

A P=-
wheJe I i.\ the ol1e~peli{)d illlele.lt 1{1te 

Example ,3.1 (Perpetual annuity) Consider a perpetual annuity of $1,000 each year 
At 10% interest its present value is 

1,000 
P = ----w- = $10,000 

Finite-Life Streams 

Ot more practical importance is the case where the payment stream has a finite lifetime 
Suppose that the stre,lm consists ot 11 periodic payments ot amount A, starting at the 
end of the current period and ending at period n The pattern ot periodic cash Hows 
togethel with the time indexing system is shown in Figure 3 I 

The present value oj the finite stream relative to the interest rate I per period is 

" P=L 
k::::l 
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\ / 
\ / 

\ / 
V 

FIGURE 3,1 Time indexing. TIme is indexed from a 
10 n. A period is a span between time points, with 
the first period being the time from a to 1 A standard 
annuity has a constant cash flow al the end of each 
period 

Periods 

This is the sum of a finite geometric series If you do not recall the formula for this 
sum, we can derive it easily by a simple triek, The value can be tound by considering 
two perpetual annuities Both pay an amount A each year, but one starts at time 1 and 
the other starts at time Il + 1 We wbl1act the second from the first The result is the 
same as the original sUeam of finite life This combination is illustrated in Figure .3 2 
for the case of a stream of length 3, 

The value of the delayed annuity is found by discounting that annuity by the 
factor (1 + J )-11 because it is delayed 11 periods Hence we may write 

A 
p=-­, 

We now highlight this important result: 

Alllluity formulas COllsidel all allllllify that begiIH' pavment olle peliod {10m the 
p,e5ellt, paying an amoullt A each peliod for a total oj Il peliod'i The presellt vallie 
P, the olle-peJiod ClIl1lUify amollnt A, the olle-peJiod illtele5t late I', alld the Illflllbel oj 
pel1'Od5 II oj the aJlllllify (lie I elated bv 

01, equivale11llv, 

o 

A = r(l + r)" P 
'C(I:'-,+-,-:)-",,-71 

1 1 1 1 1 

FIGURE 3.2 Fin!te stream from Iwo pl!rpelua\ annuilies. The top line shows a perpetuity starting 
at time 1, the second a negative perpetuity starting at time 4 The sum of these two is a finite-life 
annuity with payments starting at time 1 and ending at time 3 
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Although these formulas are simple in concept and quite easy to derive, they are 
sufficiently complex that they cannot be evaluated easily by hand It is tor tllis reason 
that financial tables and financial calculators are commonly available, Protessional 
tables ot this type occupy several pages and typically give PIA as a tunction of I 

and 11 For some purposes AI P Uust the reciprocal) is more convenient, and there are 
tables written both ways 

It is important to note that in the formulas of this section, 1 is expressed as a 
per-period interest rate If the period length is not equal to I year, this 1 will 110/ be 
equal to the yearly rate; so care must be exercised 

The annuity formula is frequently used in the reverse direction; that is, A as 
a function of P This determines the periodic payment that is equivalent (under the 
assumed interest rate) to an initial payment of P This process ot .substituting periodic 
payments for a current obligation is referred to as amortization. Hence one may 
amortize the cost ot an automobile over 5 years by taking out n 5-year loan 

Example 3.2 (Loan calculation) Suppose you have borrowed $1,000 trom a credit 
union The terms of the loan moe that the yearly interest is 12% compounded monthly 
You are to make equal monthly payments ot such magnitude as to repay (amortize) 
this loan over 5 years How much are the monthly payments? 

Five years is 60 months, and 12% a year compounded monthly is 1% per month 
Hence we use the formula tor II 60, I = I %, and P $1,000 We find that the 
pay ments A are $22.20 per month 

Example 3.3 (APR) A typical advertisement from a mortgage broker is shown in 
Table 3 I In addition to the interest rate, term ot the loan, and maximum amount, 
there are listed points and the annual percentage rate (APR), which describe tees and 
expenses Points is the percentage of the loan amount that is charged for providing 
the mortgage Typically, there are additional expenses as well All of these fees and 

TABLE 3.1 
Mortgage Brol(er Advertisement 

Rate PIs Term Max amt APR 

7625 100 30 yr $203,150 7883 
7875 50 30 yr $203,150 8083 
8125 225 30 yr $600,000 8399 
7000 100 15 yr $203,150 7429 
7500 100 15 yr $600,000 7859 

Call 555-1213 
Real Estate Broker, CA Dept of Real Estate, 

Mortgage Masters, Inc 
Current Fixed Rates 

APR is the rate of if!(ere~t tha( implicitl\' inc II/des theJeel 
(!Hodmed lI'itl/ a mortgage 
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expenses are added to the loan balance, and the sum is amortized at the stated rate 
over the stated period This results in a fixed monthly payment amount A 

The APR is the rate of interest that, if applied to the loan amount without fees 
and expenses, would result in a monthly payment ot A, exactly as before 

As a concrete example, suppose you took out n mortgage corresponding to the 
first listing in Table 3.1 Let us calculate the total tees and expenses Using the APR of 
7883%, a loan amount of $203,150, and a 30-year term, we find a monthly payment 
of A $1,474. 

Now using an interest rale of 7625% and the monthly payment calculated, we 
find a total initial balance of $208,267 The total of fees and expenses is therefore 
$208,267 - $203,150 $5,117 The loan fee itselt is 1 point, or $2,032 Hence other 
expenses are $5,117 - $2,032 $3,085 

Running Amortization* 

The formulas tor amortization can be looked at in anothel way, linked directly to 
common accounting practice Consider the loun ot $1,000 discussed in Example 3 2, 
which you will repay over 5 years at 12% interest (compounded rnonthly) Suppose you 
took out the loan on January 1, and the filst payment is due February I The repayment 
process can be viewed as credits to a running monthly account The account has an 
initial balance equal to the value of the loan-the original principal Each month this 
balance is increased by an interest charge ot I % and then reduced by the payment 
amount Assuming that you make payments as scheduled, the bulance will decrease 
each month, reaching zero after 60 months On July 1 you might receive a 6-month 
accounting statement such as that shown in Table 3 2, which illustrates how the balance 
decreases as payments me made 

It is common to regard each payment us consisting of two parts The first part 
is the current intelest; the second is a partial repayment ot the principal The run­
ning balance account procedure is consistent with real110Itizing the loan each month, 
Specifically, assuming all payments to date were mude on schedule and ot the proper 
amount, the payment level predicted by the fOllnula to amortize the current balance 
ovel the months remaining in the Oliginul contract will always be $2220 For exam-

TABLE 3 2 
Stal(!m(!nl of Account Transactions 

Previous balance Current interest Payment received New balance 

January I 1,000 00 
February I \.000 00 10 00 2220 98780 

March I 98780 988 2220 97548 
April I 97548 975 2220 963 OJ 
May I 96301 96J 2220 950 46 
June I 950 46 950 22 20 93776 

E(f{.1r rrrorrrir rlre prr!\'lOffl Imlarne (/Hrrrrml(/(el rffferelf and jl !f!dl/Led hy rhe UUfew pal'lfft'llf Tire 
Imlarut! lI'ill he :::.elO at 1111' I'ml oJrl1t' hl/m rom 
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pie, based on the July statement, one can amortize the balance ot ,t937 76 at 12% on 
June I (after making the June I payment) over a peJiod of 55 months The monthly 
payment required by this amortization would be $2220 

Annual Worth* 

The annuity fHlmework provides an alternative method to! expressing a net plesent 
value analysis This annual wo['th method has the advantage that it expresses its 
results in terms of a constant level of cash flow and thus is easily understood 

Suppose n project has an associated cash now stream (Xo, Xl, , XII) over 11 
years A present value analysis uses a (fictitious) constant ideal bank with interest 
rate J to transform this stream hypothetically into an equivalent one of the form 
(v, 0, 0, ,0), where v is the net present value ot the stream 

An annual worth analysis uses the same ideal bank to hypothetically transtorm 
the sequence to one ot the tOHn (0, A, A, A, , A) The value II is the annual worth 
(over 11 yems) ot the project It is the equivalent net amount that is generated by the 
project it nil amollnts are converted to a fixed J1~year annuity starting the first year 

Clearly A > 0 exactly when v > 0, so the condition tor acceptance of the project 
based on whether A > 0 coincides with the net present value criterion 

Example 3,4 (A capital cost) The purchase of a new machine f'lf $100,000 (at time 
zero) is expected to generate additional revenues of $25,000 tor the next 10 years 
starting at year I If the discount rate is 16%, is this a profitable investment? 

We simply need to determine how to amortize the initial cost unifOlmly ovel 
10 yems; that is, we need to find the annual payments at 16% that are equivalent to 
the original cost Using the annuity formula, we find that this corresponds to $20,690 
per year Hence the annual worth ot the project is $25,000 $20,690 = $4,310, 
which is positive; thus the investment is profitable Note that if the purchase oj the 
machine were financed at 16% over 10 yems, the ClUIW/ yemly net cash Hows would 
cones pond exactly to the annual worth 

3.3 BOND DETAILS 

Bonds lepresent by far the greatest monetulY value ot fixed~income securities and 
me, as a class, the most liquid oj these securities, We devote special attention to 
bonds, both because oj their practicnl impOitance <is investment vehicles and because 
of their theoretical value, which will be exploited heavily in Chapter 4 We describe the 
general structure and trading mechanics of bonds in this section and then discuss in the 
following Jew sections some wcthods by which bonds are analyzed Our description 
is intended to be an overview Specific details ale quite involved, and one must refel 
to specialized Iiterntllte 01 to a brokerage film tOI the exact features oj any pmticulal 
bond issue 
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A bond is an obligation by the bond issuer to pay money to the bond holder 
according to rules specified at the time the bond is issued Generally, a bond pays a spe­
cific amount, its face value or, equivalently, its par value allhe date of maturity Bonds 
generally have par values ot even amounts, such as $1,000 or $10,000 In addition, 
most bonds pay periodic coupon payments. The term COllPon is due to the fact that 
in the past actual coupons were attached to bond certificates The bond holder would 
mail these to the agent of the issuer (usually a bank) one at a time, at specified dates, 
and the applOpriate coupon payment would then be sent by return mail These physical 
coupons are rare today, but the name remains The last coupon date cOlTesponds to 
the matUlity date, so the last payment is equal to the face value plus the coupon value 

The coupon amount is described as a percentage of the face value For example, 
a 9% coupon bond with a face value ot $1,000 will have a coupon of ,t90 per year 
However, the period between coupons may be less than a year. In the United States, 
coupon payments are generally made every 6 months, paying one-half of the coupon 
amount This would be .t45 in our example 

The issuet of a bond initially sells the bonds to raise capital immediately, and 
tllen is obligated to make the prescribed payments Usually bonds are issued with 
coupon rates close to the prevailing general rate of interest so that they will sell at 
close to their face value However, as time passes, bonds frequently trade at prices 
different trom their face values While any two parties can agree on a price and execute 
a trade, the vast majority ot bonds are sold either at auction (when originally issued) 
or through an exchange organization The price is therefore determined by a market 
and thus may vary minute by minute 

An example of publicly available bond quotes (for US Treasury bonds and 
notes) is shown in Table 3 3 Here the indicated coupon rate is the annual rate (one-

TABLE 3.3 
US Trcasury Bills, Notcs, and Bonds 

GOVT BONOS & NOTES MatunlY 
"'" Matunly A5k 

I 

Aotn MolYr '"' ", 
MnIY, A5kcci Ct\[l Yid ,'" FcbMn 97.28 62' 

Fcb97n 9931 ,164 7'" MOlY O·ln 105:20 105.22 ." '" '" Fcb97n 100.00 100.02 -, '" 12" MOlY 04 i35:03 135.09 '" '" , .. Feb97n 100.00 100.02 -, 560 7" Au[l04n 105:21 105:25 "3 6.27 
6'·~ Mar 97n 100.04 100.06 ,197 13" Au[/04 14.1:04 144:10 .2G 6.26 

''" Mm 97n 10005 100.07 "7 7" Nov04n 109.20 109.22 ." '" 3'~ Apr97n 100.15 100'17 510 lj>~ NovQ.\ 132:03 132:14 ." 627 
6'~ Ap,97n 10007 10009 '03 FcbOsn 10709 10712 '" ''" Apr97n 10009 10011 '" 

I 

6'7 Moy 05n 10103 101:10 .n '" 6'~ May 97n 100.08 10010 '" a'" May 00-05 105.24 105'26 ., '" 8'~ May 97n 100.24 100,26 '" " May 05 13600 136.06 ." '"' 6'" Mny 97n iOOOB 10008 '" 6'~ Aug05n 101:08 101:10 ." '" ,,, 
May 97n 100,11 10013 '" 10" ~~~ ~;n 126.20 126:26 ." 632 

5'~ Jun97n 10003 10005 '" So'" 97:0i 97:03 GO, 
''" Jun97n iOO12 l00i4 '" 5~" 95:08 95:10 '" 6'~ JuJ97n iOl09 i01.11 517 0'" FooOG 120:25 120:31 ." '" 
5"J~I"Pri?/0 '" I 

Coupon rate Maturity date Denotes note Change in Yield to 
asked price malurity 

P';(e\ {/Ie qfloled tI\ a per(f!lIlage of fuu! I'frllle_ willi llll! frru.:riolfal parI 
expreHt,d ill 121/(/'\ A(urred illff!I1!\1 1II111'r be addetilo lire qlfoled price 
Source: 7111! I\'afl ~rrl'f!r JOIln/af Fehruary 14. 1997 
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hall being paid evety 6 months in this case) The matudty month is given; the ptecise 
maturity date vades with the issue, but it is often the fifteenth of the month ot maturity 
for US T reasuty bonds and notes Prices m"e quoted liS a petcentage ot tace value, 
so if the face value is ,tl,OOO, a ptice of 100 is equivalent to $1,000 The bid price 
is the price dealcts are willing to pay fot the bond, and hence the price at which the 
bond can be sold immediately; whereas the ask price is the price at which dealets me 
willing to sell the bond, and hence the ptice at which it can be bought immediately 
A speciaJ and cumbetsome feature is that prices arc quoted in 32nd's of a point The 
bid ptice fot the last bond shown in Table 3 3 is 10321/32, which fot a $1,000 face 
value uanslates into $1,036 56 The yield shown is based on the ask pt·ice in a mannet 
described in the following section 

Bond quotations ignore accrued interest, which must be added to the ptice 
quoted in order to obtain the actual amount that must be paid for the bond Suppose 
that a bond makes coupon payments every 6 months It you purchase the bond midway 
through the coupon period, you will receive your fitst coupon payment aftet only 
3 months You ate getting extw intet"est-interest that was, in theory, eatned by the 
pt"evious ownet So you must pay the fitst 3 months' interest to the previous ownet 
This interest payment is made at the time oj the sale, not when the next coupon payment 
is made, so this extra payment acts like an addition to the ptice The accrued interest 
that must be paid to the previous ownel is detetmined by a straight-line intelpolation 
based on days Specifically, the acctued interest (AI) is 

AI 
numbel ot days since last coupon 

--.,.----,--,---'------'----,--c X coupon amount 
number of dtlYS in cut rent coupon petiod 

Example 3.5 (Accrued interest calculation) Suppose we purchase on May 8 aU,S 
Treasury bond that matures on August 15 in some distant yeat The coupon rate is 9% 
Coupon payments are made every Febtumy 15 and August 15 The acctued interest 
is computed by noting that there have been 83 days since the last coupon (in a leap 
yeat) and 99 days until the next coupon payment Hence, 

AI 
83 

--- x 4 50 205 
83 + 99 

This 205 would be added to the quoted ptice, exptessed as " percentage of the face 
value. Fot example, $2050 would be added to the bond il its face value wete $1,000 

Quality Ratings 

Although bonels offet " supposedly ftxed-income stream, they ate subject to default 
it the issuet has financial difficulties or falls into bankruptcy To characterize the 
nature ot this risk, bonds at"e rated by tating organizations The two ptimruy rating 
classifications at·e issued and published by Moody's and Standard & Poor's Their 
classification schemes are shown in Table 3.4 US Treasury securities are not rated, 
since they are considered to be essentially ftee ot detault risk 
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3.4 YIELD 

TABLE 3.4 

Rating Classifications 

Moody's Standard & Poor's 

High grade A,J[J AAA 
Aa AA 

Medium grade A A 
Baa BBB 

SpCcuhllive gtade Ba BB 
B B 

Detnuit danger Cua CCC 
en cc 
c C 

D 

Rarillgl //!jleu (/ jlldg1llllflr oj r/ll! /ik/llilwml ,har IJoml pay­
m/!lIt~ It·illlJfJ 111m/I! (II H-III:!(/U/ef/ 801U/I wilh 1m\' rorillgl 
I/\//ally ,leI! at IOll'ar priL/!l t/ltlll COII/pall/I)II! hOIU/I \I-i,II 
high rflti1lg1 

Bonds that are eithel high 01 medium grade are considelcd to be investment 
grade. Bonds that are in or below the speculative category are otten termed junk 
bonds. Histotically, the frequency of default 1"'5 correlated welf with the assigned 
ratings, 

The u%ignment of a rating class by a rating otganization is Imgely based on the 
issuer's financial status as measured by variolls f1nnnciaJ ratios For example, the ratio 
ot debt to equity, the ratio of cUITent assets to current liabilities, the latio of cash flow 
to outstanding debt, as well as several others are used The trend in these ratios is also 
considered important 

A bond with a low rating will hove a lower price than a comparable bond with 
n high roting Hence some people have argued that junk bonds may occasionully oft'et 
good value if the default risk can be diversified A careful analysis of this approach 
requires expJicit considetation of uncertainty. howevel 

A bond's yield is the intelest rule implied by the payment strllcture SpecificaUy, it is 
the interest lUte at which the present vUlue of the stream ot payments (consisting ot 
the coupon payments and the final face-vallie redemption payment) is exactly equal 
to the CUfTent price This value is termed more properly the yield to maturity (YTM) 
to distinguish it trom other yield numbers that are sometimes used Yields are always 
quoted on an annual basis 

It should be clear that the yield to maturity is just the internal rate of retuln of 
the bond at the current price But when discussing bonds, the term vield is genel aHy 
used instead 

Suppose that a bond with face value F makes /II coupon payments of elm each 
year and thele me" periods remaining The coupon payments sum to C within a year 



3 4 YIELD 53 

Suppose also that the current price 01 the bond is P Then the yield to maturity is the 
value of A slich that 

P 
F 1/, 

r I + (A/III)]" + ~ cc---':-c--:-c-
(31 ) 

This vallie of A, the yield to maturity, is the interest rate implied by the bond when 
interest is compounded III times per yea] Note that the first term in (3 I) is the present 
value 01 the face-value payment The kth term in the summation is the present value 
ot the kth coupon payment C fill The sum of the present values. based on a nominal 
interest tate of A. is set equal to the bond's price 

The summation in (3 I) can be colJapsed by use ot the genetal value formula 
lor annuities in the previous section, since this sum represents the present value 01 the 
eqllal coupon payments of C /111 The collapsed form is highlighted here: 

Bond price formula fhe PJ fa oj ({ /Jond, having eXiIC,tl" If umjJOI{ pel t()d~ I ewaiuing 
to lila/wit\, and (/ "reid to ilia/miN (d A, .wti.\jie.\ 

P .,.,---::F_' --::- + ~ ( I I ) 
A II + (A/m)]' 

(32) 

Ivbele F h the j(rce value oj the bond, C is tire )'eml" [()UPOII pavnrent, and III h the 

Ilft11l/Jel oJ uJUpOlr pavment5 pel )'em 

Equation (3 2) must be solved fOI A to determine tl,e yield This cannot be done 
by hand except for very simple cases It should be clem that the terms in (32) m'e the 
tamiJim tel ms giving the present value 01 a single tuture payment and 01 an annuity 
However, to determine A one must do more than jnst evaluate these expressions One 
must adjust A so that (32) is satisfied As in any calculation 01 internal rate ot return. 
this generally requires an iterative procedure. easily carried out by n computer There 
are. howeveI. specialized calculatots and bond tables devised fot this purpose, which 
aIe used by bond dealers and othel professionals Spreadsheet packages also typically 
have built-in bond lor mulas 

The 10rl11ulas discussed hCle assume thnt there is an exact number 01 coupon 
periods lemaining to the maturity date The plice-yield tormula lequiles adjustment 
tor dates between coupon payment dates 

Qualitative Nature of Price-Yield Curves 

Although the bond equation is complex, it is easy to obt!.lin a qualitative understanding 
of the relationship between plice, yield, coupon, and time to maturity This qualitative 
un del stnnding helps motivate the ideas undcIIying bond porttolio construction and, 
specifically, leads to an undelstanding 01 the intelest late risk propertics ot bonds 
The following examples should be studied with an eye towald obtaining this kind of 
understanding 

As a generallUle, the yields ot vatious bonds track one anothel and the prevniling 
interest rates ot other fixed-income securities quite closely Atter ali, most people 
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would not buy a bond with a yield ot 6% when bank CDs arc offeJing 10% The general 
interest rate environment exerts a force on eVCIY bond, urging its yield to conform 
to that 01 othel bonds However, the only way that the yield ot a bond can change 
is for the bond's ptice to change So as yields move, prices move correspondingly 
But the price change required to match a yield chunge varies with the structure of the 
bond (its coupon rate and its maturity), So as the yieJds of various bonds move more 
or less in harmony, theil prices move by different amounts To understand bonds, it 
is important to understand this relation between the price and the yield For a given 
bond, this relationship is shown pictorially by the price-yield curve, 

Examples of price-yield Curves are shown in Figure .3.3 Here the ptice, as a 
percentage of pat, is shown as a function ot YTM expressed in percentage tellns Let 
lIS focus on the bond labeled 10% This bond has a 10% coupon (which means 10% 

01 the face value is paid each yea!, Or 5% eveIy 6 months), and it has 30 years to 
maturity The pIke-yield curve shows how yield and price are related 

The first obvious feature 01 the curve is that it hus negative slope; that is, price 
and yield have an inverse relation If yield goes up, price goes down If I am to obtain 
a higher yield on a fixed stream of teceived payments, the price I pay for this shearn 
must be lower. This is a tundamental feature of bond markets When people say "the 
bond market went down," they mean that interest rates went up 

Some points on the curve can be calculated by inspection First, suppose that 
YTM 0 This means that the bond is priced as if it offered no interest Within the 
framework of this bond, money in the future is not discounted In that case, the present 
value of the bond is just equal to the sum of all payments: here coupon payments of 
!O points each year 1'01 30 years, giving 300, plus the 100% of par value received at 
maturity, for a total of 400 This is the value of the bond at zero yield. Second, suppose 
that YTM 10% Then the value of the bond is equal to the par value The reason for 
this is that each year the coupon payment iust equalS the 10% yield expected on the 

Price 
600 

500 

400 

300 

10%, 
200 -

100 

a 
a 

FIGURE 3.3 Price-yield curves and coupon rate All bonds shown have a maturhy of 30 years and 
the coupon rates Indicated on the r0spectlve curves Prices are expressed as a percentage of par 
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investment The value remains at 100 every year The bond is like a loan where the 
interest on the plincipal is paid each year and hence the plincipal remains constant In 
this situation, where the yield is exactly equal to the coupon rate, the bond is termed 
a par bond. In addition to these two specific points on the price-yield curve, we can 
deduce that the plice ot the bond must tend toward zero as the yield increases-huge 
yields imply heavy discounting, so even the nearest coupon payment has little present 
vuIue Overall, the shape ot the curve is convex since it bends toward the origin and 
out toward the horizontal axis Just given the two points and this lough knowledge ot 
shape, it is possible to sketch a Icasomlble approximation to the true curve 

Let us briefly examine anothel one of the curves, say, the 15% bond The price 
at Y TM 0 is 15 x 30 + 100 550, and the pm point at 100 is at 15% We see that 
with a fixed maturity date, the price-yield curve rises as the coupon rate increases 

Now let us consider the influence of the time to maturity Figure 34 shows the 
ptice-yield curves for three different bonds Each of these bonds has a 10% COUpOIl 
lute, but they have different maturities: 30 years, 10 years, and 3 years All of these 
bonds are at par when the yield is 1O%; hence the three curves all pass through the 
common par point However, the curves pivot upward around that point by various 
amounts, depending on the matulity The values at YTM 0 can be found easily, as 
befGle, by simply summing the total payments The main feature is that as the maturity 
is increased, the price-yield curve becomes steepel, essentially pivoting about the par 
point This increased steepness is an indication that longer maturities imply greater 
sensitivity of price to yield 

The price-yield ctlIve is important because it describes the interest rate risk 
associated with a bond For example, suppose that you purchased the 10% bond 
illustrated ill Figure 33 at par (when the yield was 10%) It is likely that all bonds 
at maturity approximately equal to 30 years would have yields at 10%, even though 
some might not be at pm Then 10% would represent the market rate for such bonds 

Price 
400 

10 15 

Yield to 
maturity 

20 
FIGURE 3,4 Price-yield curves and maturity. The price-yield cUlve is shown for three maturities 
AI! bonds have a 10(Y<, coupon 
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TA.BLE 3 5 
Prices of 9% Coupon Bonds 

Yield 

Time to maturity 5% 8% 9% 10% 15% 

J year 10385 100 94 10000 99 07 9461 
5 years I 1750 10406 100 00 9614 7941 

10 years 131 18 10680 10000 9377 6942 
20 years 150 21 10990 10000 9142 6222 
30 years 161 82 I I I 31 10000 90 54 60 52 

Tlte pI iU!\' of /ollg"ffUlrrlriry "011(/\ urI! lIIore \'cm;ri!'1! fa \'idd dumge\ 
rlllm lIrc rIll! pric..ev of bmuh of vllorr IIwflTrif\' 

Now suppose that market conditions change and the yield on your bond increases to 
11 % The price of your bond will drop to 91 28 This represents an 8 72% chunge in 
the value ot you. bond It is good to consider the possibility of such a change when 
purchasing this bond, For example, with a 3-year 10% par bond, if the yield rose to 
11 %, the price would drop only to 97 50, and hence the interest rate risk is lower with 
this bond Of course if yields declemed, you would plofit by simi1ru amounts 

Bond hoidelS are subject to yield risk in the sense described: if yields change, 
bond prices also change This is an immediate risk, affecting the near-term value of 
the bond You may, of course, continue to hold the bond and thereby continue to 
receive the promised coupon payments and the face value at maturity This cash flow 
stream is not affected by interest rates (That is after all why the bond is classified as 
a fixed-income security) But if you plan to sell the bond before maturity, the price 
will be governed by the price-yield curve 

Table 35 displays the price-yield relation in tabular form for bonds with a 
9% coupon rate It is easy to see that the bond with 30-year maturity is much more 
sensitive to yield changes than the bond with I-year maturity 

It is the quantification of this risk that underlies the importance of the price-yield 
relation OUI rough qualitative understanding is important The next sections develop 
additional tools ror studying this risk 

Other Yield Measures 

Other measUles of yield, aside from yield to maturity, are used to gain additional 
insight into a bond's properties For example, one important yield measure is current 
yield (CY), which is defined as 

CY 
annual coupon payment x lOO 

bond pr ice 

The cunent yield gives a measUIe of the annual return of the bond For instance, 
consider a 10%, 30-year bond II it is selling at par (that is, at 100), then the cun'ent 
yield is 10, which is identical to the coupon rate and to the yield to maturity If the 
Same bond were selling for 90, then CY 10/90 II II while YTM II 16 
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Another mea~ure, used it the bond is callable ufter some number ot yerus, is the 
yield to call (YTC), which is defined as the internal rate of relurn calculated assuming 
that the bond is in fact called at the emliest possible dOle 

There are several other yield measures that account for sinking runds, principal 
payments, and other leatures 

3.5 DURATION 

Everything else being equal, bonds with long mat11fities have steeper price-yield curves 
than bonds with short maturities Hence the prices of long bonds are more sensitive 
to interest rate changes than those of short bonds. This is shown clearly in Table 3.5 
However, this is only a rough rule ot thumb Maturity itself does not give a complete 
quantitative measure of interest rate senshivity 

Another measure ot time length tenned duration doe.\ give a dilect measUlc of 
interest rate sensitivity This section describes this measure 

The dUlation or a fixed-income instrument is a weighted average of the times 
that payments (cash flows) are made The weighting coefficients nre the present values 
of the individual cash tIows 

We can write out this definition more explicitly Suppose that cash flows are 
received at times 10, 11,/2, ,1/1 Then the duration of this su'eam is 

D 

In this formula the expression PV(td denotes the present value at the cash flow that 
occurs at time Ik The term PY in the denominator is the total present value, which is 
the sum of the individual PV (td values 

The expression tor D is indeed a weighted avel age of the cash flow times Hence 
D itself has units of time When the cash flows are all nonnegative, as they are tor a 
bond already owned (so that the pUlchase is not included in the cash flow), then it is 
clear that 10 .:s D ~ 1/1' D11fation is a time intermediate between the first and last cash 
flows 

Clearly, a zero-coupon bond, which makes only a final payment at maturity, has 
a duration equal to its maturity date Nonzero-coupon bonds have durations strictly 
less than their maturity dates This shows that duration can be viewed as a generalized 
maturity measure It is an average of the matt1Iitie~ of all the individual payments 

Macaulay Duration 

The preceding definition is (illlentionally) a bit vague about how the present value 
is calculated; that is, what interest rate to use For a bond it Ls natural to base those 
calculations on the bond's yield If indeed the yield is used, the general duration 
formula becomes the Macaulay duration 

Specifically, suppose a financial instrument mukes payments IJ1 times per year, 
with the puyment in period k being L{.., und there are n periods remuining The 
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A 

Year 

5 
I 

15 
2 

25 
3 

Sum 
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8 C D f 
FIGURE 35 Layout for calculatmg duration. 

F Present values of payments are calculated in col-
Discount Present value umn 0 Dividing these by the tola! present value 

Payment 

35 
35 
35 
35 
35 

1035 

factor of payment Weight gives the weights shown in column E The du-
(@8%) (8 xC) (D/Price) A X f ration is obtained using this weighted average of 

Ihe payment limes 
962 3365 035 017 
925 3236 033 033 
889 3 III 032 048 
855 2992 031 061 
822 2877 030 074 
790 81 798 840 2520 

97379 1000 2753 
Price Duration 

Macaulay duration D is defined as 

D = "-'--'----=-:-----

where A is the yield to maturity and 

py " L Ck 

k:1 [1 + (A/Ill)]k 

Note that the lactor k/111 in the numelator of the formula for D is time, measured 
in years In this chapter we always lise the Macaulay duration (or a slight modification 
of it), and hence we do not give it a special symbol, but denote it by D, the same as 
in the general definition of duration 

Example .3.6 (A short bond) Considel a 7% bond with .3 years to maturity Assume 
that the bond is selling at 8% yield We can find the value ,1nd the Macaulay duration 
by the simple spreadsheet layout shown in Figure .3 5 The dutation is 2753 years 

Explicit Formula* 

In the case where all coupon payments are identical (which is the nOJrnal case tor 
bonds) there is an explicit formula tor the sum ot the seIies that appears in the 
nurneratOJ of the explession tor the Macaulay duration We skip the algebla here and 
just give the result 

[=::.s::J Macaulay duratioll formula The Nlac{lu/av dmarioll 1'01 a bond with (l cOllpon lOte EZI C pel pel iod, vield v pel peliod, III peliod~ pel Vem, and exact/v It peJiods I emainiltg, 
1\ 

D = !.2z _ 1 + y + /1« y) 

111 V 111C[(I + V)I1- 11+111V 
(33) 
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Example 3.7 (Dur·ation of' a 30-year par bond) Consider the 10%, 3D-year bond 
represented in Figure 3 3 Let us assume that it is at par; that is, the yield is 10%, At 
par, C = v, and (33) reduces to 

Hence, 

D 1 + v [ 
-;;;:- l-

D = 1,015 [1 1] 
(105)''' = 9 938 

Qual itative Properties of Du ration* 

The dll1ation of n coupon-paying bond is always less than its maturity, but often it is 
surprisingly short An appreciation tOJ the lelation between a bond's duration and othel 
parameters 01 the bond can be obtained by examination 01 Table 3 6 In this table the 
yield is held fixed at 5%, but various matlllities and coupon rates are considcted This 
procedure approximates the situation of looking through a list of available bonds at a 
time when an yields hovel nem 5% Within a given class (say, government sccmities) 
the available bonds then differ mainly by these two pmameters 

One striking feature at this table is that as the time to maturity increases to 
infinity, the dmations do 1101 also increase to infinity, but instead tend to a finite limit 
that is independent of the coupon rute (See Exercise 14) Another feature of the table 
is that the durations do not vary rapidly with respect to the coupon rate. The tact that 
the yield is held constant tends to cancel out the influence of the coupons 

A general conclusion is that very long durations (of. say, 20 years 01 more) me 
achieved only by bonds that have both velY long matmities and very low coupon Illtes 

TABLE 3'(, 

Duration of a Bond Yielding 5% 
as Function of Maturity and Coupon Rate 

Coupon rate 

Years to matur ity 1 % 5% 10% 

997 995 988 977 
1984 1969 I 928 I 868 
4875 4763 .\ 485 4 156 

10 9416 8950 7989 7 107 
25 20164 17715 14536 12754 
50 26666 22284 18765 17384 

100 22572 21 200 20363 20067 
20500 20500 20500 20500 

Duraliou dOL \ uol iucreme (1f1IH'eLia1Jly willi !rIalurily 11Ij(/(I, 
willi fhed \'ie/d, dllmlioll i"(n'a~e\ onll' 10 l/ fillill.! Iimil (/1 

"mlllr/I\' r\ iULlI.!(/I'/:t1 
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Duration and Sensitivity 

Duration is useful because it measures directly the sensitivity of price to changes in 
yield This follow:;; from a simple expression [or the derivative of the present value 
expression 

In the case where payments are made 111 timeR per year and yield is based on 
those same peliods, we have 

[1 + (A/m»), 

The derivative with respect to A is 

d PV, _ -(k/m)q 

dA - 11 + (A/III)]k+1 

We now apply this to the expression for price. 

" 

k/m 
-----PV, 

1 + (A/m) 

P I)V, 
k=l 

Here we have used the fact that the price is equal to the total present value nt the yield 
(by definition of yicld) Wc find that 

dP 

dA 
t dPV, 
'=1 dA 

(34) 

The value D M is called the modified duration. It is the usual duration modified 
by the extra term in the denominator Note that D/If ~ D for large values of 111 or 
small values of A We highlight this important sensitivity relation: 

1' •. ".:, .. ·.9.1 Price sellsitivity fOl'lIIula The del ivative oj pI ice P wilh respec/to yield A oj a ftxed-
, < ' i1lcome seem itv i~ 

dP 

dA 
-DMP 

IVIIele DM D /[1 + (A/III)! il Ille lIIodified dJII{/lioll 

It is perhaps most revealing to write (3 5) as 

1 dP 

P dA 
-DM 

(35) 

The left side is then the lelative change in price (or the fractional change) Hence DM 
measures the relative change in a bond's price directly as A changes 

By using the approximation dP /dA '" 6. P / 6.1., Equation (3.5) can be used to 
estimate the change in price due to a smull change in yield (or vice versa) Specifically, 
we would wlite 

This gives explicit values for the impact of yield variations 
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Yield to 
maturity 

20 
Price-yield curve and slope The slope of the line tilngent to the curve ill P is -D,\JP 

Example 3.8 (A 10% bond) The price-yield curve I'or a 30-yem. 10% coupon bond 
is shown in Figure 3 6 As computed earlier, the dutatiol1 ot this bond at the pm point 
(where price 100) is D 994 Hence DM 994/1 05 9A7 The slope of 
the price-yield curve at that point is, according to (3 3), equal to dP IdA -947 A 
line with this slope can be placed tangent to the price-yield curve at the point where 
the duration was calculated, as shown in Figure 3 6 T11i:-; line provides a straight-line 
approximation to the curve [or nem by points For example, it the yield changes to 
I1 %, we can estimate the change in price as 

6.P -DM 1006.A -947 x 01 -947 

Hence P '" 90 53 

Example 3.9 (A zero-coupon bond) Consider a 3D-year zero-coupon bond Suppose 
its cunent yield is 10% Tllen we have D 30 and DM '" 27 Suppose that yields 
increase to 11 % According to (3 5). the relative price change is approxiwately equal 
to 27% This is a very large loss in value Because ot their long durations, ZClO-coupon 

bonds have very high inr.erest rate risk 

Duration of a Portfolio 

Suppose thm a pOltfolio of sevetal bond, 01 different maturities is assembled Thi, 
portfolio acts like a mastel fixed-income security: it receives peliodk payments, but 
due to the different matUlities, the payments may not be ot equal magnitude What 
can we say about the duration ot this portfolio? 

First, suppose that all the bonds have the same yield, (This is usually approxi­
mately true. since yields tend to track each other closely, if not exactly) The dtJIation 
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01 the portfolio is then just a weighted sum of the durations of the individual bonds­
with weighting coefficients proportional to individual hond prices We can easily verify 
this fOi a portfolio that is the sum of two bonds A and B The durations are 

Hence, 

LZ=ol,pvt 
pA 

LZ=ol,PV~ 
P" 

pADA + pBDB = tlk (pvt -I- PVn 
k=O 

which gives, upon division by P = pA + pH. 

pAD A paD" 
D -p-+-p-

as the duration of the portfolio TherefOlc D is a weighted nverage of the durations of 
the individual bonds, with the weight of a bond's duration being proportional to that 
bond's plice The result easily extends to a portfolio containing several bonds 

Dllratioll of a portfolio Suppo'le rl1ele GI e 111 fixed-ilU..ome !iecUl ities w"!h [Jlices ond 
dUlOliom oj PI (llld D" le1peclivelV. iI, 2, ,111, all computed 01 (/ common vielcr 
The pOl (folio comi'l1il1g oj the aggregate oj rl1e'le '!ec1llilie~ has price P alld dllf{1liof1 
D. given by 

P 

D 

whele WI PI/P, i 1,2, ,m 

The dUJution of a portfolio measures the interest late sensitivity of that portfolio, 
just as normal duration meaSUles it tor a single bond That is, if the yield changes 
by a small amount, the total value 01 the pOItfolio will change approximately by the 
amount pledicted by the equation relating prices to (modified) dUl ation 

If the bonds composing a portfolio have diflerenl yields, tlle composite duration 
as defined can still be used as an approximation In this case a single yield must 
be chosen-perhaps the average Then present values can be calculated with lespect 
10 this single yield value, although these plesent values will not be exactly equal to 
the prices of the bonds The weighted average duration, calculated as shown, will 
give the sensitivity of the ovewll ple:-;ent value to a change in the yield figure that is 
used 

3.6 IMMUNIZATION 

We now have the concepts and tools necessary to solve a plOblem of major practical 
value, namely, the stJucturing of a bond porttolio to protect against interest rate risk 
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This procedure is tellned immunization because it "immunizes" the portfolio value 
against interest late changes The procedure, as well as its refinements, is in fact one 
of the most (if not the most) widely used analytical techniques of investment science, 
shaping portfolios consisting of billions 01 donms of fixed-income sectHities held by 
pension funds, insUJunce companies, and othCl financial institutions, 

Before describing the procedure, let us i110re fully consider its purpose A port­
folio cannot be structured meaningfully without a statement of its purpose The pur­
pose helps define the character of risk one is willing to assume For example, sup­
pose that you wish to invest money now that will be used next year for a major 
household expense If you invest in l-yem I reasury bills, you know exactly how 
much money these bills will be worth in a yem, and hence there is little risk rela­
tive to YOUl purpose If, on the other hand, you invested in a lO-year zero-coupon 
bond, the value of this bond a year hom now would be quite vmiable, depending 
on what happens to interest rates during the year This investment has high risk 
relative to your pUipose. The situation would be reversed if you were saving the 
money to pay of! an obligation that was due in 10 years Then the IO-year zero­
coupon bond would provide completely predictable results, but the I-year Treasury 
bill would impose reinvestment risk since the proceeds would have to be reinvested 
afler I year at the then prevailing Illte (which could be considerably lower than the 
current rate) 

Suppose now thnt you face a seIies of cash obligations and you wish to acquiIe 
a pOlttolio that you will use to pay these obligations as they arise (This is the sort 
of problem taced by life insurnnce companies) One way to do this is to purchase a 
set ol zero-coupon bonds that have maturities and lace values exactly matching the 
sepatate obligations Howevel, this simple technique mny not be feasible if corporate 
bonds ale used, since there are few COlpOtate zero-coupon bonds (You may wish to 
use corpoIUte bonds because they ofler higher yields than US I reasury bonds) II 
pelt'ect matching is not possible, you may instead acquiLe a pOltfolio having a value 
equal to the present value ot the stream of obligations You can sell some of YOUl 
pOltfolio whenever cash is needed to meet a patticulat obligation~ 01 if your portfolio 
delivels mOle cash than needed at a given time (from coupon 01 face value payments), 
you can buy mOre bonds II the yield does not change, the value of your portfolio 
will, throughout this process, continue to match the present value of the remaining 
obligations Hence you will meet the obligations exactly 

A problem with this present-value-matching technique arises il the yields change 
Ihe value of your portfolio and the present value 01 the obligation stream will both 
change in response, but probably by amoullts that differ from one anothel Your 
pOltfolio will no longer be matched 

Immunization solves this problem-at least approximately-by matching dUla­
tions as well as present values II the duration ot d,e pOlllolio matches that of the 
obligation stream, then the cash value 01 d,e portfolio and the present value of the 
obligation stream will respond identically (to first order) to a change in yield Spec il­
ically, if yields increase, the present value 01 the asset portfolio will decrease, but the 
present value ot the obligation will declease by approximately the same amount~ so 
the Villue 01 the portfolio will still be adequate to covel the obligation The process is 
bes t ex plained through an example 
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Example 3.10 (The X Corporation) Thc X COlporation has an obligation to pay 
$1 million in 10 yeats It wishes to invest money now that will be sufficient to meet 
this obligation 

The purchase of a single zero-coupon bond would pwvide one solution; but such 
zelOs are not nlways available in the required maturities We assume that none are 
available for this examplc Instead the X Corporation is planning to select flOm the 
three corporate bonds shown in Table .3 7 (Notc that in this table, and throughout this 
example, prices ale expressed in ordinary decimal fonTI, not in 32nd's ) 

These bonds all have the same yield of 9%, and thi, rate is used in all calcula­
tions The X COl pOtation litst considels using bonds 2 and 3 to constlUct its portfolio 
A, a first step it calculates the durations and finds D, = 6 54 and D3 = 9 61, respec­
tively This is a selious problem! The dutation of the obligation is obviously 10 years, 
and thele is no way to attain that with a weighted avetuge of D2 and D3 using posi­
tive weights A bond with a longer duration is required TheretOle the X Corporation 
decides to use bonds I and 2 It is found that Dr II 44 (Note that, consistent with 
the discussion on the qualitative nature of durations, it is quite difficult to obtain a 
long duration when the yield is 9%---<I long maturity and a low coupon are required,) 
Fortunately Dr > 10, and hence bonds I and 2 will work 

Next the present value ot the obligation is computed at 9% interest This is PY 
$414,643 The immunized portfolio is found by solving the two equations 

Vr + V, PY 

DrVr +D,V, 10PY 

jor the amountS of money VI and Vz to be invested in the two bonds The first equa­
tion states that the total value of the portfolio must equal the total prcsent value of 
the obligation The second states that the duration of the portfolio must equal the 
dUlation (10 yeats) of the obligation (This lelation is best seen by dividing through 
by PY) The solution to these equations is Vr $292,78873 and V, $121,85427 
The number of bonds to be purchased is then found by dividing each value by the 
respective bond price (We assume a lace value of $lQO) These numbels are then 
rounded to integers to deline the portfolio 

The results are shown in Table .3 8 Note that, exccpt lor rounding enor, the 
present value of the portlolio does indeed equal that oj the obligation Furthermore, 
at different yields (8% and 10% arC shown) the value 01 the portl'olio is still approxi­
mately equal to that of the Obligation In lact, duc to the structurc of the price-yield 

TABLE 3,7 
Bond Choices 

Rate Maturity Price Yield 

Bond I 6'7, 30 yr 6904 900% 
Bond 1. 11% 10 yr 113 01 900% 
Bond 3 9{"/o 20 yr 10000 900% 

three !Jolld.\ are (Omic/t!rct/ {m ,I/(! X CO/pom­
';01/ \ "lIIlI/lIIi:ec/ porrjbho 



3.7 CONVEXITY· 65 

TABLE 3.8 
Immunization Results 

Percent yield 

9.0 0.0 10.0 

Bond I 
Price 6904 77 38 62 14 
Shares 4,241 00 4,241 00 4,241 00 
Value 292,79864 328,16858 263,53574 

Bond 2 
Price 11301 12039 10623 
Shares 1,07800 1,07800 I,onoo 
Value 121,82478 129,78042 114,51594 

Obligation 
Value 414,64286 456,38695 376,88948 

Surplus ~ 1,56205 1,16220 

The lIet \/lrpll/I (4 portfolio \'allll: mimll o/JIigatioll I'(IIl1e 
relllaf,,1 (/l'IJro.\iI/UlIe/v equal /0 :if/'() ('I'ell ij"jt:ldl d/(lIIge 

curve, the pOlttolio value will always exceed the value ot the obligation in both cases 
(See Exercise 16) 

Immunization provides protection against changes in yield If the yield changes 
immediately atter purchase of the portfolio, the new value 01 the portfolio will, in 
theory, still applOximately match the new value 01 the luture obligation However, 
once the yield does change, the new portfolio will not be immunized at the new rate 
It is therefore desirable to rebalance, or reimmunize, the pOitfolio from time to time 
Also, in practice more than two bonds would be used, partly to diversify default risk 
if the bonds included are not U S TreasUlY bonds 

Immunization is a clevel idea, but it sufiels some shOitcomings, at least in this 
simple fOl111 The method assumes that all yields are equal, wheleas in fact they usually 
are not Indeed it is quite unrealistic to assume that both long- and short-duration bonds 
con be found with identical yields Usually long bonds have somewhat higher yields 
than short bonds Furthermore, when yields change, it is unlikely that the yields on 
all bonds will change by the same amount: hence rebalancing would be difficult We 
shall consider some important extensions of immunization in the next chapter, and in 
Clwpter 5 we shall consider other approaches to bond portfolio construction Overall, 
howevel, the technique given here is surprisingly plactical 

3.7 CONVEXITY· 

Modified duration measures the lelative slope ot the price-yield curve at a given point 
As we have seen, this leads to H stlaight-line approximation to the price-yield Clllve 
that is useful both as a means 01 assessing tisk and as a procedure fOl conti oiling it 
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An even better approximation can be obtained by including a second-order (or 
quadratic) term This second-order term is based on convexity, which is the relative 
curvature at il given point on the price-yield curve, Specifically, convexity is the value 
of C defined a, 

c = -'- d
2
P 

P d).2 

which Ciln be expressed in terms of the cash flow stream as 

I " d'PY, 
c= p L dA' 

k=1 

Assuming 111 coupons (and 11/ compounding periods) pel year, we have 

c = I t k(k + I) c, 
P[I + (A/III)]' '~I III' [I + (A/m)J' 

Note that convexity has units of time squared Convexity is the weighted average 
ot tk fJ.:+ I where, like for duration, the weights are plOportionai to the present values 
01 the corresponding cash flows Then the result is modified by the factor I![ I + 
(A/III)J' An explicit fOllnuia can be derived for the case 01 equal-valued coupon 
payments 

Suppose that at a pliee P and a corresponding yield A., the modified duration 
D" and the convexity C are calculated Then il t1). is a small change in A and t1 P 
is the conesponding change in P, we have 

This is the second-ordel applOximLltion to the price-yield curve Convexity can be 
used to improve immunization in the sense thut, compared to ordinary immunization, 
a closer match ot as~et pmtfolio value and obligation value is maintained as yields 
vary To account tm convexity in immunization, one structures a portfolio of bonds 
such that its present value, its duration, and its convexity match those of the obligation 
Generally, at least Huee bonds are requiled for this purpose 

3.8 SUMMARY 

Fixed-income securities ille fundamental investment instruments, which are part 01 
essentially every investment pmtfolio, and which letlect the market conditions for 
interest rates directly 

There ale numelOUS kinds of fixed-income securitie~, designed 101 various in­
vestment and business purposes However, the vast bulk of money in fixed-income 
securities is committed to mOltgages and bonds 

Many fixed-income securities make periodic payments to the owner of the secu­
lHy This is true, in partiCUlar, for mmtgages, loans, annuities, and bonds In the case 



3 8 SUMMARY 67 

01 bonds, these payments nre usually made evelY 6 months and arc teln1ed coupon 
payments 

Usually the pedodic payments associated with a fixed-income sccmity are 01 
equal magnitude, ilnd there is an impOitant iOimulu relating the payment amount A, 
the pIincipal value of the security P, the single-peIiod interest rate 1, and the numbel 
of payment periods 11: 

Ihis single iOlnlUIa can be used to evaluate most annuities, mortgages, and bonds, 
and it can be used to amortize capital expenses nVCl time 

Bonds are the most important type ot fixed-income secuIity lor gencwi invest­
ment purposes Important leference bonds arc U,S lteusury securities-bills, notes, 
and bonds-of villious maturities and coupon values These bonds al e considered to 
be default free and thus carlY prices that are somewhat highel than cOlporate securities 
with similar coupon rates and ll1aturitie~ 

There are many v3liations to the generic coupon bond-call teatures, sinking 
fund bonds, bonds whose coupon rates me tied to economic indices, and so forth In 
addition, municipal bonds leceive special tax treatment 

A special feature 01 bonds is that the buyel must usuaUy pay acclUed interest 
in addition to the quoted price This acclued interest is compensation to the previ­
ous ownel 1'01 the coupon intelest that has been eamed since the last coupon pay­
ment 

Bonds are frequently analyzed by computing the yield to maturity This is the 
annual interest rate that is implied by the current price It is the interest rate thut makes 
the present value ot the promised bond payments equal to the cunent bond price This 
calculation of yield can be turned around: the price of a bond can be found as a 
function 01 the yield Ihis is the price-yield lelation which, when plotted, plOduces 
the price-yield curve 

The slope of the price-yield curve is a measure of the sensitivity 01 the plice to 
changes in yield Since yields tend to track the plevailing interest rate, the slope 01 
the pi ice-yield curve is therefore a measure 01 the interest rate Iisk associated with a 
particular bond As a general rule, long bonds have greatci slope than short bonds, and 
thus long bonds have greater intelest lUte risk A normalized version 01 the slope-the 
slope divided by the CUIrent bond plice-is given by the (modified) dUlation of the 
bond Hence duration (or, more exactly, modified duration) is a convenient measure 
ot interest rate risk 

Immunization is the process 01 constructing a porttolio that has, to first order, no 
interest rate risk I'he process is frequently applied by institutions. such as insurance 
companies and pension funds, that have large tuture payment obligations They wish 
to prepare for these obligations by making appropriate investments in lixed-income 
securities A portlolio is immunized if its present value is equal to that of the stream 
of obligations and if its duwtion matches that of the obligation In othel wOlds, the 
net portfolio, consisting 01 the obligation stream and the fixed-income assets, has zero 
present value and zero dUlHtion 
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EXERCISES 

1. (Amortization) A debt of $25,000 is 10 be D.lllonizcd over 7 years Ul 7% inlerest Whal 
value of monthly paymenls will achieve Ihis? 

2. (Cycles and ;:mnual wolth 0) Given a cash flow sUC3m X = (Xu. x], X2. , til)' u new 
streum Xoo of infinite length is made by successively repeating the cOlrcsponding finite 
streum The inleresl rale is 1 LeI P and A be the presenl v31uc 3nd the annual worth, 
lCSpcclivcly.ol sucum X Fin<dly. let Pcc be the presenl value of strc3m Xoo Find A in 
lerms 01 PN and concilidc lhat A can be used us well us Pcc for evalualion purposes 

3. (Uneerll.lin <lnnuity 0) Gilvin's grandfather, Ml Jones. has just lurned 90 years old and is 
applying for 1\ lifelime annuily thul will pay $10,000 per year, starling I year from now, until 
he dies He .'l.sks Gavin 10 analyze il tOT him G:.tvin finds lhat .'l.ccording to slatislical Sum~ 
maries, the chance (probability) lhal Mr Jones will die i.ll i.lny pnrlicular age is as follows: 

age 90 91 92 93 94 95 96 97 98 99 100 101 

probability 07 08 09 10 10 10 10 10 10 07 05 04 

Then Gavin (and you) answer the fullowing questiuns: 

(0) What is the life expectancy of Mr Jones? 
(b) What is the present value of an annuity at 8% inlerest lhat has a Iifelime equal lo 

Mr Jones's Iiie expeclancy? (For an annuity of a nonintegml number of years, use an 
averaging Illelhud ) 

(c) What is Ihe expecled present value of the Ilnnuhy? 

4. (APR) For the Illongi.lge listed second in Tnble 3 1 what me the louIi fees? 

5. (Callable bund) The Z Curporatiull issues a 10%, 20~year bond at a lime when Yields 
are 10% The bond has a call pruvision Ihm allows the corpor<1lfOn to force a bond holder 
to redeem his OJ her bond at face value plus 5% After 5 years the curpor<ltion finds that 
exercise of lhis clllI plOvision is advanlageous Whi.ll can yuu deduce about the yield at 
lhllt lime? (Assume one coupon paymelll per year ) 

6. (The biweekly mOrlgage 0) Here is u proposal lhat has been advanced as a wl.ly for 
homeuwners 10 save lhousands oj dollars on mortgage paymenls: pay biweekly instead 
of monlhly Specifically, if monthly payments are x, it is suggested lhal one inslead pay 
x/2 every lWO weeks (for a lOlal of 26 puymenls per yelu) This will pay down the mort­
gage rnsler, saving interesl TIle savings are surprisingly dramatic for this seemingly minOi 
mudificmion-oflen cutting the total interesl payment by over one-lhird Assume i.l luan 
amuunl of $100,000 j{JI 30 years at 10% inlereSI, compounded mOlllhly 

(0) Under a nlunlhly paymenl prugram, whal are the mOlllhly payments and the loli..ll 
inlerest paid over Ihe course of the 30 years? 

(b) Using the biweekly progmm, when will the loan be complelely repaid, and whal are lhe 
savings in lotal illlerest paid over the mOlllhly progwm? (Yon may assume biweekly 
compounding for lhis part ) 
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7. (Annuul wOrlh) One advantage of lhe ,mnuul worth melhod is thul il simplifies the com­
parison ot inveslmenl projects lhal arc repetitive bur have different cycle times Cunsidcl 
the l.llilomobilc purehase problem of Example 2 7 Find lhe annulIl worths of lhe rwa 
(single-cycle) options, und dClemlinc directly which is preferable 

8. (Vmhlble-r<llc mOrlgagee) The Smilh ji..\lnily jusl lOok OUl a variable-rale mongage un 
lheir new home fhe mortgage value is $100,000, the term is 30 years, and inilially 
lhe interest rale is 8% fhe inleresl rate is guuli.llltccd fur 5 years, i.lfLCr which time the 
rale will be adjusled according lo prevailing rates The new rate can be i.lpplicd 10 their 
loan either by changing the pHymem anloum or by chullging lhe lenglh uf the mort­
gage 

(a) Whal i~ the original yearly mongage puymenr'7 (Assume paymenls arc yearly) 
(b) Whal will be lhe mOrlgagc balance afler 5 years? 
(c.) If the inlereSl rale on the mortgage changes lo 9% afrer 5 years, what will be the new 

yearly paymenl lhal keeps the lenninaIiun lime the sume? 
(d) Under the inleresl change in (c.), whal will he lhc new term if the paymenl~ rClllain 

lhe same? 

9, (Bond price) An 8% bond wilh 18 ye,us lo mmurily has a yield 01 9% What is the price 
of lhis bond? 

10. (Duralion) Find the price and duration ot a 10-year, 8% bond lhi..ll is lrading at a yield 
of 10% 

11. (Annuily dUiation 0) Find the duralion D and the modified duralion D,\/ ot a perpelual 
annuilY lhat pays an amounl A al the beginning of each yeur, Wilh the firsl such paymcnt 
being I YC<lf from noW Assume a conslanl inleresl rate 1 compounded yearly [HiM' It is 
nOl necessary lo evalullle any new summalions J 

120 (Bond seleclion) Consider the tour bonds having annual p~lymenlS as shown in Table "3 9 
They are lraded lo produce a 15% yield 

(a) Delermine the price ot e,lch bond 
(b) Delermine the duralion ot each bond (llot the modified duralion) 
(L) Which bond is mosl sensilive to a change in yield? 
(d) Suppose you owe $2,000 ill the end of 2 years Concern aboul interesl rale risk sug­

geSlS lhal a portlolio consisling of the bonds llnd the obligalion should he immunized 
If VA, Vu, Ve , and VD arc the loml va"lues ot bonds purchnsed of lypes A, B, C, nnd 
0, respeclively, whal are the necessary constrainl!' to implemenl the immunizalion? 
[Hillt There arc lWo equalions (Do nol solve)1 

TABLE 3.9 

End of year payments Bond A Bond B Bond C Bond D 

Year I 100 50 a 0+ 1000 
Ye,u 2 100 50 a a 
Year "3 100 + 1000 50 + 1000 0,. 1000 a 
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(e) In order to immunize the pOrlfolio, you decide lo usc bond C and one olher bond 
Which olher bond should you choose? Find the amoUnls (in LOlal value) of each of 
lhese lo purch3se 

(j) You decided in (e) lO use bond C in the immunizalion Would olher choices, including 
perhaps 3 combimHion of bonds, lead to lower lOlDI cost? 

13. (Continuous compounding 0) Under continuous compounding the Macaulay duralion be­
comes 

whele A is the yield :md 

Find dP IdA in terms of D and P 

, 
p = Le-)"I~q 

'.0 

14. (Duralion limil) Show lhal the limiling v:lIuc of dUnllion as malurity is increased to 

infinilY is 

D--+ 

For the bonds in Table 3 6 (where A = 05 and 111 = 2) we obwin D --+ 205 Note lhal for 
large A lhis limiling vnluc approaches 1/111, and hence the dUnllion for large yields lends 
lo be relDlively short 

15. (Convexily v.'l.lue) Find the convexity of it zero-coupon bond mmuring ill lime T under 
conlinuous compounding (lhat is. when 111 --+ 00) 

16c (ConvexilY lheorem 0) Suppose lh.'l.l all obligalion occuning al a single lime period is 
immunized ngainsl inleleSl nile changes with bonds lhat h.'l.ve only nonnegalive cash 
flows (as in the X Corpor.'l.lion example) LeI P()..) be the value of the resulting port­
folio, including the obligation. when the inleJeSl nlle is 1 + ).. and 1 is the current in­
leresl rille By conslruction P(O) = 0 and PI(O) = 0 fn lhis exercise we show lhal 
P(O) is n local minimum; lhal is, PIl(O) ::: 0 (This properly is exhibiled by Exam­

ple 3 JO ) 
Assume a yearly compounding convenlion The discounl faclor for lime I is dl ()..) = 

(I + r + )..)-1 LeI dl = dl(O) For convenience asSUme lhallhe obligntion h.'l.s mngnilude 
I .'l.nd is due at lime r The condilions for immunizalion are lhen 

P(G) Lcldl-dr 

P'(O)(1 +1) Ltc,d, -Jd, 

(a) Show lhal for all values of a and /3 lhere holds 

P"(O)(1 + 1')' = LU' + "I + {J)c.,d, - (1' + ,,1 + {J)d, 
, 

(b) Show lhal a and /3 call be selecled so dUll the funclion 11 + al + /3 has a minimllm 
al r and has a value of I lhere Use lhese v.'l.lues to conclude lhal P"(O)::: 0 
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THE TERM STRUCTURE 
OF INTEREST RATES 

A richer theory of interest rates is explored in this chapter. as compared to 
that in previous chapters The enriched theory allows for a whole family 
.of interest rates at anyone time-a different rate for each maturity time­

providing a clearel understanding of the interest rate market and a foundation for 
more sophisticated investment analysis techniques 

4.1 THE YIELD CURVE 

72 

The yield to maturity of any bond is strongly tied to general conditions in the fixed­
income securities market All yields tend to move together in this market However, 
all bond yields are not exaclly the same, 

The variation in yields across bonds is explained in part by the lact that bonds 
have various quality tatings A strong AAA-rated bond is likely to cost mOle (and hence 
have lower yield) than a bond with an identical promised income stream but having a 
B-quality lOting It is only natural that high quality is more expensive than low quality, 
However, quality alone does not fully explain the observed variations in bond yields 

Another factor that pattially explains the differ ences in the yields at various 
bonds is the titne to maturity As a general rule, "long" bonds (bonds with very 
distant maturity dates) tend to after higher yields than "short" bonds of the Same 
quality The situation is depicted in Figlile 4 I The curve teatUied in this figure is 
an example of a yield curve, It displays yield a, a function of time to maturity The 
curve is constructed by plotting the yields 01 various available bonds of a given quality 
class Figme 4 I shows the yields for various government securities as a function ot 
the maturity date Note that the yields trace out an essetltially smooth curve, which 
lises gradually as the time to maturity increases A rising curve is a "normally shaped" 
yield curve; this shape occurs most often However, the yield curve undulates around 
in time, somewhat like a branch in the wind, and can assume various othel shapes 
II long bonds happen to have lowel yields than short bonds, t\1e result is said to be 
an inverted yield curve, The inverted shape tends to occur when short-term rates 
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FIGURE 4.1 Yield curvc. Yields are plolled as il funclfon 
of maturily dale The curve shown here is Iypical and has 
a normul upward slope Source: Treasury Bulletin, June 
1995 

il1crense rapidly, and investors believe that the rise is tempOImy, so that long-tertn 
rates telllain nem theil previous levels 

When ~tudying a patticular bond, it is useful to detelmine its yield and maturity 
date and place it as a point on the yield curve for bonds in its risk class This will give a 
general indication of how it is pi iced telative to the overalll11arket If it is far frotn the 
curve, there is probably a leason, related to special situations or specialleatures (such 
as call features of the bond or news affecting the potential solvency 01 the [ssuel) 

The yield cUive is helpful, but because it is a bit arbitrary, it does not provide 
a completely satisfactOlY explanation of yield differences Why, for example, should 
the maturity date be used as the horizontal axis of the curve rather thtm, say, duration? 
A mote basic theoty is required, and such a theory is introduced in the next section 

4.2 THE TERM STRUCTURE 

Term structure theory puts aside the notion of yield and instead focuses on pure interest 
rates The theOl,Y is based on the observation that, in genetal, the interest rate chmged 
(or paid) for money depends on the length of time that the money is held Your local 
bank, for example, is likely to offer you a higher rate of intelest for deposits committeu 
lor 3 years than lor demand deposits (which can be withdrawn at any time) This basic 
fact, that the interest late charged depends all the length of time that the funds are 
held, is the basis of term structure theory This chapter works out the details and 
implications of that tact 

Spot Rates 

Spot rates are the basic interest rates defining the term structUiC The spot rate 5/ is 
the rate 01 interest, expressed in yearly terms, chmged lor money held from the present 
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time (I = 0) until time / Both the interest and the original principal are paid at time /. 
Hence, in particular, ~I is the I-year interest rate; that is, it is the rate paid for money 
held I year Similarly, the rate " represents the rate that is paid for money held 
2 years; however, it is expressed on an annualized basis Thus if your bank promises 
to pay a rate of ~2 for a 2-ycar deposit of an amount A compounded yearly, it will 
actually repay (I + ,,)' A at the end at 2 years; your money grows by a factor of 
(1 + \,)' 

The definition of spot rates implicitly aSsunleS a compounding convention, and 
this convention might vary with the purpose at hand The preceding discussion as­
sumed a I-year compounding convention It is common to use 111 periods per year, 
or continuous compounding, as well In all cases the rates are usually still quoted as 
yea! ly rates. FOl completeness, we list the Va! iatls possibilities: 

(a) Yearly Undel the yearly compounding convention, the spot rate ", is defined 
such that 

(I + ,,)' 
is the factor by which a deposit held / years will grow (Here / must be an integer, 
or an adjustment must be made) 

(b) 111 periods per year Under a convention of compounding 111 periods per year, 
the spot rate ~I is defined so that 

(I + ~llm)ml 

is the conesponding factOI (Here ml must be an integer, so t must be an integral 
mUltiple of 1!1Il ) 

(c) Continuous Under a continuous compounding convention, the spot rate ~, is 
defined so that el"r[ is the con'csponding growth [acto! ll1is formula applies directly 
to all values of / 

For theoretical purposes, continuous compounding is ''neatel'' since the formulas 
apply without change to all values of I TIle other methods require an adjustment for 
values of f between compounding dates However, the yearly compounding convention 
is the most convenient, and it is" the convention mainly used in this chapter 

Spot fates can, in theory. be measured by recording the yields of zero-coupon 
bonds (In order to eliminate the influence ot default risk, it would be best to consider 
only Treasury secUi ities tor this purpose) Since a zero~coupon bond promises to pay a 
fixed amount at a fixed date in the future, the ratio of the payment amount to the current 
price defines the spot rate tor the maturity date of the bond By this measurement 
process we can develop a spot rate curve, which is analogous to the yield curve 
Such a curve and tl chart of the corresponding data are shown in Figure 42 

Discount Factors and Present Value 

Once the spot rates have been detelmined, it is natural to define the corresponding dis~ 
count factors dt for each time point These are the factors by which future cash flows 
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FIGURE 4.2 Spot rate curve The yearly mte of interest depends on the length of time funds are 
held 

must be multiplied to obtain an equivalent present value, For the various compounding 
conventions, they are defined as follows: 

(a) Yearly For yearly compounding, 

I 
'h = (I +.<d 

(b) III periods pel' yeaI' For compounding IN periods per year, 

I 

'h = (I + 'killl)"" 

(c) Continuous For continuous compounding, 

The discount factors tranSfoml future cash flows directly into an equivalent 
present value Hence given any cash flow stream (xo, :'1, X2. ,xu), the present value, 
relative to the prevailing spot rates, is 

The discount lactDr {It acts like a pI ice tor cash received at time k We determine the 
value of a stream by adding up "price times quantity" tor all the cash components of the 
stream 
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TABLE 4"1 
Bond Evaluation 

Year 4 8 9 10 Total PY 

Discount 947 889 827 764 701 641 583 528 477 431 
Cash flow 8 8 8 8 8 8 8 8 8 108 
py 758 711 661 611 561 5 12 466 422 .3 82 4650 97 34 

ErJ(h wrh flo\\' /1 dilWJ/fIJed hv JIll! diH.OfmJ /auOl {Of ill tillle 

Example 4.1 (Price of a to-year bond) Using the Spot wte curve of Figure 4 2, let 
us I1nd the value ot an 8% bond maturing in 10 years 

Normally, for bonds we would use the rates and formulas for 6-month com~ 
pounding; but for this example let us assume that coupons are paid only at the end of 
each year, starting a year hom now, iJnd that I-year compounding is consistent with 
our genet al evaluation method We write the cash flows together with the discount 
tactOfS, take their products, and then sum, as shown in Table 4 I The value of the 
bond is found to be 97 34 

Example 4.2 (Slmpllco gold mine) Consider the lease of the Simplico gold mine 
discussed ill Chapter 2, Exwllple 26, but llow let us assume that interest rates follow 
the term struetUle pattern at Figure 42 We shall find the present value of the lease 

The cash flow stream is identical to that ot the earlier example; namely, $2M each 
year for 10 years The plesel1t value is therelore just the Sum at the lirst 10 discount 
figures multiplied by $2M, tal a total of $13 SSM 

Determining the Spot Rate 

The obvious way to detelmi11c a spot rate curve is to find the prices of a scries of 
zelo·coupon b011ds with various maturity dates U11fortunately the set of available 
zelO-coupon bonds is typically rather sparse, and, indeed, u11til rece11tly there were 
essentially 110 "zeros" available with long maturities Thus it is not always practical to 
determi11e n complete set of spot rates this way However, the existence ot zero·coupon 
b011ds is not necessaty tor the concept ot Spot rates to be useful, nor are they needed 
as data to detel mine the spot rate value 

The spot late curve can be determined from the prices of coupon-beming bonds 
by bcginning with short matutities and wOlking torward toward longer maturities We 
illustrate the plocess lor the I-year compoundi11g convention (and assuming coupons 
are paid only once a year) First determine \'1 by direct observation of the I-year intel­
est rate-as determined, tor example, by the I-year Treasury bill rate Next consider 
a 2·year bond Suppose that bond has pI ice P, makes coupon payments of amount C at 
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the end at both years, and has a face value F The price should equal the discounted 
value of the cash flow stream, so we can write 

c C + F 

P= ~+ (I+s,)' 

Since \! is already known, we can solve this equation tor ,\2 Working forward this way, 
by next considering 3·year bonds, then 4·year bonds, and so forth, we can determine 
,IJ, ,I" , step by step 

Spot rates can also be determined by a subtraction pIOcess Two bonds 01 elit/er· 
ent coupon rates but identical maturity dates can be used to construct the equivalent 
01 a zero-coupon bond The following example illustrates the method 

Example 4_3 (Construction of a zero) Bond A is a 10-year bond with a 10% 
coupon Its price is P" = 98 72 Bond B is a 10-year bond with an 8% coupon Its 
price is PB = 85 89 Both bonds have the same face value, normalized to 100 

Consider a portfolio with 8 unit of bond A and I unit at bond B This porttolio 
will have a face value at 20 and a price of P = PB SP" = 6 914 The coupon 
payments cancel, so this is a zero-coupon portfolio The iO-year spot tate _\w must 
satisfy (I +SIO)lOp = 20 Thus Sill = II 2% 

In practice, since spot rates arc an idealization, and the spot rates irtlplied by 
different bonds may differ slightly hom one another, it is advisable to modity these 
procedures to incorporate an averaging method when estimating the spot rates (See 
Exercise 4) 

4.3 FORWARD RATES 

An elegant and useful concept emerges directly fIOtn the definition of spot rates; 
namely, the concept ot fotward rates Forward rates are interest rates tor money to 
be borrowed between two dmes in the future, bwwu/el /ell/H agleed upo11/ado\' 

It is easiest to explain the concept for a 2-year situation Suppose that \1 and .\2 

are known It we leave $1 in a 2-yeat account it will, by definition, grow to ,~(l + .Y:d J 

at the end 01 the 2 years Alternatively, we might place the $1 in a I-yem account and 
simultaneously make arrangements that tlle proceeds, which will be $(1 + .I,), will be 
lent for I yem starting a year from now That loan will accrue interest at <1 prearranged 
rate (agreed upon now) 01 say f The rate f is the forward rate lor money to be lent 
in this way The linal amount of money we receive at the end 01 2 years undCl this 
compound plan is $(1 + .1,)(1 + f) 

We now invoke the comparison pIinciple. We have two alternative methods tOl 
investing $1 lor 2 year s The lirst returns (I +'1,)' and the second returns (I +,1,)( I + /) 
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These two should be equal, since both me available! Thus we have 

(I + ,,)' = (I + '1)(1 + f) 
O! 

(I + ,,)' 
/=~ 

Hence the fOlwmd lute is detelmined by the two spot lutes 
We can justify the use of the compulison pIinciple hele thlough un arbitrage 

argument. If these two methods of investing money did not letulfl the same amount, 
then there would be an Oppo!ttmity to make mbitlage profits-defined to be eithcl 
instantaneous plOfit or stile future profit with zelO net investment In the preceding 
example, if (I + ,,)(1 + j) > (I + ,,)', lIJeaning tlmt the second method of invest­
ment reW! ned more than the first, then an u! biuageur could leveise the fiIst plan (by 
b01101I'ing for 2 yeUls) and then carry out the second plan by investing the money 
that was borrowed This arbitIageUl would have zero net investment because he 01 she 
used only borrowed capital, but ailel !epaying the loan the arbitrageur would have a 
profit factO! at (I + ,,)(1 + f) (I + ")' > 0 This arbitlnge scheme could be callied 
out at any magnitude, and hence, in theOlY, the arbitrageUl could make very large 
sums ot money hom no initial capitaL We assume that it is not possible to implement 
this scheme in the mmket because potential arbitrageurs are always on the lookout for 
such discrepancies If a slight disclepancy does arise, they take advantage of it, and 
thiS action tends to close the gap in rates It the inequality wele in the othel direction, 
the mbitageur could just leVelse the procedure Thus equality must hold 

The arbitrage mgument assumes that thele are no transaction costs--eithel leal 
costs such as blOkerage tees or oppOltunity costs related to the time and effOlt of 
finding the discrepancy and ananging for the trades The argument also assumes that 
the borrowing and lending rates are identical If there wele transaction costs or unequal 
lateS, there could be a slight "wedge" between the 2-yearrates associated with the two 
alternative strategies However, in practice the transaction cost associated with a highly 
liquid security such as a U S Treasury is a very small fraction of the security's total 
cost, especially if lalge amounts are involved; and borrowing and lending rates are 
quite close, again if large aInounts of capital ale involved So although the arbitrage 
argument replesents an idealization, it is in practice a reasonable approximation 

The compmison principle can be used to argue that the two overall rates must 
be equal even in the absence of arbitrageurs, If thew wele a difference in rates, then 
investors seeking to loan money for 2 years would choose the best alternative-and 
so would bOlfowers Market forces would tend to equalize the rates 

Example 4,4 Suppose that the spot rates tor I and 2 yems are, respectively, 'I 7% 
and" 8% We then find that the torward rate is / (I (8)'/1 07 I 0901 
901 % Hence the 2-year 8% rate can be obtained either as a direct 2-year investment, 
or by investing tor I year at 7% tollowed by a second year at 901 % 

! Forward COnlrac!s 01 lhis lype arc aelUa]])' implernen!ed by lhe usc of fulUrcs con!raqs on Treasul}' 
securilics. as explaincd in Chapler 10 They (jrc highly liquid. so lorwurds of !his lype are obtained casily 
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This discussion can be generalized to define other forward rates between different 
time periods The rate f used earlier is more completely labeled as /1 2 because it is 
the fOlward rate between yems I and 2, In general we use the following: 

Forward rate definition The fonl'Q1(/ wle between 'ime!J 'I and '2 wit" 'I < ''2 i.\ 
denoted bv /£1.£: 11 h the wle of haele'Jl clfCf1 ged 101 bm rowing money at time 'I which 
i5 10 be 1 epai" (with IUlel e.\I) at lime ''2 

In general, torwmd rates are expressed on an annualized basis, like other interest 
rates, unless anotheI basis is explicitly specified 

In the market there could be more than one rate for any particular tor ward 
period For example, the forward rate for borrowing may differ from that for lending 
Thus when discussing market rates one must be specific However, in theoretical 
discussions the definition of forward rates is based on an underlying set ot spot rates 
(which themselves generally leprescnt idealizations Or averages of market conditions) 
These calculated forward rates are often termed implied forward rates to distinguish 
them from market forward rates. 

The implied forward rates are found by extending the logic given ealliel for 
assigning the value li1 If we use I-year compounding, the basic forward rates are 
defined between various yearly periods They are defined to satisfy the following 
equation (fO! i < j): 

The left side of this equation is the factor by which money grows if it is directly 
invested for j yearS This amount is determined by the spot rate .~j' The right side of 
the equation is the tactor by which money glOws if it is invested first for ; years and 
then in a forwmd contract (arranged now) between yems i and j The term (I + /; j) 
is raised to the (j i)th powel because the fmward rate is expressed in yearly terms 

The extension to other compounding conventions is suaightfmward Fm com­
pleteness, the fo!mulas for fmward rates (expressed as yeruly rates) under variou~ 

compounding conventions are listed here: 

Forward rate formulas [be implied fOI\\'01d late between time,\ tl and t1 > tl i.\ 
tlte 1{fte 0./ inte!e!Jt between thme tintes that is c01O'htent with a given spot rate cUlve 
Unde! \'miom compollnding cOllFentiom the /01 ward mtelJ me Jpecijied as/allows 

(a) Year·ly Fm vemlv compoullding, the /onl'md rate.\ salisfv, /01 j > i, 

(I + sY (I + s,); (I + f; j )j-' 

Hence, 

[

(I + Il)l] Ij(j-I) 
(I +.\.;)' 
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(b) m periods per year F01 m peliod-pel-vem compounding, the f01I1'md zate'i WI­
is/v, 101 j > t, expleBed in pelioe/s, 

(l + Ij/lII)j = (I + 1,/111)' (l + f' j/III)lh) 

Hence, 

[
(I + \}/IIl)j]i lU-') 

fi.j=1II (1+1,/111)' -Ill 

(c) Continuous F01 continuoif\' Lompmmdillg, the fmwmd rate} ffl.{, are defined 101 

all II alld '2. lI'ilill'2 > 'I. and wli'l/)' 

h h:= 'i{~/2 - Stl'l 

~ '2 -', 
Note again that continuous compounding produces the simplest formula As 

a further convention, it is useful to define spot rates, discount factors, and forward 
rates when one of the time points is zero, representing current time Hence we define 
Stu := 0 and correspondingly dto = 1, where 10 is the cunenl time (Alternatively we 
write So = 0 and do = I when denoting time by period integers) For forward rutes, 
we write similarly ffo f) = 'tfl The fOlward rates from time zero are the corresponding 
spot rates 

There are a large number of forward rates associated with a spot rate curve, 
In tact, it there are II periods, there are II spot rates (excluding 'to); and there are 
/1(/1 + 1)/2 forward rates (including lhe basic _'polrales) However, all lhese forward 
rates are derived from the 11 underlying spot rates 

The forward rates are introduced partly because they represent rates of actual 
transactions Forward contracts do in fact serve a very important hedging role, and 
their use in this manner is discussed further in Chaptel 10 They are introduced here, 
however, mainly because they ale important tor the full development ot the term 
,'lUucture theory They me u!'ied briefly in the next section and then extensively in the 
section following that 

4.4 TERM STRUCTURE EXPLANATIONS 

The yield curve can be observcd, at lenst roughly, by looking at a series of bond 
quotes in the financial press The curve is almost never fiat but, rather, it usually slopes 
gIadually upward U!'i matuIity increases The spot rate CUIve has similru characteristics 
Typically it, too, slopes lapidly upward at shOlt maturities and continues to slope 
upward, but more graduaJIy as maturities lengthen It is natural to ask if there is a 
simple explanation tOl this typical shape Why is the CUI ve not just tIat at a common 
interest rate? 

There are three standard cxplanations (or "theories") foJ' the telln structure, each 
ot which plOvides some importnnt insight We outline them briefly in this section 
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Expectations Theory 

The first explanation is that spot rales me determined by expectations ot what rales will 
be in the future To visualize this plOcess, suppose that, as is usually the Ctl.se, the spot 
rate curve slopes upwald, with rates increasing tOl longer maturities The 2-yeUl rate is 
greater than the I-year rate It is argued that this is so because the mmket (that is, the 
collective of all people who trade in the interest rate market) believes that the I-yeal 
rate will most likely go up next year (This belief may, tor example, be beCl.lUSe most 
people believe inflation will lise, and thus to maintain the same real rate ot interest, 
the nominal rtlle must increase) Thi!'i majority beliet that the interest rate will rise 
translates into a mmket expeL/alion An expectation is only an average guess; it is 
not definite information-for no one knows tor Sure what will happen next year-but 
people on aveIl.lge assume, accOlding to this explnnation, that the rate will increase 

This mgument is made mOle concrete by expressing the expectations in telms 
of fmward rates This more precise tormulation is the expectations hypothesis. To 
outline this hypothesis, consiJel the forward rate 112, which is the implied late for 
money loaned for I year, a year from now According to the expectations hypothesis, 
this forwald rate is exacl/" equal to the market expectation of what the I-year spot 
rate will be next yem Thus the expectation can be infelred trom existing rates 

Eadiel we consideled a situation where J I = 7% and 52 = 8% We tound that 
the implied fOlwm'd late was 112 = 9,01% Accmding to the unbiased expectations 
hypothesis, this value ot 90 I % is the mUlket's expected value of next yem's I-yell! 
spot late .'I; 

The Same Ulgument applies to the othel rates as well As additional spot I ates 
are consideled, they define cOlresponding fOlward lUtes fOl next yeal Specifically, 
s!, .~:!, and 5J togethel detelmine the torwUld Hltes h 2 and II J The second of these 
is the fOlWUld late tOl bOlIowing money for 2 yeals, stalting next yenr This Hlte is 
assumed to be equal to the cunent expectation of what the 2-yem spot lUte s~ will be 
next year In genelal, then, the CUlfcnt spot lUte Cll!ve leads to a set ot forwald lutes 

Ii 2, iJ.3, ,1111, which define the expected spot HUe curve ,\~, ~;, '~:I_I tOl next 
year The expectations are inherent in the cunent spot late structure 

There ale two ways ot looking at this construction One way is that the current 
spot rate CUI ve implies an expectation about what the spot lUte Cll! ve will be next 
year The othel way is to tUIn this first view mound and say that the expectation ot 
next year's CUlve detel111ines what the CUllent spot lUte cll!ve must be Both vicws me 
intellwined; expectations about future lUtes Ule paIt ot today's mmket and inlluence 
today's lUtes 

This theOlY 01 hypothesis is a nice explanation ot the spot lute cUlve, even 
though it has some impOltant weaknesses The primmy weakness is that, accOlding 
to this explanation, the market expects lates to inclease whenevel the spot late cUlve 
slopes upwUld; tlnd this is pIactically all the time Thus the expectations cannot be 
light even on avelage, since lUtes do not go up as often as ex.pectations would imply 
Nevellheless, the expectations explanation is plausible, although the expectations may 
themselves be skewed 

The expectations explanation ot the tel m Stl ucttHC can be leg~llded us being 
(loosely) based on the compmison pIinciple To sec this, considel again the 2-yem 
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situation, An invcslOl can invest either in a 2-yeaI instrument or in a I-year instrument 
followed by another I-year investment. The follow-on investment can also be cLlnied 
oullwo ways It can be llnanged cunenlly lhlOugh a fOlward contract at rate [1.2, or 
it can simply be "lOlled over" by reinvesting the following yeat at the then prevailing 
I-yelll rale A wise inveslOl would compme the two altematives. If the investor expects 
that next yem's I-year rule will equal the current value of 11.:1" then he or she will be 
indiffelCnt between these two alternatives Indeed, the fact that both are viable implies 
that they must seem (approximately) equal 

Liquidity Preference 

The liquidity prefelcnce explanation assellS that inveslOlS usually plefer shOll-telm 
fixed income secuIities ovel long-term secuIities, The simplest justification for this 
assellion is that investOls do not like to tie up capital in long-term seclJrities, since 
those tunds may be needed befOle the matUlity date InvestOlS pl'efel their funds to be 
liquid rathel than tied up, However, thc term liquiditv is used in a slightly nonstandard 
way in this algument Thele me large active markets tOl bonds of majOl corporations 
and of the TIeaSuIY, so it is easy to sell any such bonds one might hold Short-term 
and long-telln bonds of this type me equally liquid 

Liquidity is used in this explanation of the tellTI structUle shape instead to express 
lhe fnctthat most investors plefel shOlt-tel111 bonds to long~telm bonds The reason fOl 
this pletelence is that investors anticipate that they may need to sell theil bonds soon, 
and lhey recognize that long-term bonds ru'e mOle sensitive to interest rate changes 
than are shOlt-lellTI bonds Hence an investOl who may need funds in a year or so will 
be be leluctant to place these tunds in long-term bonds because of the relatively high 
near-telm risk associated with such bonds To lessen risk, such an investor prefers 
shOl Helm investments Hence to induce investors into long-tel m instl uments, better 
lutes must be offered for long bonds For this reason, according to the theory, the spot 
tate CUI ve I iscs 

Market Segmentation 

The mmket segmentation explanation of the term structure argues that the market 
for fixed-income securities is segmented by matUlily dates This argument assumes 
that investors have a good idea of the matuIHy date that they desile, based on theil 
projecled need fot tutUle tunds ot their fisk pleference The algument concludes that 
the group ot investOls competing tOl long-term bonds is different from the glOUp 
competing tOl shOlt-tcllTI bonds Hence there need be no relation between the pJices 
(defined by intelest lates) ot these two types of instftlments~ ShOlt and long Jates can 
move mound lather independently Taken to an extleme, this viewpoint suggests that 
all points on the spot rate curve are ITIUlually independent Each is detel mined by the 
forces ot supply and demand in its own mm ket 

A moderated veu;ion ot this explanation is that, although the market is basically 
~egmented, individual investOl s are willing to shift segments if the rates in an adja-
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cent segment are substantially mOle aUl active than those of the main target segment 
Adjacent rutes cannot become grossly out of line with each othel Hence the spot rate 
curve muSt indeed be a curve lathel than a jumble of disjointed numbels, but this 
CUlve can bend in various ways, depending on market forces 

Discussion 

Certainly each ot the foregoing explanations embodies an element of t!uth The whole 
truth is probably some combination of them all 

The expectations theory is the most analytical ot the three, in the sense that it 
offers conclete numerical values fOJ expectations, and hence it can be tested These 
tests show that it works leasonably well with a deviation that seems to be explained 
by liquidity preference Hence expectations tempered by the I isk considerations ot 
liquidity preference seem to offel a good suaightfOlward explantltion 

4.5 EXPECTATIONS DYNAMICS 

The concept ot mal ket expectations introduced in the previous section as an explana­
tion fOl the shape of the spot I ate curve can be developed into a useful tool in its own 
right This tool can be used to tOlm a plaUSible fOl'eeast ot future interest tates 

Spot Rate Forecasts 

The basis of this method is to asSume that the expectations implied by the current spot 
rate curve will actually be fulfilled Under this assumption we can then predict next 
yem's spot late curve flom the cunent one This new CUlve implies yet anothel set 
of expectations fOl the following yea! It we asSUme that these, too, are fulfilled, we 
can predict ahead once again Going fOlwmd in this way, an entile futUle of spot late 
cUlves can be predicted OfcoUlse, it is undelstood that these predicted spot late cUlves 
are based on the assumptioll that expectations will be fulfilled (alld we lecognize that 
this may not happen), but once made, the assumption does plOvide a logical forecast 

Let us wOlk out some of the details We begin with the CUlTent spot rate CUlve 
_!q,,~::!, ,5/1, and we wish to estimate next yem's spot late cUlVe 5;,,\~, ,5;/_1 

The ctllrent fOlward late II} can be legardcd as the expectation of what the interest 
late wi!! be next yem-measUled from next year's CUllent time to a time j - I yeals 
ahead-in othel WOlds, II j is next yem's spot late 5;_1 Explicitly,::! 

, [(I +;j)j]lIU-1l 
')-l=il}= ~ -I (4 I) 

::!Reca!! that thi~ formula tor ii 1 was given in Section 43 It is derived fraIl! the relation (I + 11)1 = 
(!+h1)1- I (I+\'d 



84 Chapter 4 THE TERM STRUCTURE OF INTEREST RATES 

for I < j ::.: 11. This is the basic formula for updating a spot rate curve under the 
assumption that expectations are fulfilled Starting with the current curve, we obtain 
an estimate of next year's curve 

We term this trunsfonnation expectations dynamiCS, since it gives an explicit 
charactetization of the dynamics of the spot rate curve based on the expectations 
assumption Other assumptions are certainly possible For instance, we could <Issume 
that the 5potrate cUlve will remain unchanged, or that it will shift upward by a fixed 
amount, and so forth; however, expectations dynamics has a nice logical appeal 

The expectations process can be canied out tor another step to obtain the spot 
rate curve tOl' the thitd year, and so forth Note, however, that if the original curve 
has finite length, each succeeding CUI ve is sl10r ter by one tel m-and hence the curves 
eventually become quite short This problem can be rectified by initially assuming a 
very long (or infinite) spot wte CUI ve, or by adding a new 5/1 term each year This 
latter approach would require an additional hypothesis 

Example 4.5 (A simple forecast) Let us take as given the spot rate curve shown in 
the first row ot the table The second row is then the forecast of next yem's spot rate 
curve under expectations dynamics This row is found using (4 I) 

5, 5S 56 

Current 600 645 680 7 10 7 36 756 7 77 
Fotecast 690 720 747 770 788 806 

The first two entries in the second row were computed as follows: 

(I 0645)2 
1, 2 = ~ - I = 069 

_ [(1068)3]'12 _ I-
I, 3 - I 06 - 072 

All tuture spot rate curves implied by an initial spot rate curve can be displayed 
by li~ting all ot the tor ward rates associated with the initial spot rate curve Such a 
list is shown in a triangular array: 

10 , lil2 [0.3 /0.,,-2 [0.11-1 f(lll 

ft.2 I, 3 fL. [I II-I fill 
123 [2 .• 12, 12./1 

[,,-2.11-1 [11-2 " 

1;/-1/1 

The first lOW of the array lists the forward rates trom the initial time These are 
identical to the spot rates themselves; that is, Ij = !o.j fot all j with 0 < j :5 II 
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The next row lists the forwmd rates from lime I These will be next year's spot rates 
according to expectations dynamics The third row will be the spot rates for the third 
yea!, and so tonh 

Discount Factors 

Another important concept is that of a discount factor between two limes The dis­
count factors me, ot course, fundamental quantities used in present value calculations 

It is uscfulto apply a double indexing system to the discount tactors paralleling 
the system used for forward rates AccOldingly, the symbol djf... denotes the discount 
faclor used to discount cash received at time k back to an equivalent amount of cash at 
time j The normal, time zero, discount taclOIs arc d l = do I, d'2 = do 2, ,dl! == do /I 

The discollnt factors can be expressed in terms of the forward lutes as 

The discount factors are related by a compounding rule: to discount h·om time 
k back to time i, one can first discount from time k back to an intermediate time j 
and then discount from j back to i In other wOlds, di k = di jdj f... for i < j -< k 

Discoullt factor relatioll l1te di.\(OUllt (aclol between !lel iods i and j i.\ dejined ({j 

[ 
I J1

-' 
dij= l+fij 

T/WJe f({({OI,\ .wti~fv tile [Oll/poundillg I(tle 

fOli<j<k 

Short Rates 

Short tates me the tOl\vard HiteS spanning <.l single time peIiod The short rate at time 
k is accordingly If... = .if....k+l; that is, it is the fOlward late hom k to k + I The short 
Hiles can be considered fundamental just as spot rates, tor a complete set ot short rates 
fully specifies a term structure 

The spot rate "\f... is lound hom the short rates hom the tact that interest emned 
tram time zew to time k is identical to the interest that would be earned by rolling 
over an investment each year Specifically, 
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The relation generalizes because all forward rates can be found from the short 
rales in a similm way Specifically, 

Hence the short rates lOI1n a convenient basis for generating all othel rales 
The shO! t rates are especially appealing in the context of expectations dynamics, 

because they do not change from year to year, whereas spot rates do, Given the initial 
short rates fO, 'I, '2, ,'II-I, next year (under expectations dynamics) the short rates 
will be '1,1"2, ,'/I-I The short rate for a specific year does not change; however, 
that year is I year closer to the sliding current lime For example, if we are at the 
beginning of year 2020, the short rate 1,1 is the rate for the year beginning January 
2024 A yem later, in 2021, the new I J will be the rate for the year 2024 and this 
short rale will be identical (under expectations dynamics) to the previous 14 

An example of a complete set ot forward rates, discount factors, and short rates 
is shown in Table 42 Here the rows represent the rates or factors for il given year: 
the top row of each array contains the initial rates or factors for 7 years forward, The 
forward !Ute array is, as discussed, identical to the spot rate array Hence the basic 
spot rate curve is defined by the top line of the forward rate anay Everything else 
is derived from that single row The discount factors fOl the current time are those 
listed in the top row of the discount factor array These are the values used to find the 
present values of future cash flows Note that successive lOWS of the short rate table 
are just shifted versions of the rows above ShOll rates remain fixed in absolute time 

TABLE 4,,2 
Forward Rates, Discount Factors, and Short Rates 

Forward rates Short rates 

600 645 680 710 736 756 777 600 690 750 800 840 860 900 
690 720 747 770 788 806 690 750 800 840 860 900 
750 775 797 812 830 750 800 840 860 900 
800 820 833 850 800 840 860 900 
840 850 867 840 860 900 
860 880 860 900 
900 900 

Discoun t factors 

943 883 821 760 701 646 592 
935 870 806 743 684 628 
930 861 795 732 671 
926 854 787 722 
923 849 779 
921 845 
917 

The origil/ol IfJot rate tlllVe i\ dujiiJed by tile top 1'011' o!tlle[Oiword rate tlrla.\' All other terllls are derilred 
[roil/ t/lil roll' 
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Invariance Theorem 

Suppose that you have a sum ot money to invest in fixed-income securities, and you 
will not draw from these funds lor 11 peliods (say, 11 years) You will invest only in 
Treasury instIllments, and there is a current known spot rate curve for these securities 
You have a multitude of choices for structuring a portfolio using your available money 
You may select some bonds with long maturities, some zero-coupon bonds, and some 
bonds with short matmities If you select a mix of these securities, then, as time passes, 
you will obtain income trom coupons and from the redemption of the short maturity 
bonds You may also elect to sell some bonds early, betore maturity As income is 
generated in these ways, you will reinvest this income in other bonds; again you have 
a multitude of choices Finally you will cash out eveIything at time period 11 How 
should you invcst in mdeI to obtain the maximum amount of money at the teIminal 
time? 

To address this question, you must have a model of how interest rates will 
change in the intelvening YCaIS, since futUle rates will deteIllline the prices for bonds 
that you sell early and those that you buy when reinvesting income Thele are a variety 
of models you could select (somc of which might involve randomness, as discussed in 
Chapter 14), but a stIllightforward choice is to assume expectations dynamics-so let 
us make that assumption Let us assume that the initial spot lUte curve is transformed, 
anel I yem, to a new curve in accordance with the updating formula presented earlier 
This updating is repeated each year Now, how should you invest? 

The answer is levealed by the title ot this subsection It makes absolutely 110 

difference how you invest (as long as you remain fully invested) All choices will 
produce exactly the same result In jJaJticular, investing in a single zero-coupon bond 
will produce this invariant amount, which is, accordingly, (I +'~II)/1 times your original 
sum of money This result is spelled out in the lollowing theorem: 

11lvariallce theorem Suppme lital illlele_\lWle.\ evolve ac(ol(lillg 10 erpectaliolB dv­
IUlllliu. Theil (m.\lllllillg a vemlv compoullding convelllion) a _Hml oj mone\, ilIveHed 
ililhe ;11Iere,\IWle Illmkel {mil vems will glO\\, bv a {aclol (~I (I +'\/1)'1 illdepelldelll 

oj lite hrve.wllelll alld !elllJlesllllelll .HWlegv (\'0 long as all fUlld\ me (ully ilIve"\led) 

Proof: The conclusion is easiest to see from the example used eallieI Sup­
pose that II =: 2 You have two basic choices tm investment You can invest 
in a 2-yem zelO-coupon bond, or you can invest in a I-year bond and then 
Ieinvest the plOceeds at the cnd 01 the yem Under expectations dynamics, the 
reinvestment lUte aneI I yem will be equlli to the current fOlward rate 111. 

Both of these choices lead to a glOwth of (I + )2)2 Any otheI investment, 
such as a 2-year bond that makes a coupon payment nilel I year that must 
be Icinvested, will be a combination ot these two basic strategics It should 
be clem that a similm "ugument applies fm any II m 

The simplest way to internalize this lesult is to think in terms of the short rates 
EvelY investment eaIns the lelevant sholl rates over its duration A IO-year zero-
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coupon bond ear ns the 10 sholt rates thal Ure defined initiully An investment rolled 
over yeur by year for 10 years eruns the 10 short lates that happen to occur Under 
expectations dynamics, the Si10lt rales do not change; that is, the lute initially implied 
tor a specified period in the future will be realized when that period arrives Hence 
no matter how an initial sum is invested, it will progress step by step thIOUgh each of 
the short rates 

This lheOlcm is VCIY helpful in discussing how to structure an actual portfolio It 
shows that the motivation for selecting a mixture of bonds must be due to anticipated 
deviations hom expectations dynamics-deviations of the realized short lates from 
their originally implied values Expectations dynamics is, therefore, in a Sense the 
'iimplest ussumption about the future because it implies invmiance of portfolio growth 
with respect to strategy 

4.6 RUNNING PRESENT VALUE 

The present value of a cash How slIeam is easily calculated in the term stIllcture 
framework One simply mUltiplies each cash How by the discount factor associated 
with the period of tIte How and then sums these discounted values; that is, pIesent 
value is obtained by appropriately discounting all future cash Hows 

There is a speciul, ulternative way to arrange the calculations of present value, 
which is sometimes quite convenient und which hus u useful inleIpretation This dif­
terent way is termed running present value. It calculates present value in a IeeuIsive 
munner starting with the final cash How and working backward to the present This 
method uses the concepts of expectations dynamics tronl tile previous section, although 
it is not necessary to as~ume that interest rates actually follow the expectations dynam­
ics pattern to use the method Although this method is pIesented, at this point, as just 
an alternative to the standard meLhod of calculation. it will be the pIefelTed-indeed 
standard-method ot calculution in luter chapters 

To work out the process, suppose (.::ro, XI, X2, , XII) is a cash How stream. We 
denote the plesent value of this Shearn PV(O), meaning the pIesent value at time zelO 
Now imagine that k time pedods have passed and we me anticipating the lemainder of 
the cash How sLrenm, which is ('\k' x.I.+I, ,til) We could calculate the pIesent value 
(as viewed at time k) using the discount fuctOlS that would be applicable then We 
denote this present value by PV(k) In general, then, we can imagine the present value 
running along in time-euch period's value being the plesent value of the remaining 
stream, but calculated using that period's discount factOIs These mnning values arc 
reluted to each other in a simple way, which is the basis tOI the method we descdbe 

The originul present vulue can be expressed explicitly us 

where the lh '5 ure the discount factors at time zelO This tormulu can be written in 
the alternative f01111 

PV(O) = Xo +ddxJ + (d,jddx2 + + (d,,/ddx,,] (42) 
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The values (h/dl, k = 2, 3, ,II, me the discount factOIs J vem jio11llloW under an 
assumption of expectations dynamics (as shown later) Hence, 

PV(O) Xo +,t.PV(I) 

To show how this works in genemi, fOI arbiumy time points, we employ the 
double-indexing system fO! discount factQJs introduced in the previous section The 
present values at time k is 

PV(k) = XI. + (h k+IXk+1 + (h k+2.\"k+2 + + dk /lXI/ 

Using the discount compounding fOIlllula, it follows that (h k-I-j 

Hence we may wIile this equation as 

PV(k) rk + df... k+I(.tk+1 + dk+! k+2Xk+2 + + dk+! /1.1:1/) 

We can theIefore write 

This equation slates that the present value at time k is the Sum of the cunent cash flow 
and a one-period discount of the next present value. NOle that 'h k+1 1/(1 + tk HI), 
where !k .t+l is the shOIt Illte at time k Hence in this method discounting always uses 
short rates to determine the discount factors 

Presellt value updatillg Tile Jlflllrilrg p,eselll ll(llue.~ ,mtij:h fhe JecHlsioli 

PV(k) Xk + 'h k+IPV(k + I) 

"'/tele 'h '+1 = 1/(1 + !k k+rl h tire <li.'COWl{ faCial fal lire .'/101{ rale al k 

To carry out the computation in a recUIsive manner, the process is initiated 
by starting at Ihe fi11a/ time One first calculates PV(11) as PV(11) x" and then 
PV(11 I) = .\,,_1 +<1,,_1 "PV(II), and so forth until PV(O) is found 

You can visualize the process in terms of II people standing stIllng out, on a 
time line You are at the head of the line, at time zero Each person can observe only 
the cash flow that occurs at that person's time point Hence you can observe only 
the cUITent, time zero, cash How How can you compute the present value? Use the 
mnning method 

The lust peIson, pCIson II, computes the present value seen then and passes 
that value to the flIst person behind That pelson, using the sholl rate at that time, 
discounts the value announced by person II, then adds the observed cash Howat 
II - I and passes this new present value back to person II - 2 This process continues, 
each person discounting accOlding [0 theiI short rate, until the Illnning present value is 
passed to you Once you hem what the pCIson in front of you announces, you discount 
it using the initial short rate and add the current cash How That is the oveJaIi present 
value. 

The running present value PV(k) is, of COUlse, somewhat of a fiction II will be 
the actual present value of the remaining stream at time k only if interest Jates follow 
expectations dynamics OtheIwise, entirely difteIent discount lates will apply at that 
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TABLE 4.3 
Example of Running Prescnt Value 

Cash now 
DiscoUIlt 
PV(k) 

Year k 

o 6 

20 25 10 35 40 10 20 
943 935 93 926 923 92] 917 

]6S 95 15796 ]4220 ]2064 92 49 5687 2917 

]0 

lO 00 

rile [J1t'ICIlf I'(Iiut' h fO/lnd hy \tl1ltill~ at the ti/lal tilllt' (/I/d \\'(}lkillg {}(1(kl1'ar({. dil((}lIIlftllg 
O/Ie/Jt' lio({(/f(ltlll1t' 

lime However, when compliling a present value at lime zero, that is, when computing 
PV(O), the running present value method cun be used since it is a mathematical identity 

Example 4.6 (Constant running rate) Suppose that the spot rate curve is flat, with 
'il., = 1 fOl all k = 1,2, ,II Let (.to,XI,X2. ,X/I) be a cash flow stream In the 
Hal case, all fOl ward rales are tllso equal to 1 (See Exercise 9) Hence the present 
value can be calculated as 

PV(II) = .\" 

PV(k) = x, + _1_pV(k + I) 
1+, 

This recUlsion is run flOm the terminal lime backwmd to k = 0 

Example 4.7 (General running) A sample present value calculation is shown in 
Table 43 The basic cash flow stream is the first row 01 the table We assume that 
the current tellll structUle is that of Table 4 2, and the appIOpriate one-period discount 
lates (found in the l1rst column of the discount factOl table in Table 4 2) ru'e listed in 
the second row of Table 43 

The present value at any year k is computed by multiplying the discount factor 
listed under that year times the present value of the next year, and then adding the cash 
How for year k This is done by beginning with the final yem and working backward to 
time zero Thus we lirstfind PV(7) = 1000 Then PV(6) = 20+ 917x 1000= 29.17, 
PV(5) = 30 + 921 x 29.17 = 5687, and so fmth The present value of the entire 
slieam is PV(O) = 16895 

4.7 flOATING RATE BONDS 

A !loating rate note or bond has a fixed face value and fixed maturity, but its coupon 
payments are tied to current (short) rates of interest Consider, for example, a Hoating 
rate bond that makes coupon payments every 6 months When the bond is issued. the 
coupon rate for the first 6 months is set equal to the CUllent 6-month interest rate At 
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the end of 6 months a coupon payment at that rate is paid; specifically, the coupon is 
the rate times the face value divided by 2 (because of the 6-month schedule) Then, 
after that payment, the rate is reset: the rate for the next 6 months is set equal to the 
then current 6-month (short) rate The process continues until l11atllIity 

Clearly, the exact values of futlne coupon pnymcnl.':.' are uncertain unlil6 months 
before they are due It seems, therefore, that it may be difficult to assess the value of 
such a bond In fact at the reset limes, the value is easy to deduce-it is equal to pm 
We highlight this important result 

Theorem 4,/ (Floatillg rate I'aille) 
cIl allf 1 e.\cl poiJII 

Tile l'(t!ue oJ a floatiJlg Hl{e bOlld L\ equollo 1}(11 

4.8 DURATION 

Proof: It is simplest [0 prove this by working backwatd using n running 
present value argument Look filst at the last reset point, 6 months before 
maturity We know that the final payment, in 6 months, will be the face 
value plus the 6-monlh rate of interest on this amount The present value 
at the last reset point is obtained by discounting the total final payment at 
the 6~month rate-leading to the tace value-so the present vLllue is par at 
that point Now move back another 6 months to the previoliS reset point 
The present value there is found by discounting the sum of the next present 
value and the next coupon payment, again leading to a value oj par We can 
continue this argument back to time zelO m 

The concept of dUl<ltion presented in Chapter 3, Section 3 5, call be extended to a term 
structure fIamewOlk We recall that durntion is a meaSUle of interest Hlte sensitivity, 
which in the emliel development was expressed as sensitivity with respect to yield in 
the term structure framework, yield is not a fundamental quantity, but a diHerent, yet 
similar, meaSUJe of risk can be constructed 

The alternative is to consider parallel shifts in the spot rate curve Specifically, 
given the spot rates \1, S2, '.\/1 we imagine that these rates all change toget~ler by an 
additive amount).. Hence the new spot rates are \1 +).., \2+).., ,511 +).. This is a hypo­
thetical imlalllalleOlH change, for the new spot rates are for the same periods <.~s before 
This parallel shift of the spot rate cmve generalizes a change in the yield because if the 
spot rate curve were flat, all spot Hltes would be equal to the common value of yield 
Figure 4 3 shows the shifted spot rate curve in the case of a continuous spot rate curve 

Given this notion of a potential change in spot rates, we then can measure the 
sensitivity of price with respect to the change 

Fisher-Weil Duration 

The details wOIk out most nicely to! the case ot continuous compounding, and we 
shall present that case first Given a cash flow sequence (rl(1' rl\, rl~' ,XI,,) and the 



92 Chapter 4 THE TERM STRUCTURE OF INTEREST RATES 

Spot rate 
_---------- Spot + Ie 
__ ---------- Spot 
__ --------- Spot - Ie 

Years 

FIGURE 4.3 Shifted spo1 rate curves. The 
original spot rate curve is the middle curve, 
This curve is shifled upward amI downward 
by an amount).. to oblain the other curves II is 
possible to immunize a portfolio against such 
shifts for small values of .l.. 

spot rate curve ~" 10 .:.s I .:s III. the present value is 

" PV = L tile-rill, 

i=O 

The Fisher-Wei! duration is then defined as 

Note that this cones ponds exactly to the genelal definition of duration as a pIesent­
value-weighted average of the cash flow times Clearly Dew has the units of time and 
satisfies 10 .:s D :::. II/ when all XI, ~ 0 

We now considel the sensitivity or price (present value) to a pmallel shift of the 
yield curve and show that it is determined by the Fisher-Wei! dUIalion For arbitrary 
A the price is 

" 
P(A) = L x"e-c", HI', 

We then differentiate to find 

dP(A) I 
dA 

}..=o 

i=O 

" = - Lli_l/,e-r"I, 
1'=0 

so immediately we find that the relative price sensitivity is 

I dP(O) 
P(O) ~=-DFW 

This essentially duplicates the formula that holds for yield sensitivity presented in 
Chapter 3 

Fisher-Wei! formulas Undel continllOIl"i compollnding, {be Fi"ihel-Weil dWGlioll oj 
(/ CQ'ih /fow \'I1eam (.tIn' XI,. ,x,,,) h 
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wbel e PV dellole.\ tbe pI e.\elll v(/lue oj tbe -\11 e(/III If all SpOI w{e_\ (/lange {a .\r, + A, 
i = 0, 1,2, ,11, tbe Call e\ponding pI e_\elll value (tIIlUioll P ()..) wthfie.\ 

I dP(O) 
P(O) ~ =-Drw 

Discrete-Time Compounding* 

Now we work out the details under the con venlion of compounding III limes pel year 
The spot rate in period k is \k (expressed us a yemly late) Again, we have a cash 
flow stream (r{). rl, \',2, , r,,) (whele the indexing is by period) The price is 

" ( +A)-k P(A)=Lxk I+~ 
;"'=0 III 

We then find that 

dP(O) '" dP(A) I = t 
dA dA 0 bl 

( k) . ( .\') -(ATI) 
- 'k 1+-
11/ 11/ 

We can relate this to a dUiation measure by dividing by -P(O) Thns we define 

I dP(O) I:~_I(k/"')Xk(l +.lk/IIr)-(k+() 

DQ '" - P(O) ~ I::'=o rdl +.I,/IIr)-k 
(43) 

We lerllllhe quantity DQ the quasiwIDodified duration. It does have the units or time; 
however, it is not exactly an average of the cash flow limes because (l +1;"/111)-(1.:+1) 

appears in the numerator instead of (1 +'\k/11I)-k, which is the discount tactOl There is 
an extra factor of (l+.\k/m)-I in each numerator term In the earlier case, whele Sk was 
constant fOl all k, it was possible to pull this exlla term outside the summation sign 
That led to modified duration Here such a step is not possible, since the exua factor 
depends on k, so we call this rather cumbersome expression by un equally cumbersome 
name-the quasi-modified duration It does give the relative price sensitivity to a 
parallel shin in the spot rate curve An example is given in the next section 

QuasiwlllOdified duration UI/del COIllpol/lldil/g III tillle.\ pel "em, tile qllwi~l/lOdijied 

dllratioll ~f 0 cwll jtow HleOIll (ro, r!, ,X/I) i) 

~ t (~) -'"' (I + -,,-)-<k+{) 
PV k=! III III 

W/WI e PV dellote\ file pi e,~ell/ vallie oj tile _\II ealll rt {Ill .\pot /(lte_~ [llallge to ,\f.. + A, 
k 1,2, ,11, fhe cOlle)pol/dillg plesellf \laille filllc.tioll P(A) wti\fie~ 

I dP(O) 
-----
P(O) dA 

Duration is used extensively by investOls and professional bond porttolio man­
agels It serveS us a convenient and accurate piOXY for intelest rate risk Frequently 
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an institution specifies a guideline that duration should not exceed a certain level, or 
sometimes a target duration figure is prescribed 

4.9 IMMUNIZATION 

The term structure of interest rates lends diIeclly to a new, more robust method fOl 
portfolio rmmUniZi.llfOn This new method does not depend on selecting bonds with 
a common yield, as in Chapter 3; indeed, yield does not even cntel the calculations 
The process is best explained through an example 

Example 4.8 (A million dollar obligation) Suppose that we have a $1 million 
obligation payable at the end of 5 years, and we wish to invest enough money today 
to meet this [utUle obligation We wish [0 do this in a way that provides a measure 
of protection against interest fate risk To solve this problem, we first detennlne the 
current !)pot rate curve A hypothetical spot late cUlve ~'k is shown us the column 
labeled spot in Table 44 

We use a yearly compounding convention in this example in order to save space 
in the table We decide to invest in two bonds described as follows: B! is a 12-year 
6% bond with price 65 95 (in decimal form). and B, is a 5-year 10% bond with price 
IOL66, The prices of these bonds me consistent with the spot rates; and the details 
of the price calculation me given in Table 44 The cash Hows are multiplied by the 
discount factOl!) (column d), and the results are listed and summed in columns headed 
PV, and PV, [or the two bonds 

TABLE 4.4 
Worksheet for Immunization Problem 

Year Spot d B, PV, -PV; B, PV, -PV; 

767 919 6 557 5 18 10 929 863 
827 853 6 5 12 945 10 853 1576 

J 881 776 6 466 1284 10 776 2140 
4 931 70() 6 420 1538 10 700 2563 
5 975 628 6 377 17 17 IlO 6908 31473 
6 1016 560 6 336 1829 
7 1052 496 6 298 1887 
8 1085 439 6 263 1899 
9 11 15 386 6 232 1876 

10 II 42 339 6 203 1826 
II II 67 297 6 178 1755 
12 II 89 260 106 27 53 29526 

TOlal 6595 46600 10166 38615 

Duralion 707 380 

T"(' PI'I!H'f11 1'(1/1/('1 m,d dllrtl(inl/l oj (11'0 "()lId~ aI'/.! [alilld 01 IWI/I[ormatilJ1JI o[ 
(.m"lloII'1 
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We decide to immunize against a paJuliei shift in the spot rate curve We calculate 
dP IdA, denoted by -PV' in Table 44, by multiplying each cash Row by f and by 
(l +,,)-(1+1) and then summing these The quasi-modified duration is then the quotient 
ot these two numbers; that is, it equals -(liP) dP/dA The quasi-modified duration 
of bond I is, accordingly, 466/65 95 = 7 07 

We also find the present value of the obligation to be $627,903 01 and the 
corresponding quasi-modified dUiation is 5/(1 + -'5) = 4 56 

10 determine the appropriate portfolio we let XI and X2 denote the numbel of 
units of bonds I and 2, respectively, in the pOitfolio (assuming, for simplicity, face 
values of $100) We then solve the two equations' 

Pp."j + P2X2 = PV 

P1Djxj + PJD2X:. = PV x D 

wilere the D's ale the quasi-modified durations, This leads to XI = 2,208 17 and x, = 
4,74403 We round the solutions to determine the portfolio The results are shown 
in the first column of Table 45, where it is clear that, to within rounding elIO!, the 
present value condition is met 

To check the immunization properties ot this portfolio we change the spot rate 
curve by adding I % to each ot the spot late numbers in the first column of Table 4 4 
Using these new spot rates, we can again calculate all plesent values Likewise, we 
subtract I % from the spot rates and calculate present values, The results are shown in 
the final two columns of Table 4 5 These results show that the immunization property 
does hold: the change ill net present value is only a second-order effect 

TABLE 4.5 

Immunization Results 

Bond 1 
Shnres 
Price 
Value 

Bond 2 
Shares 
Price 
Value 

Obligntion value 

Bonds minus Obligation 

o 

2,20800 
6594 

145,602 14 

4,744 00 
10165 

482,24851 

627,90101 

-$5237 

lambda 

1% -1% 

2,20800 2,20800 
51 00 7084 

135,80594 156,42000 

4,744 00 4,74400 
9789 10562 

464,192 47 501,04218 

600,06361 657,10677 

$114 78 $15540 

The ol'cf(l1I porI/olio of hand, tlnd oNigatiom is illlllllllli:'l!d (/8(/ifl'il pO/allel 
,/Ii/tl' ill Ihe Ipol mle uuve 

3 Altematively, hUl equivu!elllly one could solve lhe cquuliolls V! + \12 = PV und D! V! + D2 V2 = PV x D 
Thcn let x! = \I! / P! .wl .\"2 = \12/ P1 
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01 course, the portfolio is immunized only against parallel shifts in the spot 
rate CUI ve It is easy to develop other immunization procedures, which protect against 
other kinds of shifts as well Such procedures are discussed in the exercises 

4.10 SUMMARY 

If ObSCI ved yield is plotted as a function of time to maturity fOl a variety of bonds 
within a fixed risk class, the result is a scatter 01 points that can be approximated by a 
curve-the yield curve This curve typically rises gradually with inClcasing maturity, 
reflecting the fact that long maturity bonds typically offer higher yields than short 
matuIity bonds The shape of the yield curve varies continually, and occasionally 
it may take on an inverted shaped, whcle yields decrease as the time to matUlity 
inclcases 

Fixed-income secUlities me best undelstood tl1Iough the concept of the term 
structure of intelcst rates In this structure there is, at any time, a specified interest 
rate for every maturity date This is the rate, expressed on an annual basis, that would 
apply to a zero-coupon bond of the specified maturity These underlying interest rates 
me termed spot rates, and if they me plotted as a tunction of time to maturity, they 
determine a spot rate CUlve, similar in character to the yield curve Howevel, spot 
rates m'e fundamental to the whole interest rate market-unlike yields, which depend 
on the payout pattern ot the particular bonds used to calculate them Once spot rates 
are determined, it is straightfolwald to define discount 1actors fOi evelY time, and the 
present value of a future cash flow is found by discounting that cash How by the 
appropriate discount 1actor Likewise, the present value ot a cash How sUeam is found 
by summing the present values 01 the individual How elements 

A series of fOiward rates can be inferred from a spot rate cUive The torwmd rate 
between 1uture times I! and 12 is the interest rate that would be charged for borrowing 
money at time I! and repaying it at time 12, but at terms aflanged today These fOlward 
rates are impOltant components 01 teliTI structure theOiY 

There are three main explanations of the characteristic upward sloping spot rate 
curve The nrst is expectations theory It 1.1sselts that the current implied forward 
rates 10r I year ahead-that is, the forward rates from year I to future dates-are 
good estimates 01 next year's spot rates It these estimates are higher than today's 
values, the cuuent spot lHte CUI ve must slope upwmd The second explanation is 
liquidity pre1elence theory, It asserts thm people prefer short-telm maturities to long­
term maturities because the interest late Iisk is lower with short-term maturities This 
pre1erence drives up the prices of short-tellTI maturities The thiId explanation is the 
market segmentation theory AccOlding to this theOlY, there me separate supply and 
demand forces in evelY range 01 maturities, and prices me determined in each range 
by these torces Hence the interest late within any maturity range is more or less 
independent 01 that in other ranges Overall it is believed that the factors in all three 
of these explanations playa role in the determinl.1tion 01 the observed spot rUle CUI ve 

Expectations theory forms the basis of the concept 01 expectations dynamics, 
which is a particular model ot how spot l<ltes might change with time According 
to expectations dynamics, next yem's spot rates will be equal to the cUllenl implied 
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fOl wnrd rates 101 1 year ahead-the rates between year 1 and future years In other 
wOlds, (he forward ra(es fOi I year ahead ac(ually will be realized in I yeur 1his 
prediction can be repeated t'0l the next year, and so on This means that all future 
spot rutes are determined by the set of current forward rates Expectations dynamics is 
only a mode1, and tutUiC rutes wilt most likely deviate from the values it delivers; but 
it provides a logical simple prediction of futUle rates As a special case, it the current 
spot rate CUlye is flnt-say, at 12%-then according to expectntions dynamics, the 
spot rate curve next year will also be flat at 12%~ The in variance theorem states that 
if spot lutes evolve according to expectations dynamics, the intelest earned on funds 
committed to the interest rate market for several years is independent of how those 
funds are invested 

Present value can be calculated by the running method, which stmts from the 
final cash flow and works backward toward (he first cash flow At any stage k of the 
process, the plesent value is calculated by discounting the next period's present value 
using the short rate at time k that is implied by the term structure This backwald 
moving method 01 evaluation i!; fundanlental to advanced methods 01 calculation in 
various arens of investment science 

Duration can be extended to the term structure framework The key idea is to 

consider parallel shirts 01 the spot rate cur ve, shirts defined by adding a constant l­
to every spot rate Dlilation is then defined us (-liP) dP/dl- evaluated at I- = 0 
Fisher-Weil dUHltion is bnsed on continuous-time compounding, which leads to a 
simple lormula In discrete time, the appropriate, somewhat complicated formula is 
termed quasi-modified dUlation 

Once duration is defined, it is possible to extend the process of immunization 
to the telln structure framework A portfolio of assets designed to fund u stream ot 
obligations can be immunized against a parallcl shift in the spot rate curve by matching 
both the present values and the durations of the assetS and the obligations 

L (One lorward rute) 11 lhe spot rates fOI I and 2 years are ,\1 6 3{(n and s.:. 69%, what 
is the forward rate II 2? 

2. (Spot update) Given the (yeady) spot rale clUve 5 (50, 53, 56, 5 8, 60, 6 I), find the 
spot rate curve 101 neXI year 

3. (Construction 01 a zero) Considel lWO 5-ycar bonds: one has a 9% coupon and sells 
tor 10100; the other hilS a 7% coupon and sells 101 9120 Find the plice ot a 5·year 
zero-coupon bond 

4. (Spot ralc projeel,n) It is Novemhel 5 in the year 2011 The bond quot;:uions 01 Table 46 
<Ire available Assume that ,III bonds make semiannual coupon paymcnts 011 the 15th 01 the 
month The tractional part 0111 bond's ptice is quoted in 1/32nd's Estimate lhe (continuous­
time) tClm structure in the lorln of a 4th-order polynomial, 

I (I) = (In + (111+ ([.:.1':' + O.lf"l + a.lf1 
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TABLE 4.6 
Bond Quotes 

Coupon Maturity Ask price 

6~ 
8 

Feb-20l2 100:0 

91 
8 

Feb-2012 100:22 

71 
8 Aug-2012 100:24 

81 ., Aug-2012 101:1 

81 ., Feb-20 13 101:7 

82-
8 

Feb-2013 101:12 

8 Aug-20D 100:26 

82-, Aug-2013 102: I 

61 
8 Feb-2014 98:5 

81 
8 

Feb-2014 102:9 

61 
8 

Aug-2014 97:13 

81 
8 

Aug-2014 101:23 

7i Feb-2015 99:5 

III ., Feb-2015 109:4 

8~ Aug-2015 101 :13 

IO~ Aug-2015 107:27 

71 
8 

Feb-2016 99:13 

81 
8 

Feb-2016 103:0 

where f is time in units of years from today The discount rLlte for cash fiows at lime t is 
accordingly d(t) = e-r(lll Recall thLlt accrued interest must be added to the price quoted 
to get the lotal pl"ice Estimate the coefficients of the polynomial by minimizing the sum 
of squared errors between the lotal pl"ice and the price predicted by the estimated term 
structure curve Plot the curve and give the five polynOinial coefficients 

5. (lnSlI.lnlaneous raleso) Let \(1), 0.:::: t .:5 00, denote a spot rale curve; that is, the present 
value of a dollar to be received at time f is e-T{f)1 For 1\ 0::: f2.let [UI,(2 ) be the forward 
rute between '1 and 12 implied by the given spot rate curve 

(a) Find I.in expression for f (tl. (2) 

(b) Let I (t) Iimh _ 1 [(t. (2) We can callI (t) the instnntl.lneOUS interest rate at time 1 
SholV 'ha, I (I) ;" ,(I) + 1'(1)1 

«(.) Suppose an amount Xo b' invested in a bank account at 1 0 which pays the instan-
tlineouS rate of interest I (t) at all 1 (colnpounded) Then the bunk balance xU) will 
satisfy dr(t)/d1 I (t)x(t) Find lin expreS"sion for x(t) [Hin1 Recall in general thnt 
I,do + od,' d(l'o) 

6. (Discount conversion) At time zero the one-period discount mtes do I.d l 2.d2). • ds (, 
are known to be 0950. 0940. 0932. 0925. 0919. 0913 Find the time zero discount 
factors do I, du 2. ,du (, 
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7. (Bond taxes) An investor is consideting the purchase ot IO~yeUi US TreasUlY bouds and 

plans to hold them to mallllily Fedetal laxes on coupons must be paid dUling the year they 
are received, and lax must also he paid on the capital gain ICi.llized at maturity (defined as 

the difference betwccn tace value and original prke) Fedclul bonds are exempt from slale 

taxes This investol's federal tax bracket rale is t = 309'0, as it is tOI most individuals 
There are two bond:.' that meet the investor's lequirements Bond I is a IO~yeal. 1090 bond 

with 11 price (in decimal fOlnt) ot PI = 92 21 Bond 2 is a IO-yem, 7''10 bond with a price 

ot Pz 7584 Based on lIle price infOlml.Hion contained in those two bonds. the iuvestor 
would like to compute the theoretical price ot a hypothetical lO~yeat zero~coupon bond 

that had no coupon payments and required tax payment only at lnatUlity equal in amount to 

30% of the rc(llized capital gain (the face value minus the original price) This theoreticnl 
price should be such that the price of this bond and those of bonds I and 2 are mutually 

consistent on an afleHax basis Find this theoretical price, and show lImt it does not depend 

on the tax rate f (Assume all cash flows OCCUI nt the end oj e,lch year) 

8. (Re(ll zeros) Actual zero~coupon bonds are taxed as it implied coupon paymellts were 
made each yeal (or really every 6 months), so tax payments are made each year, even 

though no coupon paynlents are received The implied coupon lUte Jor a bond with 11 years 
to maturity is (100- Po)/II, where Po is the purchase price 11 the bond is held to maturity, 

there is no realized cnpitl.ll gain, since all gains are accounted for in the implied coupon 
paynlents Compute the theoretic;:ll price oj a real I O~yeur zero~collpon bond This price is 

to be consistent on an afleHax basis with the prices 01 bonds I I.lnd 2 of Exercise 7 

9. (Hut forwards) Show explicitly that if the spot rate curve is flat [with .\(k) = 1 for nil kj, 

then all fOlward rates also equal 1 

10. (Olange County blues) Orange County managed an investment pool into which sevelal 
municipalitics made short-telnl investments A total oj $7 5 billion was invested in this pool, 

and this nlOney wlls used to purchase securities U.sing these securities as collaterl.ll, the pool 

borrowed $12 5 billion from Wall Street brokeluges, and these funds were used to purchase 
additional securities The $20 billion total was invested primarily in long~telnl fixed-income 

securities to obtain a highel yield than the shorHelm alternatives FUithelnlOre, as iuterest 
rate!." slowly deelincd, as they did in 1992-1994, an even greatel return was obtained 

Things Jell apart in 1994, when interest lates rose sharply 
Hypothetically, assume that initially the duration oj the invested portfolio was 

10 years, the short-telm rute wa. .. 6%, the ;.\Verage coupon intel"est on the portfolio wds 
85% of face value, the cost of Wall Street money was 7%, and shOit-term interest rates 

were tailing at ! % pel yem 

«(I) What was the late oj retUIll that pool investOis obtained duting this early period? 
Does it comp,lre favorubly with the 6% that these investors wonld have obtained by 

investing normally in shOit-telln securities? 
(b) When interest rates had fallen two percentage points and began increasing at 2% per 

year, what nlte oj return was obtained by the pool? 

II. (Running PV example) A (yearly) "'Ish flow strealfl is, (-40,10,10,10,10,10,10) 
The spot wte.'! are those of Exelcise 2 

«(1) Find the current discount factors dOA and use them to deternlinc the (net) present vulue 

of tire streanl 
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(b) Find the series of expectations dynamics shorHate discount factors and use the running 
present value method to evaluate the stream 

12. (Pure duration 0) It is sometimes useful to introduce variations of the spot rates that 
are different from an additive variation Lel S° = (~.\). 51. 5~. , \';~) be an initial spot 
rate sequence (based on 111 periods per year) Let s(J,.,) = (\1> \";!. • X,,) be spot mtes 
paranleterized by At where 

l+\'A/m eA/m(I+\'2/m) 

for k = 1. 2. ,If Suppose it bond price PO,,), is determined by these spot rntes Show 
that 

I dP 
---=D 

P d!. 

is a pure duration; that is, find D and describe it in words 

13. (Stream immunization Q) A company faces n stream of obligations over the next 8 years 
as shown: where the nunlbers denote thousands of dollars The spot rate CHIve is thut of 

Yenr 

500 900 600 500 100 100 100 50 

Exampfe 4 8 Find a portfolio, consisting of tire two bonds described in that example, that 
has lhe same prcsem value as lhe obligalion sIre am and is in1nlunized against an addilive 
shift in lhe spOI rale curve 

14. (Mortgage division) OOen if mortgllge paymenl stream is divided inlo a prim:ipnl payment 
sIre am and arr interesl paymenl ~lream, and the IwO streams nrc sold separalely We shall 
examine lhe component values Consider ,1 slandard mortgage of initial value M = M(O) 
wilh equal periodic p"ymems of '.tmount B If the imeresl rale used is r per period, then 
the mortgage principal aOer lhe klh p'.tymenl salisfies 

M(k)=O+I)M(k-l)-B 

for k = 0, I, This equalion h'.ts lhe solulion 

M(k)=(l+I)'M-[~JB 
Let us suppose lhatlhe mortgage hns 11 pcriods and B is chosen so th'Jl M(II) = 0; namely, 

B= I(I+I)"M 

0+1)" 1 
The klh payment h'.ts an imeresl component of 

l(k)=IM(k-l) 

nnd a principal component of 

P(k)=B-IM(k I) 

(0) Find lhe presenl value V ('Jl rate r) of lhe principal p'.tymenl slre'.trn in lerms of 
B,',II,M 
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APPLIED INTEREST RATE 
ANALYSIS 

Ultimately, the practical purpose 01 investment science is to improve the invest­
ment process This process includes identification, selection, combination, and 
ongoing management In the ideal case, these process components are inte­

grated and handled as a craft-a craft looted in scientific principles and meaningful ex­
perience, and executed through a combination of intuition and formal problem-solving 
procedures This chapter highlights the formal procedures for Structuring investments 

The previous cbtlptels provide the groundwork for the analysis of a surpris­
ingly broad set of investment problems Indeed, inteleSl rate theory alone provides 
the basis of the vast majority of actual investment studies Therefore mastery of the 
previous chaptels is adequate preparation to addl'ess a wide assortment of investment 
situations-and appropriate analyses can be conducted with simple practical tools, such 
as spreadsheet programs, 01 more complex tools, such as pm aIle 1 processor comput­
ers To illustrate the range of problems tilat can be meaningfully treated by the theory 
developed in earlier chapters, this cl1upter considelS a few typical pJOblem meas Our 
treatment of these subjects is only introductory, 101 indeed there are textbooks devoted 
to each of these topics Nevellheless, the solid grounding of the previolls chapters al­
lows liS to enter these ploblems at a relatively high level, and to convey quickly the 
essence of the subject We consider capital budgeting, bond pOI tiolio construction, 
management of dynamic investments, and valuation of firms from accounting data, 
These subjects all represent important investment issues 

To resolve an investment issue with quantitative methods, the issue must first be 
formulated as a specific problem The.e arc usually a number of ways to do this, but 
frequently the best formulution is a version of optimization. It is entirely consistent 
with general investment objectives to try to devise the "ideal" portfolio, to select the 
"best" combination of plOjects, to manage an investment to attain the "most favorable" 
outcome, or to hedge assets to uttain the "least" exposure to risk All of these are, at 
least loosely, statements oj optimization Indeed, optimizution and investment seem 
like perlect partne.s We begin to explore dle possibilities of this happy relutionship 
in this chapter 
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5.1 CAPITAL BUDGETING 

The capital allocation plOblem consists of allocating a (usually fixed) budget among a 
number ot investments or projects We distinguish between capital budgeting treated 
here and portfolio problems treated in the next section, although the two me related 
Capital budgeting typically refers to allocation among projects or investments for 
which lhcrc are not well-established markets and where the projects are 11lI1I[lV in that 
they each require discrete lumps of cash (as opposed to secutities, where virtually any 
numbel of shares can be purchased) 

Capital budgeting problems often arise in a firm wi1ele several proposed projects 
compete for funding The projects may ditfel considerably in their scale, theit cush 
requirements, and their benefits The critical point, however, is that even if all pro­
posed projects ofrer attractive benefits, they cannot all be funded because of a budget 
limitation Our earlier study of investment choice, in Chapter 2, focused on situations 
where the budget was not fixed, and the choice options wele mutually exclusive, such 
as the choice between n red nnd a green car In capital budgeting the alternatives may 
or may not be mutually exclusive, and budget is a definite limitation 

Independent Projects 

The simplest, and classic, type of a capital budgeting problem is dutt of selecting 
hom a list of independent projects The pr~iects are independent in the sense that it 
is rettsomtble to select any combination from the list It is not a question of selecting 
between a red and a green car; we cnn choose both if we have the required budget 
Likewise, the value of one project does not depend on another ploject also being 
funded This standard capital budgeting problem is quite easy to rormulate 

Suppose that there are III potential projects Let bi be the total benefit (usually 
the net present value) ot the ith project, and let (I denote its initial cost Finally, let C 
be the total capital available-the budget For each ii, 2, , III we introduce the 
zero-one variable \1, which is zero it the plOject is rejected and one it it is accepted 
The problem is then that of solving 

'" 
maximize L bi \1 

i=l 

'" 
subject to L Ci XI :s C 

1=1 

\1 = 0 Ol I 10r i = 1,2, ,III 

Thi3 is tel med a ZeT'(}-one programming problem, since the variables are zero-one 
variables It is 11 10lmal representation of the [act that projects can either be selected or 
not, but fOl those that are selected, both the benefits and the costs are directly additive 

There is an easy way to obtain an apploximnte solution to this problem, which 
is quite accurate in mnny cases We shall describe this method under the assumption 
(which can be weakened) that each project requires an initial outlay of funds (a negative 
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cash flow) that is followed by a stream of benefits (a stream of positive cash flows) 
We define the benefit-;:ost ratio a. the ratio of dle present worth of the benefits to the 
magnitude of the initiui cost We then rank projects in terms of this benefit-cost ratio 
Projects with the highest ratios offer the best return per dollar invested-the biggest 
"bung for the buck"-and hence are excellent candidates fOI inclusion in the final list 
of selected projects, Once the projects are ranked this way, they are selected one at 
a time, by ordel of the ranking, until no additional plOject can be included without 
violating the given budget This method will produce the best value for the amount 
spent However, despite this property, the solution found by this approximate method 
is not always optimal since it may not use the entire available budget Better solutions 
may be found by skipping over some high-cost projects so that other projects, with 
almost as high a benefit-cost ratio, can be included To obtain true optimality, the 
zero-one optimization problem can be solved exactly by readily available software 
progtams However. the simpler method based on the benefit-cost ratio is helpful in 
a preliminary study, (Some spreadsheet packages have integel plogramming routines 
suitable for modest-sized problems) 

Example 5.1 (A selection problem) During its annual blrdget planning meeting, 
a small computer company 11a~ identified several proposals for rndependent projects 
that could be initiated in the forthcoming year These projects include the purchase 
of equipment. the design of new products. the lease of new facilities, and so forth, 
TIle projects all require an initral capital outlay in the coming yem The company 
management believes that it Can make available up to $500,000 for these projects 
The financial aspects of the projects are shown in Table 5 I 

For each project the required initial outlay, the present worth of the benefits 
(the present value of the remainder of the stream after the initial outlay), and the 
ratio of these two are shown The plOjects tire already listed in order of decreas­
ing benefit-cost ratio According to the approximate method the comptlny would se­
lect plOjects 1, 2, 3, 4, and 5 for a total expenditure o! $370,000 and a total net 

TABLE 5,1 
Project Choices 

Outlay 
Project ($1,000) 

100 
20 

150 
50 
50 

150 
150 

Present worth 
($1,000) 

300 
50 

350 
110 
100 
250 
200 

Benefit-cost 
ratio 

300 
250 
233 
220 
200 
I 67 
III 

The our/a.\'I (Ire made immel/iardy. am/lhe pu:selll \\'orrll is 
Ille prclf!/If I·ahre a/rile [rmlrt' be1lefirl ProjeU\ with a higll 
!Jvfleftl-Wsl ratio are delirab/e 



Project Outlay 

100 
20 

150 
50 
50 

150 
ISO 

Totals 
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Optimal 
FIGURE 5,1 Spreadsheet for project choices 

Present The x~values ilre listed in one column. These 
worth Net PV x~value Cost Optimal PV villues are multiplied by the corresponding ele-

ments of outlay ,lnd net present value to obt[}in 
300 200 100 200 the components of cost and optim<11 present 
50 30 0 0 value in the total package of projects A zero-

350 200 150 200 one progrilnl (within the spreadsheet) adjusts 

110 60 50 60 these x-values to find the optimal set 

100 50 I 50 50 
250 100 I 150 100 
200 50 0 0 0 

500 610 

present value of $910,000 $370,000 $540,000 However, this solutiol! is not 
optimal 

The plOpet method 01 solution is to formulate the problem as u zero-one op-
timization problem Accordingly, we define the vmiubles t" i :::: 1,2, ,7, with l, 

equal to I i/ it is to be selected and 0 iI not The ptoblem is then 

maximize 200r, + 30x, -I- 200r3 +60r. +50r, -I- 100r" +50-", 

sl1bject to 100r, +20r, + 150x3 +50r" +50r, + 150r, + 150r,:::: 500 

\, = 0 01 I tOl each i 

Note that the terms of the oqjective fO! maximization me present worth minus outlay­
present value 

The problem and its solution are displayed in spreadsheet form in Figu,e 5 I It 
is seen that the solution is to select ptojects 1,3,4,5, and 6 for a total expenditure 
of $500,0()() and a total net plesent value of $610,000 fhe approximate method does 
not account for the lact that using ptoject 2 precludes the use or the more costly, but 
more beneficial, ptoject 6 Specifically, by leplacing 2 by 6 the full budget can be 
used and, hence, a greatel total benefit achieved 

Interdependent Projects' 

Sometimes various plojects me inteldependcnt, thc leasibility or one being depcndent 
on whether othets are undertaken We totmulate a ptoblem of this type by assuming 
that there are severnl independent gouls, but each goal has mote than one possi­
ble method ot implementation It is these implementation alternatives that define the 
projects This fonnulation genernlizes the problems studicd in Chapter 2, whele thcrc 
was only one goal (such as buying a new cal) but sevetnl ways to achieve that goal 
fhe more generul problem cun be treatcd as a zelO-one plOgtamming prohlem 

As an example ot the lotmulation using goals and projects, suppose a ttanspOIta­
tion authority wishes to constl uct u roud between two cities COIIesponding projccts 
might dctail whethcI thc road weiC conclete or asphalt, two lanes O! tour, and so forth 
AnotheI, independent, goul might be the improvement of a bridge 
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In general, assume that there are III goals and that associated with the ith goal 
there are 11, possible prqjects Only one project can be selected for any goal As before, 
there is a fixed available budget 

We formulate this ploblem by intIoducing the zero-one variables xij for i :::: 
1,2, ,111 and j = I,2, ,llj The variable X,j equals I if goal i is chosen and 
implemented by project j; otherwise it is 0 The problem is then 

maximize t t bijXiJ 

i=1 j=1 

//I II, 

subject to L L cijx,j ~ C 
1=1 j=1 

'" L-\,j ~ I, for i = 1,2, ,m 
j=1 

'\ij = 0 or I for all i and j. 

The exclusivity of the individual prqjects is captured by the second set of constlaints­
one constraint tor each objective This constraint states that the sum of the X,j variables 
over j (the sum of the varinbles corresponding to projects associated with objective 
i) must not exceed I Since the variables are all either 0 or 1, this means that at most 
one Xi} variable can be I for any i In other words, at most one project associated 
with goal i can be chosen 

In general this is a more difficult zero-one programming problem than that for 
independent projects This new problem has more constraints, hence it is not easy 
to obtain a solution by inspection In particular, the approximate solution based on 
benefit-cost ratios is not applicable However, even large-scale problems ot this type 
can be readily solved with modem computers 

Example 5,2 (County transpoTtation choices) Suppose that the goals and specific 
prqjects shown in Table 5 2 are being considered by the County Transportation Au­
thority 

There are three independent goals and" total 01 10 projects. Table 5 2 shows the 
cost and the net present value (after the cost has been deducted) for each of the projects 
The total available budget is $5 million To formul"te this problem we introduce a 
zero-one variable for etlch prqject (However. lor simplicity we index these var iables 
consecutively from I thlOugh 10, rather than using the double indexing procedule of the 
general formulation presented earlier) The problem lormulation can be expressed as 

maximize 4x, + 5X2 + 3t) + 4 .h. + '5 + I 5t6 + 2.5x7 + 3x, + X9 + 2xlO 

subject to 2,,+3x2+1 5x)+2 2x,+ 5x5+15'6+25'7+ IX8+ 6X9+'1O:::5 

\:1 + \:2 + x) +.\:4 ~ 1 

t5 +X6 + t7 ::: I 

ts +X9 + rIO ~ I 

tl, '\:2, X), \:.\, X5, X6, ·\7, \:8, '\:9, \It) = 0 or 1. 
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TABLE 5,2 
Transportation Alternatives 

Cost NPV 
($1,000) ($1,000) 

Road between Augen and Burger 
I Concrete, 2 lunes 2,000 4,000 
2 Concrete, 4 lanes 3,000 5,000 
.3 Asphalt, 2 Innes 1,500 3,000 
4 A.sphalt, 4 lanes 2,200 4,300 

Bridge at Cay Road 
5 Repair existing 500 1,000 
6 Add lane 1,500 1,500 
7 New structure 2,500 2,500 

Twffic Control in Downsberg 
8 Traffic Ifghts 100 300 
9 TUIIl lanes 600 1,000 

10 Underpass 1,000 2,000 

AI lIIor( olle projeu U/II be \to/rued for t.YILI! lI/elJOT ohjecril'c 

This problem and its solution are cleady displayed by a spreadsheet, Us illustrated 
in Figure 5 2 The solution is that pIOjects 2. 5, and 10 should be selected, for a cost 
of $4,500,000 and a total present value of $8,000,000 

This method for treating dependencies among projects can be extended to sit­
uations where precedence relations apply (that is, where one prqject cannot be cho­
sen unless another is also chosen) and to capital budgeting problems with additional 

Cost NPV Optimal 
Project ($1,000) ($1,000) x-values Cost NPV Goals 

I Concrele, 2 lane~ 2,000 4,000 0 0 
2 Concrele, 4 lanes 3,000 5,000 3,000 5,000 
3 Asphalt, 2 lanes 1,500 3,000 0 0 
4 Aspfutlt, 4 lunes 2,200 4,300 0 

Repair exbling 500 1,000 I 500 1,000 
Add Inne 1,500 1,500 0 0 0 
New structure 2,500 2,000 0 0 0 

8 Traffic lighls 100 300 0 0 
9 Tnrn lanes 600 1,000 0 0 

10 Underpass 1,000 2,000 I 1,000 2,000 

Totals 4,500 8,000 

FIGURE 5,2 Transportation spreadsheet. The x-values are shown in one column; lhe corresponding 
elements of COSI unci nel present value in lhe nexl columns Also, the number of projecls included 
for each goul ure shown in lhe final column These numbers are constr<llned to be less lhan or equal 
101 The oplimul >'-v<llues <lre fOllnd by it zero-one progrmnming package 
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financial constraints Typically these mOle general problems merely impose additional 
constraints among the variables 

Although capitul budgeting is a useful concept, its basic fOlmulation is somewhat 
Hawed The hard budget constlaint is inconsistent with the underlying assumption that 
it is possible for the investor (OJ organization) to borrow unlimited funds at a given 
interest rate Indeed, in theory one should cmry out all projects that have positive net 
ptescnt value In pltlcticc, however. the assumption that an unlimited supply of capital 
is available at a fixed interest rate does not hold A bank may impose a limited credit 
line, OJ in a large OJ ganization investment decisions may be decentralized by passing 
down budgets to individual OIg11nizationalunits It is therefore otten usetuI to in fact 
solve the capital budgeting problem However, it is usually worth solving the problem 
fO! various values of the budget to measure the sensitivity ot the benefit to the budget 
level 

5.2 OPTIMAL PORTFOLIOS 

POltfoJio optimization is anothel capital allocation problem, similar to capital bud­
geting The term optimal portfolio usually refels to the construction of a portfolio 
of financial securities However, the term is also used more generally to refer to the 
construction of any pOltfolio of financial assets, including a "portfolio" of projects 
When the assets are freely traded in a market, certain pr icing I elations apply that mny 
not apply to more general, nontraded assets This teature is an imporlnnt distinction 
that is highlighted by using the term portfolio optimization for problems involving 
secUI Wes 

This section considers only porttolios of fixed-income instruments As we know, 
a fixed-income instrument that returnS cash at known points in time can be described 
by listing the streum of promised cush puyments (and future cash outflows, if any) 
Such an instrument can be thought of as conesponding to a list 01 a vector, with the 
payments as components, defining an associated cash How stream A portfolio is just a 
combination of such streams, and can be represented as a combination of the individual 
lists or vectols lepresenting the securities Spreadsheets offer one convenient way to 
handle such combinations 

The Cash Matching Problem 

A simple optimal portfolio problem is the cash matching problem. To describe this 
problem, suppose that we face a known sequence of futtlle monetary obligations 
(If we manage a pension fund, these obligations might represent required annuity 
payments) We wish to invest now so that these obligations can be met as they OCCUI ~ 
and accordingly. we plan to purcha.l)e bonds of various maturities and use the coupon 
payments and redemption values to meet the obligations The simplest approach is to 
design a portfolio that will, without future alteration, provide the necessary cash as 
requil ed 
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To formulate this problem mathematically. we first establish a basic time period 
length, with cash flows occurring at the end of these periods For example. we might 
use 6-month periods OUI obligation is then a stream Y (YI. ''2. , )'1/), starting 
one period from now (We use boldtace letters to denote an entire stream) Likewise 
each bond has an associated cash flow stream of receipts. starting one period from 
now If there are 111 bonds, we denote the stream associated with one unit of bond j 
by Cj = (clj. C2j, • c lI}) The price of bond j is denoted by Pj We denote by .\J 
the amount ot bond j 10 be held in the portfolio The cash malching problem is to 
find the x} 's of minimum total cost that gumilntee that the obligations can be met 
Specifically, 

m 

minimize LPrl} 
j=1 

m 

subject to L eil rj ::)'/ for i = 1,2, ,11 

j=1 

x} ~ 0 tor j 1,2, ,111 

The objective tunction to be minimized is the towl cost of the portfolio, which is 
equal to the sum of the prices of the bonds times the amounts purchased The main 
set of constraints are the caAh matching constraints For a given i the corresponding 
constraint states that the total amount of cnsh generated in period i from all 111 bonds 
must be at least equal to the obligation in period i The final constraint rules out the 
possibi lity of selling bonds shorl 

This problem can be clearly visualized in terms of an anay of numbers in n 
spreadsheet, as in the following example 

Example 5.3 (A 6-year match) We wish to match cash obligations over a 6-year 
period, We select 10 bonds tor this purpose (and for simplicity all accounting is done 
on a yearly basis) The cash flow structure ot each bond is shown in the cOIIesponding 
column in Table 5 3 Below this column is the bond's current price For exnmple, the 
first column represents a 10% bond that matures in 6 years This bond is selling at 
109 The second to last column shows the yearly cash requirements (or obligations) 
for cash to be genemted by the portfolio We formulate the standard cash matching 
problem as a linear programming problem and solve tor the optimal portfolio. (The 
solution can be found easily by use ot a standard linear programming package such as 
those available on some spreadsheet programs) The solution is given in the bottom 
row of Table 5 3 The actual cash generated by the portfolio is shown in the right-hand 
column This column is computed by multi plying each bond column j by its solution 
value x} and then summing these results The minimum total cost of the portfolio is 
also indicated in the table, 

Note that in two ot the years extra cash, beyond what is required, is generated 
This is because there are high requirements in some years, nnd so a large number of 
bonds must be purchased that mature at those dates However, these bonds generate 
coupon payments in earlier years and only a portion of these payments is needed to 
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TABLE 5.3 
Cash Matching Example 

Bonds 

y, 1 2 .3 4 5 6 7 8 9 10 Req'd Actual 

I 10 7 8 6 7 5 10 8 7 100 100 171 74 
2 10 7 8 6 7 5 10 8 107 200 20000 
1 10 7 8 6 7 5 110 108 800 80000 
4 10 7 8 6 7 105 JOO 11934 
5 10 7 8 106 107 800 80000 
6 110 107 108 1,200 1,20000 

P 109 948 995 93 I 972 929 110 104 102 952
1

2,381 141 

x 0 112 0 681 0 0 0 63 028 o I Cost 

A \jJn!(u/.\/U!l!t /(1),0111 defl/i) \//01\'\ liI(' problem olld Its .IOil/fiol! /11 ri1i\ example. rile wshjloll' HI-CGlU,\ 

of /0 differellt bO/l(h (Ill! ,hOII'll. ),C(li by )'t'CI/". 0\ /() LoiwlIlII ill rile (II ray The UlrI'lJl/( price Ofl!flLh 

bond il listt'd be/oil' (iIe It/Will, (1/1(/ (he (II/WlIllt (0 he I/u.illded ill (/ jJOItjo/io i\ lilted below (he price 
elii'll flOII'1 le(jllireri to be gellcratufi hI' Iile jJOIifo/io OIl! I/tOIl'IIIII rile jJf.!llIIitilllate willI/I/!. (Iud 'lIme 
(/(,//10//)' ge/leralt'd til/.! \/j0l1'11 ill {ill! 1m, /..0111/1/11 

meet obligations in those early years. A smoolhel set of cash requirements would not 
leLid to such surpluses 

There is n fundamental liaw in the cash matching problem as formulated here, as 
evidenced by the surpluses generated in our example The surpluses amount to extra 
cash, which is essentially thrown away since it is not used to meet obligations and is not 
I einvested In reality, such SUI pluses would be immediately leinvested in instruments 
that were Hvuilable tlt that time Such reinvestment can be accommodated by a slight 
modification of the problem formulation, but some assumptions about the nature of 
ruture investment opportunities must be intIOduced The simplest is to assume that 
extra cash can be carr ied forwmd at zew interest; that it can, so to speak, be put under 
the mattress to be recovered when needed This flexibility is introduced by adjoining 
artificial "bonds" having cash flow streams of the f01111 (0, ,0, -I, 1,0, ,0) 
Such a bond is "purchased" in the yeal with the -I (since it absorbs cash) and is 
"redeemed" the next yeal An even better formulation would allow surplus cash to be 
invested in actual bonds, but to incolporate this feature an assumption about future 
interest lates (or, equivalently, about future bond prices) must be made One logical 
appwach is to aSSume that prices lollow expectations dynamics based on the current 
spot rate curve Then if }1 is the estimate of what the l-yetlr interest rate will be a 
year from now, which under expectations dynamics is the current torward rate 11.2, a 
bond of the form (0, - J, I + 1',0. ,0) would be inlroduced The addition of such 
future bonds allows surpluses to be reinvested, and this addition will lead to a different 
solution than the simple cash matching solution given earlier 

Other modifications to the basic cash matching problem are possible For ex­
ample, it the su inS involved arc not lar ge, then account might be made of the integer 
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nature of the required solution; that is, the XI vmiables might be restricted to be 
integels Other modifications combine immunization with cash matching 

5.3 DYNAMIC CASH HOW PROCESSES 

To produce excellent leSldts, many investments require deliberate ongoing manage­
ment For example, the COllIse of a project within a firm might be guided by a series of 
operational decisions Likewise, a portfolio of financial instIuments might (and should 
be) modified systematically over lime The selection of an appIOpIiate sequence of 
actions that affect an investment's cash How stream is the plOblem of dynamic man­
agement 

Imagine. for example, that you have purchased an oil well This is an investment 
project, and to obtain good results from it, it must be cllIetully managed, In this case 
you must decide, each month, whether to pump oil from your well or not If you do 
pump oil, you will incul operational costs and receive revenue from the sale ot oil, 
lending to a profit; but you will also reduce the oil reserves YOUl current pumping 
decision clearly influences the future possibilities of production If you believe that 
cunent oil prices are low, you may wisely choose not to pump now, but rather to save 
the oil for a time of higher prices 

Discussion of this type of problem within the context of deterministic cash flow 
streams is especially useful-both because it is an important class ot problems, and be­
cause the method used to solve these problems, dynamic programming, is used also in 
Part 3 of the book This simpler setting provides a good foundation for that later work 

Representation of Dynamic Choice 

A deterministic investment is defined by its cash flow stream, say, x (xo, XI, X2, 

x/I), but the magnitudes of the cash flows in this stream often depend on management 
choices in a complex fashion. In order to solve dynamic management problems, we 
need a way to represent the possible choices at each period, and the effect that those 
choices have on future ClIsh flows In short, we need a dynamic model. There me 
several mathematical structures that can be used to construct such a model, but the 
simplest is a graph" In this structure, the time points at which cash flows occur are 
lepresented by points along the horizontal direction, as usual In the veltical direction 
above each such time point is laid out a set of nodes, which represent the different 
possible states or conditions of the process at that time Nodes from one time to the 
next are connected by hl"anches 01 arcs. A branch represents a possible path hom u 
node at one time to another node at the next time Different branches correspond to 
different management actions, which guide the course of the process Simple examples 
of such graphs are that of a hinomial tree and a binomial lattice, illustrated in 
Figure 5 3(,,) and (b) In such a tree there are exactly two branches leaving each node 
The leftmost node cones ponds to the situation at the inhial time, the next vertical pair 
of nodes represent the two possibilities at time I, and so forth (In the figure only four 
time points are shown) 
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(a) Binomial tree (b) Binomi.ilattice 

FIGURE 5,3 Graph representations. A tree is a ~en­
eral way to represent dynamic choice 

The best way to describe the meaning of the tree is to walk through an example 
Let us again consider the management of the oil well you recently purchased At 
any time you can either pump oil or not A node in the tree represents the condition 
of the well, defined by the size of its reserves, the state of repair, and so forth To 
model yoUl choices as a tree, you should start at the leftmost node of the tree, which 
represents the initial condition of the well You have only two choices at that time: 
pump or don't pump Assign one ot these choices to an upward movement and the 
other to a downward movement; suppose that pumping corresponds to moving upward 
and nonpumping COl responds to moving downward At the next time point your well 
is at one of the two nodes for that time Again you make a choice and move either 
up 01 down As you make yoUl decisions, you move through the tree, from lett to 
right, from node to node, along a particulur path of branches The path is uniquely 
detellnined by yoUl choices; that is, the condition of the well through time and the 
magnitude of your overall profit are determined by your choices and represented by 
this unique path through the tree 

Suppose, specifically, that the well has initial reserves of 10 million barrels 
01 oil Each year it is possible to pump ollt 10% of the CUIl ent reserves, but to 
do so a crew must be hhed and paid However, it a crew is already on hand, 
because it was used in the plevious year, the hiring expenses are avoided There­
fore, to calculate the profit that can be obtained in any year, it is necessary to 
know the level of oil reserves and whethel a crew is already on hand Hence we 
label each node of the tree showing the ICsel ve level and the status of a crew 
For example, the label (9, YES) means that the reserves are 9,000,000 barrels and 
there is a clew on hand A complete tree for the two periods is shown in Fig­
tile 5 3(a) 

If crews can be assembled with no hiring cost, it is not necessary to keep 
track 01 the crew status We can theretore drop one component from the node la­
bels and keep only the !eserve level If we do that, some nodes that had distinct 
labels in the original tlee will now have identical labels In the example illustrated 
in Figure 54, two of the nodes at the final time both have a reserve level of 9 
(meaning 9 million barrels) Since the labels are identical, we can combine these 
nodes into a single node, as shown in Figure 54(b) It the tree were extended for 
additional time peliods, this combining effect would happen frequently, and as a 
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(10, NO) 

(9, YES) 

(10, NO) 

(S 1, YES) 

(9, NO) 

(9, YES) 

(10, NO) 

(a) Binomial hee 

Q
(S1) 

(9) 

(10) (9) 

(10) 

(10) 

(b) Binomial I"ttice 
FIGURE 5.4 Trees showing oil well states Pumping torresponds 10 an upward movement; no pump­
ing corresponds to il downward movement The tree III (.:1) accounts for both the level of reserves 
,md the status of a clew If only the leserve levels affect the plofit, some nodes combine, forming a 
binomial lattice, as shown in (b) 

result the tree could be collapsed to a binomial lattice A typical binomial lallice is 
shown in Figure 53(b) In such a glaph, moving up and then down leads to the same 
node as moving down and then up [here are fewer nodes in a binomiHI lattice than 
in a binomial tree 

In terms of the oil well, it the only relevant lactor for determining profit is 
the reserve level, it is clear that .stmting at any node, an upward movement in the 
tree (corresponding to pl1mping) followed by a downward movement (corresponding 
to not pumping) is identical in its infll1ence on resel ves to a downward movement 
followed by an upward movement Both combinations deplete the reserves by the 
same amount Hence a binomial lattice can be used to represent the management 
choices, as in Figure 54(b) 

We used a binomial Uee or a binomial lallice for the oil well example, which 
is appropriate when thele are only two possible choices at each time If there were 
three choices, we could form a trinomial tree or a trinomial lattice, having three 
branches emanating from each node Clearly, any finite number of choices can be 
accommodated (It is only reasonable to draw small trees on paper, but a computer 
can handle larger lIees quite effectively, up to a point) 

Cash Flows in Graphs 

The description ot the nodes of a graph as states of a process is only an intermediate 
step in the replesenlation ot a dynamic investment situation The essential part ot 
the final repregentation is an assignment ot cash flows to the various branches of the 
gwph These cash flows are used to evaluate management aitematives 

In the filst oil well example, where crew hiring costs are not zero, suppose that 
the cost of hiring a crew is $100,000 (This tepresents just the initial hiring cost, not 
the wages paid) Suppose the profit liDm oil production is $500 per barrel Finally, 
suppose that at the beginning of a year the level ot reserves in the well is x Then 
the net prolitlor a year 01 production is $5 x 10 x x $100,000 if a clew Illust be 
hired, and $5 x lOx \" if a crew is already on hand We can entel these values on the 
branches of the lIee, indicating that much profit is attained if that branch is selected 
These values moe shown in Figure 55 in units of millions of dollars 
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(10, NO) 

(9, YES) 

4.9 

(10, NO) 

(81, YES) 
45 

(9, NO) 

4.9 (9, YES) 

(10, NO) 

FIGU RE 5.5 Oil well cash flow tree. The 
cash flow corresponding to <I decision is 
listed on the branch corresponding to that 
decision These cash now values <Ire deter­
mined by the node state and the decision 

Since only the cash flow values on the blunches are important for analysis, it 
would be possible (conceptually) to bypass the step of describing the nodes as states 
ot the process However, in practice the node description is important because the 
cash How vall1es are determined hom these descriptions by an accounting formula. If 
someone gave us the tree with cash How values specified on all branches, that would 
be sufficient; we would not need the node descriptions In practice, someone must first 
characterize the nodes, as we did earlier, so that the cosh Hows can be determined 

In representations of this Idnd it must also be stated whether the cash flow of 
a branch occurs at the beginning or at the end 01 the corresponding time period In 
reality, a branch cash flow is often spread out over the entire period, but the model 
assigns a lump value at one end or the other (or sometimes a part at the beginning and 
another part at the end) The choice may vary with the situation being represented 

In some cases there is cash flow associated with the telmination of the process, 
whose value varies with the final node achieved This is a final reward or salvage 
value. These values are placed on the graph at the corresponding final nodes In the 
oil well example, the final vtllue might be the value for which the well could be sold. 

5.4 OPTIMAL MANAGEMENT 

Once we have n graph representation of the cnsh How process associated with an 
investment, we can apply the principles of earlier chapters to determine the optimal 
manngement plan Each path through the tree determines a specific cash How stream; 
hence it is only necessary to select the path that is best Usually this is the path 
that has the largest present value So one way to solve the problem is to list all 
the possible streams, corresponding to all the possible pathS, compute theil respective 
present values, and select the largest one We then manage the investment by following 
the path that cones ponds to that maximal present value 

Although this method will work well lor small problems, it is plagued by the 
curse of dimensionality for Imge problems The number of possible paths in a tree 
grows exponentially with the number of periods For example, in an n-period binomial 
tree the numbel of nodes is 2"+1 I So if II 12 (say, I year of monthly decisions), 
there are 8,191 possible paths And if there were 10 possible choices each month, 
this figure would rise to 10 13 I, which is beyond the capability of strnightforward 
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computation We can use the computational plOcedure of dynamic programming to 
search much more efficiently 

Running Dynamic Programming 

Dynamic pTogramming solves a problem step by step, stmting at the termintltion time 
and working back to the beginning For this reason, dynamic pToglumming is somc~ 
times characterized by the phrase, "it solves the problem backward" 

A special versron of dynamic programming, based on the running present value 
method of Section 4 6, is especially convenient for investment problems We call this 
method running dynamic programming. It is the method that we develop here and 
that is used throughout the text 

Suppose an investment with a dynamic cash flow is represented by n graph as 
described earlier For simplicity, we assume periods nre I year in length, and we 
use yearly compounding A path through the graph genewtes a cash flow stream 
(0, CI, ,(II-I (with each flow occuning at the beginning of the period), correspond­
ing to the arcs that it passes along, and the path also determines a termination flow 
Vn at the final node The present value of this complete stream is 

PY co+ " +----+ + .11 (I + I',j' 
+ CtJ_1 + 

(I + ~n-dll 1 + 
where the 5k'S are the spot rutes A path is defined by a particular series of decisions­
one choice at each node We wish to determine those choices that maximize the 
resulting present value 

In the running method, we use the one-period discount factors ch = 1/( I +, k), 

where, k is the short 1 ate, k = !k k+l, and we evaluate the present value ~tep by step 
In particular, in running dynamic progIHmming we assign to each node a value equal 
to the best Ilmning present value that can be obtained from that node, neglecting all 
previous cash flows FOI the ith node at time k, denoted by (k, i), the best running 
value is called Vb We rei'el to these values as V -values 

The V -values at the final nodes are just the terminal values ot the investment 
process These values are c1eally the present values-as seen at time II-that can be 
attained neglecting the past Hence the V -values at the final nodes are already given 
as part ot the problem description 

The dynamic programming pIOcedure next addresses the nodes at time 11- I For 
any node; at time 11 I, we pretend that the underlying investment process has taken 
us to that node The decisions for plevious nodes have already been Illude, and the 
conesponding previous cash flows Co, CI, ,LtJ-2 have already occurred Only one 
decision remains: we ll1ust determine which arc to toll ow horn node (11- I, i) to some 
final node at time 11 Since we can do nothing about past decisions (in this pretending 
viewpoint), it is clear that we should select the arc that maximizes the present value 
as seen at time 11 I (the running present value) Specifically, if we index the arcs by 
the node number a they reach at time 11, we should look at the value.s (~:_I + dtJ VtJ 'I 

(Here <:_1 is the cash now associated with arc a and VII II is the V-value at the node 
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/ 
/ 

Vrr I 

FIGURE 5.6 First recursive step of dyn<lmic progr<lmming. 
Assuming Ih<11 the first n - 1 steps of the process have been 
completed, we evaluille Ihe besJ Iha' can be done for Ihe 
lasl slep For ilny node at time n 1 we find Ihe maximum 
running present value from thai node 

to which arc a leads) After calculating these sums for every arc a emanating from 
node (11 I) iL we select the largest of these values and denote that value by VI/_I i 

This is the best running present value that can be attained from node (11 I, i); and 
hence it is the concet V -value This procedure, illustrated in Figure 5 6, is repeated 
tm each of the nodes at time 11 1 

Next the same procedure is carried out at time 11 - 2 We assume that the 
investment process is at a pmticular node (11 2, i) Each branch a emanating from 
that node produces a cash How and takes the plOcess to a conesponding node a at 
time 11- I If (~-1 is the cash flow associated with this choice) the total contribution to 
(Iunning) present value) accounting fOi the future as well, is c::_2 +dll -2 VtJ - Lu because 
the running present value is equal to the current cash flow plus a discounted version 
of the running present value of' the next pedod We compute these new values tor all 
possible arcs and select the largest This maximal value is defined to be VII _ 1.1 This 
procedure) illustrated in Figure 5 7, is canied out for every node at time 11 2 

This procedUle is continued) wOlking backward until time zelO is reached, where 
there is only one node The V -value determined thele is the optimal present value as 
seen at time zelO, and hence it is the overall best value The optimal decisions and 
cash flows can easily be determined as a by-product of the dynamic programming 

FIGURE 5] Second st<lge of dyn<lmic pro­
gr<lmming. Assuming that Ihe first n-2 slilges of 
the process have been completed, we evaluille 
Ihe best running present value for the rem<lining 
Iwo Sl<lges 
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plOcedure, either by recording them at the nodes as the V -values arc computed, or by 
working torward, using the known future V -values. 

The running dynamic programming method can be wlitten very succinctly by 
a reCUITcnce relation Define cf; to be the cash flow generated by moving from node 
(k, i) to node (k + I, a) The recursion procedure is 

Vb max~jmize ((kl + dt. Vk+1 II) 

An example will make all 01 this clear 

Examples 

Example 5.4 (Fishing pl'Oblem) Suppose that you own both a lake and a fishing 
boat as an investment package You plan to profit by taking lish from the lake Each 
season you decide either to fish or not to fish II you do not fish, the fish population 
in the lake will flourish, and in fact it will double by the start of the next season It 
you do fish, you will extract 70% of the fish that were in the lake at the beginning 
of the season The fish that were not caught (and some before they are cHught) will 
replOduce, and the fish population at the beginning ot the next season will be the same 
as at the beginning of the current season So corresponding to whether you nbstain 
or fish, the fish population will cithel double or remain the same, and you get eithel 
nothing or 70% of the beginning-season fish population The initial fish population is 
10 tons Your profit is $1 per ton The interest rate is constant at 25%, which means 
that the discount factor is 8 each year Unfortunately you htlve only three seasons to 
fish The management problem is that ot detellllining in which of those seasons you 
should fish 

The situation can be described by the binomial lattice shown in Figur e 5 8 The 
nodes are marked with the fish population A lattice, lather than a tree, is t1ppropritlte 
because only the fish population in the Inke is relevant at any time The manner by 
which that population was achieved has no effect on future cash flows The vtllue on 

FIGURE 5.8 Fishing problem. The node values arc Ihe 
lonnage of fish in Ihe lake; !hE: branch values ilre cash 
flows 
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a branch indicates the catch (and hence the cash flow) associated WiU, that branch 
Horizontal branches cOlIespond to no fishing and no catch, whereas downward directed 
branches correspond to fishing 

The problem is solved by working backward We assign the value of 0 to each 
of the final nodes, since once we arc there we can no longer fish Then at each ot the 
nodes one step hom lhe end we determine the maximum possible cash flow (Clearly, 
we fish in every case) This determines the cash flow received that season, and we 
assume that we obtain that cash at the beginning of the season Hence we do 1101 

discount the profit The value obtained is the (running) present value, as viewed from 
that time These values are indictlted on a copy of the lattice in Figure 59 

Next we back up one time period and calculate the muximum present values at 
that time FOI example, for the node just to the right of the initial node, we have 

V = max ( 8 x 28, 14 + 8 x 14) 

The maximum is attained by the second choice, corresponding to the downward branch, 
and hence V = 14 + 8 x 14 = 252. The discount rate of 1/1 25 = 8 is applicable 
at every stage since the spot rate curve is flat (See Section 46) Finally, a similar 
calculation is canied out for the initial node The value there gives the maximum 
present value The optimal path is the path determined by the optimal choices we 
discovered in the procedure The optimal path lor this example is indicated in Fig­
ure 59 by the heavy line In words, the solution is not to fish the first season (to 
let the fish population increase) and then fish the next two seasons (to harvest the 
population) 

The lattice structure can accommodate any finite number of branches emanating from a 
node The limit of this kind of construction is a continuous lattice, having a continuum 
of nodes at any stuge and a continuum of possible decisions at any node For example, 
in the case of the oil well discussed in the plevious section, from a total reserve R 
you might pump any amount z between, say, 0 and N!, leading to a new Jeserve of 

FIGURE 5,9 Calculations for fish problem" The 
node values are now the optim<l! running present 
values, found by working backward from the ter· 
mtn<l! nodes The branch values are cash flows 
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FIGURE 5.10 Continuous lattice, A continuous lattice is <l 

powerful way to represent situations where there is J con· 
til1Ullnl of possible choices evely period 

R .: Your choice::: is continuous, and so is the level of reselves This type ot 
lattice is ilIustJated schematically in Figul C 5 J () Here each vel tical line represents the 
continuum ot nodes possible at a pnrlicular time (At the initial time thew is only one 
node) The tan emanating hom 11 node represents the fan of possibilities for traveling 
to a subsequent node Only one tan is indicated to! each time, whereas actually there 
is such a fan emanating hom every point on the vel tical line This dynamic structure 
works very much like the finite-node case: The process stUlts at the initial node, nnd 
one of the possible choices is selected This leads to a specific node point 011 the line 
for the next time, and the process continues Optimizing such a process by dynamic 
pIOgrnmming works in the Ieverse direction, just like in the finite case, but is made 
more ditficult by the fact that a V -value must be assigned to every point on each 
node line Hence V is a function defined on the line In some cases this function has 
a simple llnalytic fOIlH, and then the dynamic programming procedure can be carried 
out explicitly An illusu ation at this kind is shown in the next example. which. by the 
way, is the next in our continuing sequence 01 gold mine examples 

Example 5.5 (Complexico mine) The Complexico mine is to! lease This mine has 
been WOl ked heavily and is approaching depletion It is becoming increasingly difficult 
to extHlct rich ore In tact, iI x is the amount of gold remaining in the mine at the 
beginning ot a year, the cost to extract.:.: < x ounces 01 gold in that yem is $5002:2 Ix 
(Note that us r decreases, it becomes more dilficult to obtain gold) It is estimated 
that the CUIIent amount of gold lemaining in the mine is Xo 50,000 ounces The 
plice 01 gold is $400/oz We are contemplating the purchase of a IO-year lease at the 
Complexico mine The intelest rate is 10% How much is this lease worth? 

To solve this pIOblem we must know how to opel ate the mine optimally over 
the iO-yent pedod In particular, we must detelmine how much gold to mine each yem 
in oldel to obtain the maximum present value To lind this optimal operating plan, we 
represent the mine by a continuous lattice, with the nodes at any time replesenting the 
amount of gold Iemaining in the mine at the beginning of that year We denote this 
amount by x This amount detelmines the optimal value of the remaining lease hom 
that point on 
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We index the time points by the numbel at years since the beginning of the 
lease The initial lime is 0, the end of the first year is I, and so forth The end of 
tile lease is time lOWe also assume, for simplicity, that the cash flow from mining 
operations is obtained at the beginning ot the year 

We begin by determining the value of a lease on the mine at time 9, when the 
remaining deposit is Xt) Only I year remains on the lease, so the value is obtained by 
maximizing the profit tor that yeal It we extract Z9 ounces. the revenue from the sale 
ot the gold will be gZ.9, where g is the price of gold, and the cost of mining wiII be 
500Z~/X9 Hence the optimal value 01 the mine at time 9 if X9 is the remaining deposit 
level is 

V9l-,,) = max (gZ9 500Z~/'9) 
;:.J 

We find the maximum by setting tile derivative with Iespect to '::9 equal to zero This 
yields I 

Z9 gX9/1,000 

We substitute this value in the formula for profit to find 

500g2
X9 g2x9 

1,000 x 1,000 = 2, 000 

We wIite this as V9(X9) :;:: K9X9, where KI) 8'2/2,000 Ls a con~tant. Hence the 
value of the lease is directly proportional to how much gold remains in the mine; the 
propOltionality facto! is K9 

Next we back lip and solve for VH(\"8) In this case we account for the profit 
generated during the ninth year and also [or I..he value that the lease will have at U1e 
end of that year-a value that depends on how much gold we leave in the mine 
Hence, 

V,(x,) I~~X [goH 500zilt8 + d V9l-tH Z8)] 

Note that we have discounted the value a~sociated with the mine at the next year by 
a facto! d As in the Plevious example, the discount rate is constant because the spot 
I ate curve is flat In this case d 1/1 I 

Using the explicit tOI m IO! the function VI), we may write 

VH(X,) ~~x [gZH - 500zi/XH + dK9('H - Z8)] 

We again set the derivative with I espect to :':s equal to zero and obtain 

(g -dK9)XH 

1,000 

This value C,ln be substituted into the expression for Vs to obtain 

[
(g - dK9)' ] 

V,(x,) = + d K9 X8 
2,000 

This is ploportional to "8, and we may write it as V8(XH) K,x8 

I We !>houkl check th:l! ::" :::: x". which uoes holu with Ihe values we use 



TABLE 5.4 
I<-Values for 
Complexico Mine 

Years X-values 

o 21381 
I 21145 

208 17 
20358 
197 13 
18796 
17479 
15547 
12628 
80 [)() 
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We can continue backwmd in this way, determining the functions V7 • VG• , \I() 
Each of these functions will be of the fOim Vj(X) K) 'J It should be clem that the 
snme algebra applies at each step. and hence we have the recursive formula 

K _ (g d K~+Il2 
J - 2,000 +l//(J+I 

If we use the specific values g 400 and d 1/1 I, we begin the recuISion with 
K9 = g2/2,000 = 80 We can then easily solve for all the other values, as shown in 
Table 54, walking flam the bottom to the top 

It is the last value calculated (that is, Ko) that determines the value of the 01 iginnl 
lease That value is determined by finding the value of the lense when thele is 50,000 
ounces at gold remaining Hence Vo(50,000) 21382 x 50,000 $10,691,000 

The optimal plan is detel mined as a by-product of the dynamic progl amming 
procedtlIe At any time j. the amount of gold to extIact is the value ::.) found in the 
optimization problem Hence ~9 gX9/ I ,000 and Z8 (g -d K9h8/ I ,000 In general, 
z) (g d KJ+IlxJ / 1,000 

Dynamic pIOgramming problems using a continuous lattice do not always work 
out as well ;:t.5 in the preceding exampie, because it is not always po~sible to find 
a simple expression tor the V functions (The specific functional form fOl the cost 
in the gold mine example Jed to the linear form tor the V functions) But dynamic 
programming is a general problem-solving technique that has many vruiations and 
many applications The geneml idea is used repeatedly in Pm ts 3 nnd 4 at this book 

5.5 THE HARMONY THEOREM* 

We know that there is a difference between the present value criterion for selecting 
investment oppOitunities and the internal rate of return criterion, and that it is strongly 
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Reward 

believed by theorists that the present value criterion is Ihe belter at the two, provided 
that account is made for the entire cash flow shearn of the investment over all its 
periods But it you are asked to consider an investment of a fixed amount of dollars 
(say, in yom fIiend's new ventuIe), you probably would not evaluate this proposition 
in tenTIS of present value; you would more likely focus on potential return, In fact, if 
you do make the investment, you me likely to encourage your friend to maximize the 
return on your investment, not the present value of the fiml YOllI friend might insist 
on maximizing present value Is there a conflict here? 

We will try to shed some light on this important issue by working through a 
hypothetical situation Suppose your friend has invented a new gismo for which he 
hold~ the patent rights To profit from this invention, he must raise capital and carry out 
celtain operations The cost for the opewtions occurs immediately; the reward occurs 
at the end of a year In other WOlds, the cash flow stream has just two elements: a 
negative amount now and a positive amount at the end of a yem 

Your ftiend recognizes that there are many different ways that he can operate his 
ventule, and these entail different costs and different IewUlds Hence there me many 
possible cash flow stICams corresponding to different opeIating plans He must select 
one The possibililies can be described by poinls on a graph showing Ihe leward (at 
the end ot a yeal) versus the current cost ot operations, as in Figure 5 ll(a) Your 
h iend can select anyone of the points 

Suppose also Ihal the I-year inlere~t rale is, 10% The possibility of deposil-
ing money in the bank can be replesented on the graph as a straight line with slope 
I 10: Ihe cUIrenl deposil is a cost, and Ihe reward is I 10 limes Ihal amounl This slope 
will be used to evaluate the present vulue of a cash flow stleam 

A 

"-
Slope 1 10 

Cosl 

(a) Maximum present value (b) Maximum return 

FIGURE 5"11 Comparison of criteria, (tl) plan A is seleclecl because il has Ihe grealesl presenl value II is Ihe point 
corresponding to Ihe highest line of slope, eqll;)! 10 1 10 (iJ) pl;)h B is seJecled because it is Ihe point on the line from 
Ihe origill of grealesl slope As the lexi demonstrc.lleS, the ,maJysis in (b) i~ f<lulty, <lnd when correcled, Ihe maximum 
relurn nilerioll will correspond 10 Ihe presenl value criterion 
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If you I fIicnd decides to maximize the plcsent value of his venture, he will dlaw 
lines with slopes I + I I 10 and lind the highest one that goes thlough a possible 
opel ating plan The plan that lies on that line is the optimal one This optimal line 
and plan are shown in Figule 5 11(0); point A is the optimal plan Using a bank, it is 
possible to move nlong the line thIOUgh A In pm ticulm, it is possible to move all the 
way down to the hoIizontal axis At this point. no money will be Icceived next yem, 
but an amount P of net pIOfit is obtained now 

Suppose yom friend asks you to invest in his venture, supplying a portion of the 
opcIating cost and getting that pOition ot the lew[lId You would measure the letUIn 

on you I investment The operating point that achieves the mHximum letUIn is found 
by swinging a line upwmd, pivoting mound the oIigin. INlching an opcIUting point 
01 greatest possible slope The lesult at this plocess is shown in Figule 5 11(1)) The 
optimal point accOiding to this cIiteIion is U1e point B in the figllle The maximum 
retmn is the slope 01 this maximum-slope line Note that this slope is gieatci than 
110% So point B achicves a highel IHte 01 letUII1 than point A Its plesent value, 
howevel, is just pi, which is less than P Thelc seems to be n conflict 

Here is how the conflict is resolved YOUI hiend cUIrenUy owns the lights to 
his gismo He ha~ not yet committed any money lot operations; but his plesent value 
analysis ~hows that he could go to the bank, t.ake out n loan surticient to covel thc 
expen~es 1'01 plan A, and then, at the end 01 the yeal, he could pay back the loan and 
pocket the plofit 01 I lOP (which is wOlth P now) He doesn't cme about the rate of 
return, since hc is not invcsting any moncy; he is ju~t taking out ;:1 loan Alternntively, 
he could borrow the money trom you, but he would not pay you any mOle than thc 
current interest rate 

But you nre not being asked to make a loan; you arc bdng askcd to invest in the 
venturc-to havc ownclship in it As an extreme case, suppose yoU! friend asks you 
to buy the whole ventU! e You will then have thc rights to thc gismo He is willing 
to ~tay on and operate thc ventu!c (il you plOvide the necessnry opernting costs), but 
you will have the powel to decide what operating plan to usc 

If your friend sells you U1e ventute, he will churge you an amount P because 
that i~ what it would be wOIth to him it he kept ownership So il you decide to buy 
thc venture, the total expense 01 an 0pcluting phln is now P plus the nctunl opelHting 
cost If you want to m.aximize your return, you will maximize rewmd/(cost+ P) You 
can find this new best operating plan by swinging a line upward, pivoting mound 
the point - P, leaching the opelating point with the greatest possible slope That 
point will bc point A, thc point that maximized the present value lLook nguin at 
FigU!e 5 Il(a) 1 Aitelllntively, once you ate thc owncl, you might considcr maxi­
mizing the prescnt vnlue Thnt will lead to point A ns well TheretOie it you decide 
to buy the ventu!c, and you pny the full valuc p, you will maximize the letuln on 
youl investment by ope1i.lting under plan A; and your letUril will bc 110% (It doe~ 
not matter if you decide to bOIroW somc of the opelilting costs instead 01 fund­
ing them youlsell; stfli you will want to opel ate at A, nnd youl Icturn will still bc 
110% ) 

We summarize the preceding discussion by n genelal lesuit that we tenn the 
/Wlll/Oll\, lhemelll It states that there is hmmony between the plesent value clherron 
and the rate of letUlI1 critelion whcn nccount is made lot ownership 
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HarmollY theorem Cunent oW/WIS oj a velZlure ~Izollid want to ope/Gle the vemme 
10 maximize the p,e'ielll value oj in ca~h flow 'ill eGm POlellfill/new OWlle/~, who I1JIlH 

pay the jilll value oj their prmpec/ive 'il1m e oj the vemme, wi/! walJl the company to 
operate ill the wille way. ill OIdel 10 maximize the lel1l111 011 [/Jei! illveHIIJelJl 

The harmony theorem rs justificatfon for operating a venture (such as a company) 
in the way that maximizes the pre~ent value of the cash flow stream it generates Both 
current owners and potential investors wfll agree on this policy 

The prescntntron en this sectron considered only deterministic cash flow shearns 
with two flows The harmony theorem genernHzes to multfple periods and to random 
streams as well-under certarn condrtrons A multi period generaHzation is discussed 
in Exerdse 10 

5.6 VALUATION OF A FIRM* 

The principles of cash flow analysis can be u~ed to evaluate the worth of publicly 
traded corporations; indeed almost all analytrc valuation methods do usc some form 
of cash flow analysis However, as straightforward as that may sound, the general 
idea is subject to a variety of interpretations, each leading to a different result These 
differences spring from the question of just which cash flows should form the basis of 
analysis: should they be the dividends that flow to a stockholder, the net earnings to 
the company, 01 the flow that could be captured by a single individual 01 group who 
owned the company and was free to extract the cash according to the group's own 
policy? If these vnriou~ quantities are defined by standard accounting practice, they 
can lead to significantly different inferred firm values 

Another weakness of this kInd of analysis is that it is based on an assumption 
that future cash flows are known deterministically, which, of course, is usually not the 
case, Often uncertainty is recognized in an analysis, but treated in a simplistrc way 
(for instance, by increasing the interest rate used tor discounting above the risk-free 
rate), We discuss other, more soHdly based approaches to evaluatron under uncertainty 
in later chapters This sectron assumes that the cash flows are deterministrc 

Dividend Discount Models 

The owner ot a share of stock in a company can expect to receive periodic dividends 
Suppose that it is known that in year k, k 1,2, , a dividend of Dk will be 
received If the interest rate (or the discount rate) is fixed nt r, H is reasonable to 
assign a value of the firm to the stock holders as the present value of this dividend 
stream~ namely, 

Vo= +~+~+ + I (I + I )' (I + I )3 

This formula is straightt'orwnrd, but it requhes that the future dividend!'! be known 



5 6 VALUATION OF A FIRM* 125 

A popular way to specify dividends is to usc the constant-growth dividend 
model, where dividends grow at a constant rate g In particular, given DJ and the 
relation Dk+1 = (l +g)Dk, the present value of the stream is 

Vo= + 

This summation is similar to that of un annuity, except that there is the extra glOwth 
term in the numerator The summation will have finite value only if the dividend 
growth rate is less than the late used fOi discounting; that is, if g < I In that case we 
have the explicit Gordon for-mula (sec Exercise II) for the summation 

D, 
Vo=--

I g 
(5 1) 

Note that, according to this formula, the value of a firm's stock increases il g increases, 
if the cunent dividend DJ increases, or if the discount rate I decreases All ot these 
properties ale intuitively clear 

If we project D, from a current dividend (already paid) ot Do, we can ,ewrite 
(5 1) by including the ft,st-year's growth We highlight this as lollows: 

DiscOllJlted growth formula COIi.\idel a dividend .\tlefllll that gIG\\'.\ at a /CIte oj g 
pel pellod Auiglll > g C/.\ the di\'(Oltlif /Gte pel peJiod Theil the p1e.\ellt vallie oJ tbe 

.\tlealll, s(OItilIg one peliod {IOIII the p/eseut, witll tile dividend Dj. i.\ 

Vo = (l + g)Do (52) 
I g 

whele Do i5 the (lInen( dividelld 

To use the constant-growth dividend model one must estimate the glOwth late 
g and assign an appropriate value to the discount rate I Estimation of g can be based 
on the history of the firm's dividends and on future prospects Frequently a value is 
assigned to I that is larger than the actual risk-tree interest rate to renect the idea that 
uncertain cash flows should be discounted more heavily than certain cash flows (In 
Chapters 15 and 16, we study better ways to account for uncertainty) 

Example 5.6 (The XX Corporation) The XX Corporation hns just paid a dividend 
of $1 37M The company is expected to grow at 10% tOi the foreseeable futllle, and 
hence most analysts project a similar growth in dividends The discount rate used 
for this type ot company is 15% What is the value of a share of stock in the XX 
Corporation? 

The total value of all shares is given by (5 2) Hence this vnlue is 

137M x 110 
VI, =0 15 10 = $30, 140,000 

Assume that there are million shares outstanding Each share is worth $30 l4 ac-
cording to this analysis 
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Free Cash Flow* 

A conceptual difficulty with the dividend discount method is that the dividend rate is 
set by the board of directOis of the film, and this rate may not be representative of the 
firm's financial statu!) A different perspective to valuation is obtained by imagining 
that you wele the sole ownci and could take out cash as it is earned From this 
perspective the value of the film might be the discounted value ot the net earnings 
stream 

The net earnings of a firm is uefined by accounting practice In the simplest case 
it is just revenue minus cost, and then minus taxes; but things ate rarely this simple 
Account must be made for depteciation of plant and equipment, payment of interest 
on debt, taxes, and other factors The final net earnings figure may have little relation 
to the cash now that can be exttacted rrom the firm 

Within the limitations of a deterministic approach, the best way to value a firm 
is to determine the cash flow stream of maximum present value that can be taken 
out of the company and distributed to the owners The conesponding cash flow in 
any year is termed that yeal's free cash lIow (FCF) Roughly, free cash now is the 
cash generated through operations minus the investments necessary to sustain those 
operations and their anticipated growth 

It is dirficult to obtain an accurate measure of the ftee cash now First, it is 
necessary to assess the firm's potential for generating cash under various policies 
Second, it is necessary to determine the optimal rate of investment-the rate that will 
genctate the cash flow stream of maximum present value Usually this optimal rate 
is merely estimated; but since the relation between growth rate and present value is 
complex, the estimated rate may be far hom the true optimum We shall illustrate the 
ideal process with a highly idealized example 

Suppose that a company has gross earnings of Y" in year Ii and decides to invest 
a portion u ot this amount each yem in order to attain earnings growth The growth 
late is determined by the tunction g(u), which is a property of the firm's chalacter­
istics On tl (simplified) accounting basis, deprccitltion is a haction a oj the current 
capital accollnt (a ~ .10, tOI example) In this case the capital C" follows the 10rmula 
C,H_I = (I a)Cn +111'/1 With these ideas we can set up a general income statement 
for a film, as shown in Table 5 5 

Example 5,7 (Optimal growth) We can go further with the foregoing analysis and 
calculate YII and CII in explicit fOim Since Y,,+I rl +g(u)]YI/, it is easy to see that 
Y" = [1 + g(u)]" l() likewise, it can be shown that 

I (l a)" + [1 + g(u)j") 
C" = (I a)" Co + u Yo ---'---:-:--'---"-'--'­

g(u) +a 

If wc ignOic the two terms having (I a)" (since they will nearly cancel) we have 

C" 
uYo[l +g(u)]" 

g(u) +r:t 
(53) 
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TABLE 5 5 
Free Cash Flow 

Income statement 

Before-tax cash flow from operations 
Depreciation 
T fixable income 
Taxes (34%) 
Aflcr-Iax income 
AfteHux cash (low (afteHUx income plus depreciation) 
Sustaining investment 
Free cash flow 

Y" 
etC Il 

)ill ~ erel! 
34(Y" - erC,,) 
66(Y" - ere,,) 

66(y" - erC,,) + erC" 
rtYn 

66(y" - erC,,) + ere" - Ill'" 

Depn:c.iatioll is (/.\'SI/Illed (0 be a (illll.'\ tlu: (/IIJQIlII( ill tbe Lopital accoullt 

Putting the expressions for YII and CII in the bottom line oj I able 5 5, we find 
the free cash flow at time Ii to be 

FCF = [66 + 34 __ a_"_ II] [I + g(II)]"l'" 
g(II)+a 

(54) 

I his is a growing geometric series We can use the Gordon formula to calculate its 
present value at interest rate I This gives 

[

all 
PV = 66 + 34--­

g(II)+a ] 
I 

II ---Yo 
I g(lI) 

(55) 

It is not easy to see by inspection what value of /l would be best Let us con3ider 
another example 

Example 5.8 (XX Corporation) Assume that the XX Corporation has current earn­
ings of Yo = $10 million, and the initial capital' is Co = $19 8 million The interest 
lute is I = 15%, the depreciation factor is a = la, and the relation between invest­
ment rate and growth rate is g(/I) = cl2l1 e5ia - u,] Notice that g(a) = 0, reRecting 
the fact thnt an investment rate or a times cmnings just keeps up with the depteciation 
of capital 

Using (5j) we can find the value of the company for vmious choices of the 
investment rate II For example, for It = 0, no investment, the company will slowly 
shrink, and the present value under that policy will be $29 million It /I c I 0, the 
company will just maintain its current level, and the present value undet that plan will 
be $396 million Or if /I 5, the present value will be $52 million 

It is possible to maximize (55) (by trial and error or by a simple optimization 
routine as is available in some spreadsheet packages) The result is Il 37 7% and 
g(/I) = 9 0% The corresponding present value is $583 million This is the company 
value 

:: Ihis value of Co will make lllc \cmu; \h:1\ were cunceled ill deriving (5 3) c!lficcl CXllCl]y 
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Here is a question to consider carefully Suppose that during the first year, the 
finn operates according to this plan, investing 37 7% of its gross euwings in new 
capital Suppose also, for simplicity, that no dividends are paid that year What will 
be the value of the company after I year? Recall that during this year, capital and 
earnings expand by 9% Would you guess that the company value will inctease by 
9% as well? Remember the harmony theorem Actually, the value will increase by 
the rate of interest, which is l5% Investors must receive this tate, and they do The 
rem:on this may seem strange is that we assumed that no dividends were paid The 
free cash llow that was genernted, but not taken out of the company, is held for the 
year (itself earning 15%), and this must be added to the present volue calculation of 
future cash nows II the free cash now generated in the first ye;;u were disttibuted tiS 

dividends, the company value would increase by 9%, but the total return to investors, 
including the dividend and the value increase, again would be 15% 

Although this example is highly idealized, it indicates the character of a full 
valuation procedure (under an assumption of certainty) The free cash now stream mUSl 
be projected, accounting for future opportunities Furthermore, this cash flow stream 
must be optimized by proper selection oj a capital investment policy Because the 
impact oj current investment on future free cash now is complex, effective optimization 
requires the use of formal models and formal optimization techniques 

5.7 SUMMARY 

Interest rate theory is probably the most widely used financial tool It is used to deter­
mine the value of projects, lo allocate money among alternatives, to design complex 
bond portjolios, to determine how lo manage investments erreclively, and even to 
determine the value of a firm 

IntereSl rate theory is most powerful when it is combined with general problem­
solving methods, particularly methods of optimization With the aid of such methods, 
interest rate theory provides more than just a static measure of value; it guides us to 
find the decision or structure with the highest value 

One clnss of problems that can be approached with thi,5 combination is capitnl 
budgeting problems In the classic problem of this class, a fixed budget is to be 
allocated among a set of independent projects in order to maximize net present vnlue 
This problem can be solved approximately by selecting projects with the highest 
benefil-cost ratio The problem can be solved exactly by formulating it as a zero­
one optimization problem and using an integer programming packoge More complex 
capitnl budgeting problems hnving dependencies among projects can be also be solved 
by the zero-one programming method 

The selection ot a bond portfolio lo meet certain requirement.1) can be conve­
niently formulated as an optimization problem-but there are severnl possible formu­
lations A particularly simple problem within this class is the cash-matching problem, 
where a portfolio is construcled to genet ate a required cash flow in each period This 
jormulation has the wenkness that in some periods exlm cash mny be gener tlled, beyond 
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that required, and this extra cash is essel1liully wasted More complex formulations do 
not have this wefJkness 

10 produce excellent tesults, many investments require deliberate ongoing man­
agement The relation between 11 series ot management decisions [Jnd the resulting 
cash now stream frequently can be modeled as a graph (Especially useful types of 
graphs are trees and lattices) In such a graph the nodes conespond to states of the 
process, and n bllll1ch leading from a node corresponds to n pmticular choice mnde 
from thllt node Associated wilh each blllt1ch is a cash How v<llue 

Optimal dynamic management consists of following the special path of m"cs 
through the glllph that produces the greatest present value I his optimnl path can 
be found efficiently by the method of dynamic progwmming A particularly useful 
version of dynamic programming Jor inve!;tment problems uses the running method 
for evaluation of present value 

Dynamic progtamming works backwmd in time For a problem with II time 
periods, the tunning version oj the ptocedure stmts by finding the best decisIon at 
each of the nodes j nt time II ~ I nnd nssigns a V -value, denoted by \l1/_r j, to ench 
such node This V -value is the optimal present value that could be obtained it the 
investmcnl process were inhiated at thal node To find that vnlue, each possible arc 
emanating ftom node i is examined T he .~um of the cash How of the arc and the 
one-period discounted V-value at the node reached by the arc is evaluated The V­
value oj the originating node i is the maximum oj those sums Aftet completing lhis 
procedure for all the nodes at II ~ I, the procedure then steps back to the nodes at time 
II ~ 2 Optimal V -values are found for each of those nodes by a ptocedure that exactly 
pUlaliels that lor the nodes at II - I The procedure continues by working backward 
through all time periods, and it ends when an optimal V -value is assigned to the initial 
node at time zeto 

When opernting a venture it is appropriate to maximize the present value On 
the other hand, investOl's may be most interested in the rate of teturn These criterin 
might seem to be in conflict, but the harmony theotem states that the ctiterin nre 
equivalent under the assumption thal investors pay the full value fot their ownership 
of the venture 

Present value analysis is commonly used to eSlimate the value oj n firm, One 
such ptocedure is the dividend discount method, whete the value to a stockholder is 
assumed lo be equal to the present value of the strcam oj future dividend payments If 
dividends are assumed to grow at a rate B pel year, a simple Jormuln gives the present 
value oj the tesulting stream 

The bener method of firm evaluation bases the evaluation on hee cash flow, 
which is the amount of cash thnt ColO be taken out oj the firm while maintaining optimnl 
operations 1.Jnd investmenl strategies In idealized form, this method rcquiles that the 
plCsenl value of lree cash now be nUJximized with respect to till possible mtln1.Jgement 
decisions, especially those related to investment that ptoduces eamings growth 

Valuation methods bnsed on present value sufler the defect that future cash 
nows me treated ns it they were known with cellainty, when in fact they are usually 
uncertain The deterministic theory is lherefore not adequtlte This defect is widely 
recognized; and to compensate for it, it is common practice to discount predicted, but 
uncertain, cash Bows at higher interest ttltes thnn the risk-free rate There is some 
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EXERCISES 

theoreticnl justilication for this, bUl a completely consistent approach to uncellainty 
is more subtle The exciting story oj uncertainty in inveslment begins with the next 
chapter and continues throughout the remainder of the text 

1. (Capital budgeting) A firm is considering funding several proposed projects that hnve the 
financial properties shown in Table 56 The availabJe budget is $600,000 Wh'i:)t set of 
projects would be recommended by the approximate method based on benelit--cost falios? 
What is the optimui set of projects? 

TABLE 5.6 
Financial Properties of Proposed Projects 

Outlay Present worth 
Project ($1,000) ($1,000) 

100 200 
100 500 
200 300 
150 200 
150 250 

2, (The roadm) Refer to the transportation alternatives problem of Example 52 The bridge 
at Cay Road is actually pmt of the road between Augen and Burger Therefore it is not 
reasonable for the bridge to have fewer lanes than the road itself This means thm if projects 
2 or 4 are carried out, either projects 6 or 7 must also be carried out Formulate a zer(}-{)ne 
programnlmg problem that includes this additional requirement Solve the problem 

3. (Two-period budget UJ) A company has identified <I number of promising projects, as 
indk<lted in Table. 5 7 The cash (lows for the first 2 yeliIs llIe shown (they are till negative) 

TABLE 5 7 

A Ust of Projects 

Cash flow 

Project NPV 

1 -90 -58 150 
2 -80 -80 200 
J -50 -100 100 
4 -20 -64 100 
5 -40 -50 120 
6 -80 -20 150 
7 -80 -100 240 
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The cash (lows in later years are positive, and the net present value oj each ploject is shown 
The company managcls have decided th11t they CUn allocate up to $250,000 in each 01 the 
first 2 yeals to tund these projects It Jess than $250,000 is used the first year, the btl lance 
CUn be invested at JO% and used to augment the next year'~ budget Which projects should 
be tunded? 

4. (Bond matrix 0) The cash mutching and othel ploblems cun be conveniently represented 
in matrix tmm Suppose there are 11/ bonds We deline tor each bond j its associuted yeatly 
cash (low stream (column) vector cl ' which is /l~dimensionul The ycmJy ubligations are 
likewise represented by the /l~dimellsional vectm y We can stack the c) vectors side by 
side to lorm the columns of a bond matrix C Fimllly we let p and x be /ll~dimensional 
column vectms The cash motching problem Can be expressed 115 

minimize pI X 

subject to Cx:::: y 

(a) Identify C, y, p, and x in Table 5 3 
(b) Show that if all bonds are priced according to a common term structure of interest 

rates, there is a vector v satisfying 

CTv = P 

What are the components of v'! 
(c) Suppose b is a vector whose components represent obligl.llions in each period Show 

thm a portfolio x meeting these obligations exactly satisfies 

Cx= b 

(d) With x and v defined as before, show that the price of the portfolio x is v7 b Interpret 
this result 

5, (Trinomial lattice) A trinomial lattice is 1.1 specinl cuse of a trinomiul tree From each 
node three moves are possible: up, middle, and down The special leuture of the lattice 
is that certain pairs of moves leild to identical nodes two periods in the future We can 
express these eqUivalences tlS 

up-down 
middle-down 

middle-up 

down-up = middle-middle 
down-middle 
up-middle 

Draw a trinomial lattice spanning three periods How many nodes does it conillin? How 
many nodes nre contained in a full trinomial tree of the same number 01 periods? 

6. (A bond project 0) You are the manager of XYZ Pension Fund On November 5,2011, 
XYZ must purchase u portfolio 01 US Treasuty bonds to meet the fund's projected liabili~ 
ties in the future The bonds available nt that time are those of Exercise 4 in Chapter 4 Short 
selling is not allowed Following the procedure of the earlier exercise, a 4th~order polyno~ 
mial estimate of the term structure is constructed as l(t) = all + all + a'll + a}I3 + a,lr1 

The liabilities of XYZ are as listed in Tl1ble 58 
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TABLE 5,0 
Liabililies of XYC Pension 
Fund 

Liabilities Occur on 15th 

Feb 2012 $2,000 
Aug 2012 $20,000 
Feb 2013 $0 
Aug 2013 $25,000 
Feb 2014 $1,000 
Aug 2014 $0 
Feb 2015 $20,000 
Aug 2015 $1,000 
Feb 2016 $15,000 

(a) (Simple C<1sh matching) Construct a minimum-cost liability-matching pOItfoiio by 
buying Treasury bonds ~lsslll11ing that excess periodic cash (lows may be held only at 
:elO interest to meet future liabilities 

(b) (Complex cash matching) Construct u minimum-cost liability-malching portfolio by 
buying Treasury bonds assuming thllt all excess periodic cash (lows may be reinvested 
at the expected interest ratcs (implied by the current term structure) to meet future 
liabilities No borrowing is allowed 

(c) (Durution matching) Construct <1 minimum-cost portfolio with present value equal to 
that of the liability stream Immunize against a change in the term structure parameters 
Do this tor five ctlses Case I is to guard against a change in ai, case 2 to guard against 
changes in a I and a2, and so on 

7. (The f1shing problem) Find the solution to the fishing problem ot EXllmple 54 when the 
interest rate is 33% Are the decisions different than when the interest rute is 25'70? At 
what critical vnlue of the discount factor does the solution change? 

8. (Complcxico mine@) Consider the Complexico mine and Ilssume a 10% constant interest 
rate; also Ilssume the price of gold is conSLant at $400l0z 

((I) Find the vlllue of the mine (not jJ lO~year lellse) it the current deposit is XII In particular, 
how much is the mine worth initially when XI) 50,000 ounces? [Him Consider the 
recursive equation for K~ as k --+ 00 ] 

(b) For the I O~year lease considered in the text, how much gold remains in the mine at 
the end of the lease; and how much h; the mine worth lit that time? 

(r:.) If the mine were not letlsed, but instead oper.'lted optimlllly by an owner, wh.'lt would 
the mine be worth aftel 10 years? 

9. (1 ittle Bear Oil) You have purchm;ed n lease for the 1 ittle Bear Oil well This well 
Iws initial reserves of 100 thow;and barrels of oil In any yem you have three choices 
ot how to operate the well: (a) you elm 1/01 pump, in which case there is no operat~ 
ing cOst nnd no change in oil reserves; (b) you can pump normally, in which case the 
opemting eOst is $50 thousand and you will pump out 20% or what the reservef; were lit 



EXERCISES 133 

tbe beginning 01 the year; or (c) you can use enlulIlccd pumping using Willer pressure, 
ill which case the operating cost is $120 lholl!>tl.nd and you will pump oul 36% ot what 
the reserves Were illlhc beginning ot the year The pIicc ot oil is $10 per barrel and the 
interest rale is 10% Assume llml both your OpcHlling costs and the oil revenues come nt 
the beginning of the year (through advnnce sales) Your lease is tor a peJiod of 3 yenrs 

(0) Show how to set up a lrinomillllaUicc to represent the possible stutes ot the oil reserves 
(b) What is the maximum present vulue of your profits. llnd what is the corresponding 

optimnl pumping strategy? 

10. (Muitipcriod hmmony theorem 0) The value ot a finn is the maximum present value of 
its possible cash flow streams This cnn be expressed us 

+_x" ] 
(I + ',,)" 

wbere the maximization is with respect to all possible streams Xu, 1:1, ,XII, and tbe .\1 's 
are the spot rntes Let xO' be the first cl.lsh flow in the optimal plan It the firm chooses an 
arbitrary plan that results in an initial cash (low of ro (distributed to the owners), the value 
ot the firm after I year is 

where now that maximum is with respect to all teasible cash flows that start with Xu and 
the s:'s are the spot rates aftel I year An investor purchasing the finn at its full fair price 
has initial ca..<;h flow Xa- V(lllnd achieves a value ot VI (.to) after I year Hence the I-year 
total return to the investor is 

II 
V,(xu) 

Vu- \"u 

Ihe investol would urge tlll.lt Xu be chosen to maximize R Call this value X(I Assuming that 
interest rates follow expectation dynamics and that VI (Xu) > 0, show that the maximum 
R is I + \'1 and that this return is achieved by the same x{~ that determines Va 

1 L (Growing annuity) Show thm for If -< I, 

00 (I +g)I..-1 

L~ 
1..=1 

[Hilll Let Sbe thevulue at the sum Note thut S 1/(1 +r)+S(I+g)/(1 +r) 1 
12. (Two-stnge growth) It is common practice in security analysis to modify the basic div­

idend growth model by allowing more than one J;t[lge ot growth, with the growth tactors 
being different in the different stages As an eXl.Jrnple l.'onsider company Z, which currently 
distributes dividends ot $ 10M annul.Jlly The dividends are expected to grow llt the rate of 
10% for the next 5 yems and at a rate of 5% thereafter 

(a) Using.a dividend discount approach with [In interest rate ot 159o, what is the value ot 
the compony? 

(b) Find a genernl formula tor the value of.1 company sntisfying a two-stage growth model 
Assume a growth mte of G tor k years, followed by a growth nHe of g thereafter, and 
[In initial dividend of DI 
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• MEAN-VARIANCE 
PORTFOLIO THEORY 

T ypically, when making an investment, the initial outlay ot capita! is known. but 
the amount to be returned is uncertain Such situations are studied in this part 

01 the text In this paJ t. however. we restrict attention to the case of a single 
investment petioct: money is invested at the initial time, and payoff is attained at the 
end of the period 

The assumption that an investment situation comprises a single pCllod is some­
times a good approximation, An investment in a zero-coupon bond that will be held 

to maturity is an example Another is an investment in a physical project that will not 
provide payment until it is completed However. mnny common investments, such as 

publicly tHlded stocks, are not tied to a single period, since tl,ey can be liquidated at 
will and may letum dividends periodically Nevertheless, such investments are otten 
analyzed on a single period basis as a simplification; but this type of analysis should be 
regaJded only as a prelude to Parts '3 and 4 of the text, Wllicll are more comprehensive 

This pmt ot the text treats uncertainty with three different mathematical methods: 
(I) mean-vmiance analysis, (2) utility function analysis, and (3) arbitrage (or com­

pmison) analysis Each of these methods is un important component of investment 
science 

T his first chapter of the second part 01 the text treats uncertainty by mean­
variance analysis This metllOd uses probability theory only slightly, and leads to 
convenient muthematical expressions and procedures Mean-variance analysis forms 

tIle basis for the important Lapital m,~et pi icing model discussed in Chapter 7 

6.1 ASSET RETURN 

An investment instrument that can be bought and sold is frequently called an asset. 
We introduce a fundamental concept concerning such assets 

137 
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Suppose that you purclmse an asset at time zero, and I year later you sell the 
asset The total retnrn on your investment is defined to be 

total return 
amount received 

amount invested 

Or if Xo and X I are, respectively. the amounts of money invested and received and 
R is the totalleturn. then 

R 
X, 

X" 
Often, for simplicity, the term 1ettl111 is used for total return 

The rate of return is 

amount received - amount invested 
rate ot return :::::: --------,-----,----­

amount invested 

Or, again, if Xo and XI are, respectively, the amounts of money invested and received 
and 1 is the rate of return, then 

X, - Xo 
1=---

Xo 

The shorter expression 1elml1 is also Irequently lIsed for the rate of return 

(6 I) 

We distinguish the two definitions by using upper- or lowercase letters, such as 
Rand 1 , respectively, for totalleturn and rate of teturn; and usually the context makes 
things clear if we use the shorthand phrase leturn 

It is clem that the two notions rue related by 

R 1+, 

and that (6 I) can be rewritten as 

This shows that a rate of return acts much like an interest rate, 

Short Sales 

Sometimes it is possible to sell an asset that you do not own through the process of 
short selling, or shorting, the asset To do this, you borrow the asset from someone 
who owns it (such as a brokerage firm) You then sell the borrowed asset to someone 
else, receiving an amount Xo At a later date, you repay your loan by purchasing the 
asset for, say, X I and return the asset to your lender If the later amount X I is lower 
than the original amount Xo, you will have made a profit 01 Xo X I Hence shott 
selling is profitable if the asset price declines 

Short selling is considered quite risky-even dangerous-by many investors 
The reason is that the potential fO! loss is unlimited If the asset value increases, the 
loss is XI - Xo; since XI can increase arbitrarily, so can the loss For this reason 
(and others) short selling is prohibited within cel tain financial institutions, and it is 
purposely avoided as a policy by many individuals and institutions However, it is 
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not universally forbidden, and there is, in filet, a considerable level of sholt selling of 
stock market securities 

When short selling a stock, you are essentinlly duplicating the role of the issuing 
corporation You sel! the stock to wise immediate capital If the stock pays dividends 
during the period thnt you have bonowcd it, you too must pay that same dividend to 
the person from whom you borrowed the stock 

In practice, the pure process of shmt selling is supplemented by certain restric­
tions and safeguards (Pm example, you must post a security deposit with the broker 
from whom you borrowed the asset) But for theoretical work, we typically assume 
that the pure shorting of an asset is allowed 

Let us determine the return associated with short selling We leceive Xo initially 
and pml XI later, so the outlay is -Xo and the final receipt is -XI, and hence the 
total return is 

R= 
XI 

Xu 

The minus signs cancel out, so we obtain the same expression as that for purchasing 
the asset Hence the return value R applies algebraically to both purchases and short 
sales We can wlite this mi 

-XI -XoR=-Xo(l+I) 

to show that final receipt is rclated to initial outlay 

Example 6.1 (A short sale) Suppose I decide to short 100 shilles of stock in company 
CBA This stock is currently selling for $10 per shille I borrow 100 shares trom my 
broker and sell these in the stock market, receiving $1,000. At the end of I year the 
price of CBA has dropped to $9 per share I buy back 100 shares for $900 and give 
these shares to my broker to repay the original loan Bectluse the stock price fell, this 
has been a tavorable transaction for me I made a profit of $100 

Someone who purchased the stock at the beginning ot the yeat and sold it at the 
end would have lost $100 That person would easily compute 

or 

R 
900 

1,000 

900 1,000 

1,000 

.90 

10 

The Itlte of return is clearly negative as J 10%, Shorting converts a nega-
tive rate of return into a profit because the original investment is also negative For 
my shorting activity on CBA my original outlay was -$1,000; hence my plOfit is 
-$I,OOOxl $100 

It i~ a bit strange to refer to a rate ot return associated with the idealized shorting 
procedure. since there is no initial commitment of resources Nevertheless, it is the 
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proper notion In practice, shorting does require an initial commitment of margin, and 
the proceeds from the initial sale ore held until the short is cleared This modified 
procedure will have a different rate of return (See Exercise I ) For basic theoretical 
work, however, we shall often assume that the idealized procedure is available 

Portfolio Return 

Suppose now that 11 different assets are available We can fOlm a master asset, or 
portfolio, of these 11 assets Suppose that this is done by apportioning an amount Xo 
among the 11 assets We then select amounts XOI, i = 1,2, ,11, such that L;,',.",I Xo; = 
Xo, where Xo; represents the amount invested in the ith asset. If we ru'e allowed to 
sell an asset short, then some of the Xo,'s can be negative; otherwise we restrict the 
X01's to be nonnegative 

The amounts invested can be expressed as fractions of the total investment Thus 
we write 

i = 1,2, ,11 

whele WI is the weight or fraction of asset i in the portfolio Clearly, 

and some w,'s may be negative if shott selling is allowed 
Let Rl denote the total return of asset i Then the amount of money genelated at 

the end of the period by the ith asset is R,Xo, = RjwlXO The total amount received 
by this portfolio at the end of the period is therefore L;':=! R, Wi Xo Hence we find 
that the oveIaJl total return of the portfolio is 

I:" R X " R= I-I ,W, 0 = Lw,Ri 
Xo i=! 

Equivalently, since L::'=I w, = I, we have 

This is a basic result concerning returns, and so we highlight it here: 

Portfolio return Both the total,etmll and the !{lte oj retum of a pOItfolio of aHeH 
ate equal to Ihe weighted Will oj the cone'ipollding individual asset returIH. with tire 
weight oj an anet beillg iH relative weight (ill purdw'ie cost) in the pOltjo/iO. that h. 

" R Lw;Ri , 

;=1 

An example calculation of portfolio weights and the associuted expected rate of 
return 01 the pOitfolio ure shown in Tuble 6 I 
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TABLE 6.1 
Calculation of Portfolio Return 

Number of Total Weight in 
Security shales Price cost portfolio 

Jazz, Inc 100 $40 $4,000 025 
Chlssicnl, Inc 400 $20 $8,000 050 
Rock, Inc 200 $20 $4,000 025 

Portfolio total values $16,000 100 

Weight in Rate Weighted 
Security portfolio of return rate 

Jazz, Inc 25 17% 425% 
Classicnl, Inc 50 13% 650% 
Rock. Inc 25 23% 575% 

Portfolio rate of return 1650'/0 

The weighl of (/ ~ec/lfih' ill (/ portfolio is 11\ proportion ojlo/(// co.\! 
(If \'110\1'1/ ill llle upper lable The\'e weighl\' llien delenllilll! IIII! rail.! 
oj rl:lllm of the portfolio, til' \!i()\\'I1 il/ lilt.! tOll'l!T llIb/e 

6.2 RANDOM VARIABLES 

Frequently the amount of money to be obtained when selling an asset is uncertain at the 
time of purchase. In that case the return is random and can be described in probabilistic 
terms In prepruation for the study of random returns, we briefly introduce some 
concepts of plObability (For more detail on basic probability theory, see Appendix A ) 

Suppose x is a random quantity that can take on anyone of a finite number of 
specific values, say, XI, X2, , XIII Assume further that associated with each possible 
Xi, there is a probability Pi that represents the relative chance of an occurrence of Xi 

The PI'S satisfy L:'~' p, = I and PI 2: 0 for each ic Each PI can be thought of as the 
relative frequency with which Xi would OCCllI if an experiment of observing x were 
repeated infinitely otten The quantity x, characterized tn this way before its value is 
known, is called a random variable. 

A simple example is that of rolHng an ordinary six-sided die, with tlle number 
of spots obtained being x The six possibilities are I, 2, 3, 4, 5, 6, and each has 
probability 1/6 

It is common to display the probabilities associated with a random variable 
gtaphically as a density The possible values of x are indicated on the horizontal axis, 
and the height of the line at a point represents the probability of that point Some 
examples are shown in Figure 6c L Figure 6 I(a) shows the density corresponding to 
the outcome of a roll of a die, where the six possibilities each have a probability 
of 1/6 Figure 6 l(b) shows a more gene,.1 case with several possible outcomes of 
vruious probabilities 
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p 

1/6 

123456, 

(al 

p p 

(bl (cl 
FIGURE 6.1 Probability distributions. Probability distributions are shown for (a) the outcome of a roll of a die, 
(b) another random variable with il finite number of possible outcomes, and (c) a continuous random variable 

If the outcome variable can take any real value in an interval as, for example. the 
temperature of a 100m, a probability density function p(x) desclibes the probability 
The plobability that the variable's value will lie in any segment of the line is equal to 
the area of the vertical region bounded by this segment and the density function An 
example is shown in Figure 6 I(c) 

Expected Value 

The expected value ot a random variable t is just the average value obtained by re­
gruding the probabilities as frequencies For the case of a finite number of possibilities, 
it is defined as 

E(x) = tX;Pi 
i=t 

For convenience E(x) is often denoted by:X Also the terms mean or mean value are 
often used fOI the expected value So we say.\. has mean x 

Example 6.2 (A roll or the die) The expected value of the number of spots on a 
roll of a die is 

t(l +2+ 3+4+5+6) = 3 5 

Note that the expected value is not necessarily a possible outcome of a roll 

The expected value operation is the main operation used in plObability calcula­
tions, so it is usetul to note its basic properties: 

1. Certain value If), is a known value (not random), then E(y) = )' 
This states that the expected value of a nonrandom quantity is equal to the 

quantity itself 
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2. Linearity If l' and z rue random, thell E(av + fiz) = a E(y) + fiE(z) for any real 
values of a and fi 

This states that the expected (or mean) value ot the sum of two IUndom vali~ 
abies is the sum of their corresponding means; and the mean value of the multiple 
of a random variable is the same multiple of the original mean For example, the 
expected value [or the total numbel o[ spots on two dice is 35 + 35 = 7e 

3. Nonnegativity It x is random but never less than zero, then E(x) 2: Dc 
This is a sign-preserving plOperty 

Variance 

The expected value of a random variable provides a useful summary of the proba­
bilistic nature of the variable Howevel, typically one wants, in addition, to have a 
meUSUI'e ot the deglee ot possible deviation from the mean One such measure is the 
variance. 

Given a random variable v with expected value y, the quantity y v is itseH 
random, but has an expected value of zeroe [This is because E(v- V) = E(I') -Erv) = 
v - y = 0] The quantity (v - V)2 is always nonnegative and is large when v deviates 
gleatly from y and small when it is near y fhe expected value of this squared 
vruiable (y v)::! is a useful measure of how much y tends to vary from its expected 
value 

In general, fOi any random variable v the vruiance of y is defined as 

In mathematical explessions, variance is represented by the symbol a 2 Thus we wlite 
a~ = var(v), or if v is under,t;tood, we simply wlite a 2 = var(y) 

e We frequently use the square root of the variance, denoted by rr and called the 
standard deviation. It has the same units as the quantity y and is another measUie of 
how much the variable is likely to deviate from its expected value Thus, formally, 

There is a simple fOimula tor variance that is useful in computations We note 
that 

var (x) 

= E(x') 2E(x)x + x' 

= E(e') -x' (62) 

This result is used in the 10lJowing example 

Example 6.3 (A roll of the die) Let us compute the variance of the landom variable 
V defined as the numbel ot spots obtained by a 1011 of a diee Recalling that v = 3 5 
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we find 

= k[l + 4 + 9 + 16 + 25 + 36] (35)' = 2 n 
Hence rr = v'292 = I 71 

Several Random Variables 

Suppose we are interested in two random variables, such as the outside temperature 
and the barometric plessure To describe these random variables we must have prob­
abilities fOi nil possible combinations of the two values If we denote the variables 
by x and y, we must consider the possible pairs (.', y) Suppose x can take on the 

possible values XI. -1:'2. ) XII and y can take on the values VI. Y2, • Y/II (Byassum­
ing limited meaSurement precision, temperature and pressure can easily be assumed 
to take on only a finite number of values,) Then we must specify the probabilities 
Pij for combinations (XI' Vj) for i = 1, 2, ) 11 and i = 1. 2, , III I-Ienee fOI 

temperature and balOmetric plessure we need the probabilities of all possible combi­
nations 

If we are interested in three random variables, such as outside temperature, baro­
metric pressure, and humidity, we would need probabilities ovel all possible com­
binations of the thlee variables For more variables. things get progressively more 
complicated 

There is an important special case where the plObabiJity description of several 
variables simplifies Two random variables .t and v are said to be independent ran­
dom variables if the olltcome probabilities tor one Val iable do not depend on the 
outcome of the other For example, consider the roll 01 two dice The probability of 
an outcome of. say, 4 on the second die is 1/6, no matter what the outcome of the 
first die Hence the two random variables corresponding to the spots on the two dice 
are independent On the other hand, outside temperature and barometric pressure are 
not independent, since if pressure is high, temperature is more likely to be high as 
well 

Covariance 

When considering two or more random vUliables, their mutual dependence can be 
summarized conveniently by their covariance. 

Let XI and X2 be two random variables with expccted values "fl and X2 The 
covariance of these variables is defined to be 

cov(", \1) = E[(x, - X')(,\1 - X1)] 

The covariance 01 two IUndom varitlbles .t and v is frequently denoted by a:rv 

Hence fO! Iandom variables XI and X2 we write COV(.tl, Xl) = a:ti .t~ 01, alternatively, 
COV(XI, .\2) al2 Note that, by symmctry, ar:! = a21 
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Analogous to (6 2), there is an alternative shorter tOlOlula lor covariance that is 
easily derived; namely, 

(63) 

This is usetul in computations, 
If two random variables XI and r2 have the property that 0"12 0, then they 

are said to be unconelated. This is the situation (roughly) where knowledge 01 the 
value of one variable gives no infOlmation about the other It two random vmiables 
are independent, then they are unCOITelated It at; :> 0, the two vaIiables are said to 
be positively con'elated. In this case, if one vmiable is above its mean, the other is 
likely to be above its mean as well On the other hand, it 0"12 < 0, the two variables 
are said to be negatively cOf'related. 

FigUIe 62 illustrates the concept of con elation by showing collections of wn­
dom samples of two variables rand )' under the conditions (a) positive correlation, 
(b) negative correlation, and (c) no correlation 

The toll owing result gives an important bound on the covariance 

COJ'ariallce bOlllld T1ze l..OVllI iallce oj t\\'o ul11do11l VClI iables sati.\fie.\ 

!0"12!::: 0'10"2 

In the preceding inequality, it O"ll = 0"10":2, the variables are perfectly correlated. 
In this situation, the covariance is as large as possible fOl the given variances If 
one variable were a fixed positive multiple of the othel, the two would be perfectly 
conelated Conversely, it 0"12 = -0"10"2, the two vmiables exhibit per'fect negative 
correlation. 

as 
Another useful construct is the correlation coefficient ot two variables, defined 

0"12 
PI2=--

0"10"2 

From the covariance bound above, we see that !PI2! :s t 
Note that the variance ot a rt.mdom variable x is the covariance of that variable 

with itself Hence we write O"~ 0".\.\ 

-1~' ~-~ ~~' 
o 0 0 0 0 

. . 
o 0 0 0 

••••• x • .:. x •• :... x 

(a) Positively correlated (b) Negatively correlated (c) Uncorrelated 

FIGURE 6.2 Correlations of data. Samples are drawn of the pair of random variables.\ and v, and 
these pairs are plotted on an x-v diagram A typical paUern of points obtained is shown in the three 
cases: (a) positive correl.ltion, (b) negative correlation, and (el 110 cOIrelalion 
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Variance of a Sum 

When we know the covariance between two random variables, it is possible to compute 
the variance of the sum of the variables This is a computation that is used frequently 
in what follows 

Suppose that x and )' are random variables We have, by linearity, that E(x+y) = 
t + y Also by definition, 

vaJ(x+v) = E[C' -t+y-y)'l 

= E[e, - X)'] + 2E[(x -X)(y - Y)] + E[(y - Y)'] 
(64) 

This formula is easy to remember because it looks similar to the standard expression 
for the square of the sum of two algeblaic quantities We just substitute variance for 
the square and the covariance for the product 

An impOltanl special case is where the two variables are uncOIrelated In that 
case (]"2 = 0"; + (J; 

Example 6.4 (Two rolls of the die) Suppose that a die is rolled twice und the 
average of the two numbers of spots is recorded as a quantity z What are the mean 
value and the variance of z? We let .\ and v denote the values obtained on the filSt 
and second rolls, respectively Then z = 4(x + y) Also x and )' are uncorrelated, 

since the rolls of the die are independent Thelefore z = t(X + Y) = 3 5, and var(z) = 
j(O'.; + 0';) 292/2 = I 46 Hence 0', = I 208, which is somewhat smaliel than the 
corresponding I 71 value for a single roll 

6.3 RANDOM RETURNS 

WI1en an aSSet is originally acquired, its rate of return is usually uncertain, Accordingly, 
we consider the rate of return r to be a random variable For analytical purposes we 
shall, in this chapter, summarize the uncertainty of the rate of return by its expected 
value (or mean) E(J) == Y, by its variance E[(r - y2)] == (]"2, and by its covariance 
with other assets of interest We can best illustrate how rates 01 return are replesented 
by considering a few examples 

Example 6.5 (Wheel of fortune) Consider the wheel of fortune shown in Figure 6 3 
It is unlike any wheel you are likely to find in an amusement park since its payoffs 
are quite favorable It you bet $1 on the wheel, the payoff you receive is that shown 
in the segment corresponding to the landing spot The chance of landing on a given 
segment is plOportional to the area of the segment For tilis wheel the probability of 
each segment is 1/6 
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FIGURE 6.3 Wheel offorlune. !fyou bel $1 on the wheel, you will 
receive the amount equal to the value shown in the segment under 
Ihe m<lIker after Ihe whee! is spun 

Let us first compute the mean and the valiance 01 the payoff of the wheel We 
denote the payoff of segment i by Qi Therefore the expected payoff is 

Q = I>Q, = t,(4-1 +2-1 +3) =7/6 

The variance can be found hom the sholt formula (6.2) to be 

O'b = E(Q') - Q' = t,(16 + I + 4+ I + 9) - (7/6f = 381 

The payoff of the wheel is the same as the lotal return under the assumption 01 
a $1 bet Therefore Q = R and the rate of return is I = Q - I. From this we find 

r E(1) Q 1/6 

0'; E[(r 1')']=E(lQ I-(Q 1)1'1 O'b 381 

Example 6.6 (Rate of return on a stock) Let liS considel a share of stock in a major 
corporation (such as General Motors, AT&T, 01 IBM) as un asset Imagine that we 
are attempting to describe the ltltc of return that applies it we were to buy it now and 
sell it at the cnd of one year We ignore transactions costs As an estimate, we might 
take E(l) 12; that is, we estimate that the expected rate of retUIl1 is 12% This is a 
leasonable value for the stock of a major corporation, based on the past performance 
of stocks in the overall market Now what about the standard deviation? We recognize 
that the 12% figure is not likely to be hit exactly, and that there can be significant 
deviations In fact it is quite possible that the I-year rate 01 return could be -S% in 
one year and +2S% in the next A reasonable estimate for the standmd deviation is 
about IS, or IS% Hence, loosely, we might say that the rate of return is likely to be 
12% plus or minus IS% We discuss the process of estimating expected values and 
standard deviations lor stocks in Chapter 8, but this example gives a rough idea of 
typical magnitudes 

The probability density for the rate of return of this typical stock is shown in 
Figure 64 It has a mean value of 12, but the leturn can become arbiuarily large 
However, the rate of return can neVer be less than -I, since that represents complete 
loss of the original investment 
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-1 12 Rate of return 

FIGURE 6,4 Probabilily density of the rale of return of a slock The mean rale of return mny be 
<Ibou! 12% and the siandard deviation about 15% The r,1{e of return cannol be less than -1 

Example 6.7 (Betting wheel) Two kinds of wheels nre useful for the study of in­
vestment problems The wheel of fortune of Example 65 is one form of wheel For 
that type, one bets on (invests in) the wheel as a whole, and the payoff is determined 
by the landing segment 

The other kind of wheel is a betting wheel, an example of which is shown 
in Figure 65 For this kind of wheel one bets on (invests in) the individual seg­
ments of the wheel For example, for the wheel shown, if one invests $1 in the white 
segment, then $3 will be the payoff if white is the landing segment; otherwise the 
payoff is zelD and the original $1 is lost One is allowed to bet different amounts 
on different segments A lOulette wheel is a betting wheel FroOl a theoretical view­
point, a betting wheel is interesting because the letums from different segments are 
corrclated< 

For the wheel shown, we may bet on: (I) white, (2) black, or (3) gray, with 
payoffs 3, 2, or 6, respectively Note that the bet on white has quite favorable 
odds 

We can work out the expected rates of return tor the three possible bets It is 
much easier here to work fiIst with totalletuIOs and then subtract I For example, for 
white the return is $3 with probability ~ and a with probability ~ 

The three expected values arc: - -

RI = ~O) + ~(O) = ~ 

R, = 1(2) + ~(O) = ~ 

R3 = k(6) + ~(O) = I 

Likewise, the three variances are, hom (62), 

(Ii = to') (~)' = 225 

(Ii = W)'-(V=·889 

af = k6:! - I = 5 
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FIGURE 6.5 Betting wheeL It is possible to bel on <lny segment of 
the wheel If that segment is chosen by the spin, the belief leceiv(!s 
the amounl indicated limes the bel 

Finally, we can calculate the covariances using (63), The expected value 01 
products such as E(R, R,) are all zero, so we easily lind 

0"12 = -~(~) = -I a 
0"13=-~(1)=-15 

0"2J = -j(l) = - 67 

Mean-Standard Deviation Diagram 

The random lates of return 01 assets can be represented on a two~dimensi()l1al dia­
gram, as shown in Figure 66 An assel with mean late 01 return f [or lI/ 01 E(/)] 
and standard deviation (J' is represented as a point in this diagram The horizon­
tal axis is used for the sttlodard deviation, and the vertical axis is used tor the 
mean This diagram is called a mean-standard deviation diagram, or simply r-(J 
diagram 

In such a diagram the standard deviation, rather than the variance, is llsed as 
the horizontal axis This gives both axes comparable units (such as percent per year) 
Such diagrams are used frequently in mean-variance investment analysis 

FIGURE 6 6 Mean-standard deviation diagram. 
Assels <Ire descdbed OlS poinls on Ihe Ji<lglam 
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6.4 PORTFOLIO MEAN AND VARIANCE 

Now that we have the concepts of expected value (or mean) and variance for returns 
of individual assets and covariances between pairs of assets, we show how these can 
be used to determine the corresponding mean and variance of the retUln of a portfolio 

Mean Return of a Portfolio 

Suppose that there are 11 ilssets with (random) lates of retum 11, /2, ,Ill These have 
expected values E(r,) = r" E(/,) = r2, , E(/ ,,) = r" 

Suppose that, as in Section 6 I, we form a portfolio of these Il assets using the 
weights Wi, i = 1,2, ,11 The rate of return of the portfolio in terms of the return 
of the individual returns is 

We may take the expected values of both sides, and using linearity (plOperty 2 of the 
expected value in Section 62), we obtain 

E(f) = wIE(!,) + w,E(J,) + + w"E(r,,) 

In other words, the expected rate of return of the portfolio is found by taking the 
weighted sum of the individual expected rates of return So, finding the expected return 
of a portfolio is easy once we have the expected rates of return of the individual assets 
flOm which the pOltfolio is composed. 

Variance of Portfolio Return 

Now let us determine the variance of the rate of return of the portfolio, 
We denote the variance of the return of asset i by aI, the variance of the return 

of the pOltfolio by a 2 , and the covariance of the lcturn of asset i with asset j byaij 
We pertorm a straighttorward calculation: 

,,' E[U -n'] 

u 

LWiWjaij 
/.j=1 
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This important result shows how the variance of a portfolio's return can be calculated 
easily hom the covariances of the pairs of asset returns and the asset weights used in 
the portfolio (Recall, all a/ ) 

Example 6,8 (Two-asset portfolio) Suppose lilat tllere are two assets with /-, 12, 
/-, ,15, 0", 20, 0", 18, and 0"" a I (values typical tor two stocks) A 
portfolio is tormed with weights Wl 25 and UJ2 75 We can calculate the mean 
and the variance or the pOltfolio First We have the mean, 

r 25( 12) + 75( 15) 1425 

Second we calculate the variance, 

a' (,25)'( 20)' + 25( 75)(.01) + 75( 25)( 01) + (75)'( 18)' 024475 

Note that the two cross tenllS arc equal (since Wi W) Wi WI) Hence, 

0" .1564 

Diversification* 

POI ttolios with only 11 tew assets mHy be subject to 11 high degree of risk, represented 
by 11 relatively large variance As a gencIaI rule, the vmiance of the Jeturo of a portfolio 
can be reduced by inc:Juding additional assets in the portfolio, a process referred to 
as diversification .. This process reflects the maxim, "Don't put all your eggs in one 
basket " 

The effects of diversification can be quantified by using the formulas tor com­
bining variances Suppose as an example that there are many assets, all of which are 
mutually uncorrelated Thnt is, the return of each asset is uncorrelated witll that of any 
other asset in the giOUp Suppose also that the late of return of each of these assets 
has mean III and variance (]"2 Now suppose that a portfolio is conslmcted by taking 
equal portions of 11 of these assets; that is, WI 1/11 for each i The overall tate of 
return of this portfolio is 

The mean value of this is F 
variance is 

I " -I>, 
11 i=1 

Ill, which is independent of 11 The corresponding 

, 
0"-

/I 

where we have used the fact that the indrvrdual returns are unconelated The variance 
decreases rapidly as 11 increases, as shown in Figure 67(a), This chart shows the 
variance as a function of 11, the number of assets (when (]"2 1) Note that considerable 
improvement is obtained by rncluding about six ullcorrelated assets 

The situation is somewhat ditferent [t the returns of the available assets are Corre­
lated As a simple example suppose again that each asset has a rate of return with mean 
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(a) Uncorrelated assets (b) Correlated assets 
FIGURE 6,7 Effecls of diversification" If <Isseis are uncorrelaled, the vari<lnce of a ponfolio can be made very small 
If asselS ore posilively correl<lted, there is likely to be a lovver limit 10 Jhl:' v.:HiJnce {hJt can be achieved 

111 and variance (]"2, but now each return pail has a covariance of cov(Ji, 1 j) 30-2 

for j oF j Again we f01m a portfolio by taking equal portions 01 11 of these assets In 
this case, 

var(/) 

I I' , ') ~ \110"- + 3(11- - ll)(r 

(r , ( + 30-' I 
11 

This result is shown in Figure 6 7(b) (where again (]"2 I) In thrs case it is impossible 
to 1 educe the variance below 30-2 , no mattel how large 11 is made 

This analysis of diversification is somewhat elude, tor we have assumed that 
all expected rates of return are equal In genclal, diversification may reduce the overall 
expected return while reducing the variance Most people do not want to sacrifice 
much expected relUrn tor a small decrease in vmiance, so blind divel sification, without 
an understanding of its inftuenL'C on both the rnean and the variance of return, is 
not necellSUi ily desirable This is the motivation behind the general mean-variance 
approach developed by Mmkowitz It makes the trade-oft's between mean and variance 
explicit 
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Nevertheless, there is an important lesson to be leamed hom this simple analysis 
Namely, if rctll1ns are uncoHelated, it is possible through diversification to reduce 
pOlltolio variance essentially to zelO by laking 11 large Convelsely, if returns are 
positively correlated, it is more difficult to reduce variunce, and there may be a lower 
Hmit to what can be achieved 

Diagram of a Portfolio 

Suppose that two assets are represented on a mean-standard deviation diagram These 
two assets can be combined, according to some weights, to form a porttolio-a new 
asset The mean value and the standard deviation of the rale of retum of this new 
asset can be calculated hom the mean, vmhlnces, and covariances of the returns of the 
original assets However, since covatiances are not shown on the diaglam, the exact 
location of the point representing the new asset cannot be determined from the location 
on the diagram of the original two asset~ There are many possibilitie~, depending on 
the covmiance 01 these asset returns 

We analyze the possibilities as follows We begin with two tlssets as indicated in 
Figure 6,8 We then deline a whole family of porttolios by intlOdueing the vmiable ct, 

which defines weights as WI I-a and w::! a Thus as a varies from 0 to I, the port~ 
folio goes from one that contains only asset I to one that contains a mixture of assets 
1 and 2, and then to one that contains only asset 2, Values of a outside the range 0 ~ 
a ~ I make one 01 the other of the weights negative, conesponding to short selling 

As a varies, the new pottfolios trace out a curve that includes assets I and 2 
This curve will look something like the curved ~hape shown in Figure 68, but its 
exact shape depends on 0"12, The solid pOltion 01 the curve corresponds to positive 
combinations of the two assets; the dashed portion corresponds to the shot ting of one 
01 them (the one at the opposite end of the solid cU1ve) It can be shown in fact that the 
solid portinn of the curve must lie within the shaded region shown in the figure; that is, 
it must lie within a triangultl[ region defined by the vertice~ I, 2, and a point A on the 

a 

FIGURE 6.0 Combinations of two assets When two 
<lssets <Ire combined in various combinations, Ihe result­
ing portfo!ios sweep out <I curve between Ihe points rep-
resenting Ihe origina! <Isseis This curve musl lie in the 
shaded Irlilngul<lr region shown 
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vertical axis We state this property formally, but it is not essential that you absorb the 
details at first reading It is only necessary to understand the general shape of the curve 

Portfolio diagram lemma The [ml'e ill 011 r-(J' diagwl1/ defined bv llOl111egatille 1111x­
(we.') oj two oBet\ I and 2Iie\" within the l1iol1gu/QI legion defined bv the two original 
QHeH ond the point all the I!ell;cal ax;\' of height A (rla2 + r2(Jl)/(CJl + 0"2) 

Proof: The rate 01 return of the portfolio defined by a is I (a) (I - a)IJ + 

a, 2 The mean value of this return is 

r(a) 0 aWJ + ar, 

This says that the mean value is bel ween the otiginal means, in direct pro­
portion to the proportions of the assets In a 50-50 mix, tor example, the new 
mean will be midway between the otiginal means 

Let us compute the standard deviation of the portfolio We have, from 
the general tormula ot the previous section, 

O"(a) 

Using the definition of the cOrT'elation coefficient p 0"12/(0"10"2), this equa-
tion c,ln be written 

O"(a) 

This is quite a messy expression However, we can determine its bounds We 
know that p can range ovel -I ~ p ~ I Using p I we find the upper 
bound 

O"(a)' )(I-a)20"f +2a(l-a)0"10"2 +a20"5 

)[(1 - a)O"J +aozf 

(I a)O"I +aO", 

Using p - I we likewise obtain the lower bound 

O"(a), )(1- a)20"f - 2a(l -a)0"10"2 +a20"] 

)[0 - a)O"J - a0"2J' 

1(1 a)O"J aO",1 

Notice that the upper bound explession is lineal in a, just like the ex­
pression to! the mean If we use these two linear expressions, we deduce that 
both the mean and the standutd deviation moVe plOportionally to a between 
their values at a a and a I, provided that p I TI1is implies that as a 
valies from a to I, the portfolio point will trace out a straight line between 
the two points This is the dilect line bet ween I and 2 indicated in the figure 

TIle lower bound expression is neatly linear as well, except tor the 
absolute-value sign When a is small, the term inside the absolute-value sign 
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is positive, So we C<J11 replace that leHll by (I - a)al - aa2 This lenmins 
positive until [i 0"1/(0"1 +0"2) After that it reverses sign, and so the absolute 
va1ue becomes CW"2 - (I a)al The reveuwl occurs at the point A given 
by the explession in the proposition statement The two linear expressions, 
togethel with the lin em expression to! the mean, imply that the lowel bound 
traces out the kinked line shown in Figure 68 We conclude that the curve 
traced out by the portfolio points must lie within the shaded region; and (01 

an intermediate value of p, it looks like the CUI ve shown I 

6.5 THE fEASIBLE SET 

Suppose now that thele are 11 basic assets We can plot them as point~ on the mean­
standard deviation diagram Next imagine forming portfolios from these 11 assets, using 
every possible weighting scheme Hence thele are portfolios consisting ot each of the 
11 assets alone, combinations of two assets, combinations of three, and so fOlth, all 
the way to arbitrary combinations of all 11 These porttolios arc made by letting the 
weighting coefficients w, range over all possible combinations such that L:~l WI I 

, The set of points that cOllespond to portfolios is called the feasible set or feasible 
['egion. The feasible set satisfies two impOitant properties 

L If there are at feast three assets (not perfectly cOll'elated and with different means), 
the feasible set will be a solid two-dimensional region 

Figure 69 shows why the region will be solid There arc three basic assets: 
I, 2, and 3 We know that any two assets define a (curved) line between them as 
combination porttolios are fonned The three lines between the possible thlee pairs 
are shown in Figure 69 Now if a combination of, say, assets 2 and 3 is formed 
to produce asset 4, this can he combined with I to form a line connecting I and 4 
As 4 is moved between 2 and 3, the line between I and 4 traces out a solid region 

a 

FIGURE ().9 Three points form il re~ 
gion Cornbin<ltiolls of assets 1 alld :I 
sweep out il curve belween lhem Com­
bin<ltion oi one of these assets, such 
as 4, together with <lsset I SWeeps oul 
<lnother curve The fi.1Il1ily of all these 
curves forms a solid rc~iof1 
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a a 

(a) (b) 

FIGURE fdO Feasible regionc The fe<lsible region is the set of all points representing portfolios made from n origina! 
assets Two such regions can be defined: (a) no shorting ilnd (b) shorting allowed 

2. The feasible region is convex to the left 
This means that given any two points in the region, the stlaighllinc connecting 

them does not cross the left boundary of the feasible set This follows from the lact 
that all portfolios (with positive weights) made tram two assets lie on or to the left 
of the line connecting them A typreal feasible region is shown in FigUlC 6 lO(a) 

ThcIC are two natUlul, but alternative, definitiom of the feasible region, corre­
sponding to whethel shOlt selling of as};ets is allowed or not <.IlIowed The two general 
conclusions ubout the shape of the legion hold in either case However, in general 
the fensible legion defined with short selling allowed will contain the legion defined 
without shOlt selling, as shown in FigUle 6 lO(b) (In general, the leftmost edges of 
the.se two regions may pmthllly coincide-unlike the case shown in Figure 6 10) 

The Minimum-Variance Set and the Efficient Frontier 

The left boundmy of a fcusible set is culled the minimum-variance set, since for any 
value of the mcan late oiletUIn, the ieusible point with the llmullest variance (or stan­
dmd deviution) is the corresponding left boundaty point The minimum-variance set 
has a chumcteristic bullet shape, Ul-i shown in Figure 6 11 (0) There is a special point on 
this set having minimum variance It is termed the minimum-variance point (MVP) 

Suppose that an investor's choice of portfolio is restricted to the feasible points 
on a given horizontu1 line in the r-a plane All portfolios on this line have the same 
mean rate of return, but diffelent standard deviations (01 variunces) Mm>t investors 
will prefer the portfolio cOlrespol1ding to the leftmost point on the line; that is, the 
point with the l-il11allest standmd deviution for the given mean An investor who agrees 
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(a) Minimum-variance set (bl Efficient frontier 

FIGURE 1).11 Special sets. The minimum-variance set has a characteristic bullet shape The minimum·variance poinl 
is the point with lowest possihle VariilnCe The efficient frontier is the upper portion of the minimum-variance sel 

with this viewpoint is said to be risk averse, since he or she seeks to minimize risk 
(as measured by standard deviation) An investor who would select a point other than 
the one 01 minimum standald deviation is said to be risl{ preferring. We direct OUi 
analysis to risk~averse investors who, accordingly, preler to minimize the standard 
deviation Such investors are interested in points on the minimum-variance set 

We can turn the argument around 90 deglees and considel portfolios correspond~ 
ing to the various points on a vertical line; that is, the portfolios with a fixed standard 
deviation and various mean values Most investors will prefer the highest point on such 
a line In other words, they would select the portfolio of the largest mean 101 a given 
level of standard deviation This property ol investors is termed nonsatiation, which 
reHects the idea that, everything else being equal, investors always want more money; 
hence they wnnt the highest possible expected return for a given standard deviation 

These arguments imply that only the up pel part ot the minil11l1m~vaJiance set 
will be of interest to investors who are risk aVerse and satisfy nonsatiation This upper 
portion of the minimum-variance set is termed the efficient frontier of the feasible 
region It is illustrated in Figure 6 II(b) These are the clocient pOitiolios, in the 
sense that they provide the best mean-variance combinations for most investors We 
can there{OIe limit our investigation to this frontier The next section explains how to 
calculate points on this frontiel 

6.6 THE MARKOWITZ MODEL 

We are now in a position to {ollTIulate a mathematical problem that leads to minimum~ 
variance portfolios Again assume that there are II assets The mean (or expected) 
rates of retUin ,lie rl,r1, ,rl/ and the covariances are a'j' 101 i, j ::::= 1,1, ,11 

A portfolio is defined by a set ot II weights lV" i 1,1, ,11, that SlIl11 to 1 (We 
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allow negative weights, corresponding to short selling) To find a minimum-variance 
portfolio, we fix the mean value at some arbitrary value r Then we find the feasible 
portfolio of minimum variance that has this mean Hence we formulate the problem 

" 
minimize ! L w/lVJaij 

I j=1 

" 
subject to L wlr/ ::::= r 

;=1 

The factor of { in front of the variance is for convenience only It makes the finnl 
form of the cq~attons neater 

The Markowitz problem provides the foundation for single-period investment 
theory The problem explicitly addresses the trade-off between expected rate of return 
and variance of the rate of return in l.l pOltfolio Once the Markowitz problem is for­
mulated, it can be solved numerically to obtain a specific numerical solution It is also 
useful to solve the problem analytically because some strong additional conclusions 
are obtained from the analytic solution, However, as we move to the next chapter, the 
Markowitz problem is used mainly when a risk-free asset as well as risky assets are 
available The existence of a risk-free asset greatly simplifies the nature of the feasible 
set and also simplifies the analytic solution 

Solution of the Markowitz Problem* 

We can find the conditions for a solution to this problem using Lagrange multipliers 
A and f1- We form I the Lagrangian 

" 5 L llJiWja1j 

I j=1 

We then diffelentiate the Lagrangian with respect to each variable Wi and set this 
derivative to zero 

The diffelentiation may be a bit difficult if this type ot struclUle is unfamiliar to 
you Therefore we shall do it for the two-val iable case, aCter which it will be easy to 
gener<Jlize to 11 vmiables FOI two vaJinblcs, 

lin gener"l, Ihe Lagrangian is formed by l'lrst converting each consmrrnt to one willI >l ".era righi-hand 
side Then each len-hand side is multiplied by lis lagrange multiplier and subtracled lrom the objective 
function In OUl prohlem. ).. and II arc the mullipliers for the Ilr~t and second cOAstraints. respectively (Sec 
Appendix B) 
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Hence, 

8L 

aw, 
aL 

Using the fact that an a21 and setting these derivatives to zero, we obtain 

<1~WI +a11tLJ1 Arl f1 0 

a'll WI + aiw'2 )..;:2 /1 0 

This gives uS two equations, In addition, there are the two equations of the constraints, 
so we have a total of four equations These can be solved:? for the four unknowns WI, 

W1, A, and 11 
The generul form for 11 variables now can be written by obvious genelalization 

We state the conditions here: 

Equatiolls fot efficient set The 11 pOIt/olio weigbH Wi /'01 i I. 2, ,11 and t/le 
two LaglGIIge JIlultipliel!J ).. lind f1 [01 all efficient pOll folio (with $/101 t !Jelling allowed) 
halling mean rate oj I etulll r 'lOti!.!), 

" 
La/jWj-Ari f1 0 fori 1,2, ,II 

j=l 

" LWirl = r 
1"-'1 

(6 Sa) 

(6.5/J) 

(65c) 

We have II equations in (6 Sa), plus the lwo equations of the constraints (65b) 
and (6 5c), lot a total 0111 + 2 equations Cottespondingly, there are II + 2 unknowns: 
the WI'S, A, and f1 The solution to these equations will produce the weights for an 
efficient portfolio with mean r Notice that all 11 + 2 equations are linem, So they can 
be solved with linear algebra methods 

Example 6,9 (Three uncorrelated assets) Suppose lher e are three uncorrelated as­
sets Each has variance I, and the mean values are I, 2, and 3, respectively Thele is 

2The case of two :lssets is actually degenerate because the two unknowns WI and 1IJ,2 arc uniquely deter­
mined by the two constraints. The degeneracy (usually) diS.lppealS when there :Ire three or more asscts 
Nevertheless, the equutions oblllined for the two-:lsset case foreshadoW the pallem of the COlTcsponding 
equations for II assets 
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a bit of simplicity and symmetry in this situation, which makes it relatively easy to 
find an explicit s~lutio~ ? 

We have aj ai = aj = I and al2 a23 = an 0 Thus (6.5a-c) become 

WI -J.,. fl- O 

W2 - L).. fl- O 

w) -3A-fl- O 

WI +2W2+ 3W3 I-

lVl +lV2+w3 

The top three equations can be solved for WI, W]. and IV3 and substituted into the 
bottom two equations This leads to 

141. + 6fl- = I-
61. + 3fl-

These two equations can be solved to yield A cr/2) - I and fl- 2t - I- Then 

WI } - (1-/2) 

W2 = t 
w) (1-/2) - ~ 

The standard deviation at the solution is J wT + w~ + w~, which by direct sub$titution 
gives 

(66) 

The minimum-variance point is, by symmetry, at I- = 2, with a .J3j.3 
58 The teasible region is the region bounded by the bullet~shaped curVe shown in 

Figure 6 12 
The roregoing analysis assumes that shorting at assetS is allowed If shorting is 

not allowed, the feasible set will be smaller, as discussed in the next subsection 

Nonnegativity Constraints* 

In the p/eceding derivation, the signs ot the Wi variables were not restricted, which 
meant that short selling was "liowed We can prohibit short selling by restricting 
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FIGURE Ii 12 Three-asset example, The feasible region with 
shorting contains the feasible region without shorting The out­
side curve is the minimum-variance set with shorting allowed 
The short curved lines are portfolios made up of two of the 
assets at il time 

each Wi to be nonnegative This Je<Jds to the following alternative statement of the 
Markowitz problem: 

" 
minimize i L al)wjw} (67a) 

i ]=1 

" 
sub,ject to Lr,w/ r (67b) 

i=1 

" LW, (67<) 
i=1 

w,?:. 0 lor i I, 2, ,II (67d) 

This problem cannot be reduced to the solution of a set of linear equations It is termed 
a quadratic program, since the objective is quadratic and the constrnints are lineal 
equalities and inequalities Special computer programs are tlvailable for solving such 
problems, but small to moderate-sized plOblems of this type can be solved readily with 
spreadsheet programs In the financial indusLIy there are a multitude of special-purpose 
programs designed to solve this problem fOl hundreds 01 even thousands of assets 

A significant ditlerence between the two tormulntions is that when short selling 
is allowed, most, if not ail, of the optimal Wi'S have nonzero values (either positive 
or negative), so essentially all assets are used, By contrast, when short .selling is not 
allowed, typically many weights are equal to zero 

Example 6.10 (The three uncorrelated assets) Consider again the assets of Exam­
ple 6 9, but with shorting not allowed Efficient points must solve I'1Oble111 (6 7{1) with 



162 Chapter 6 MEAN-VARIANCE PORTFOLIO THEORY 

the parameters of the earliet example, In this case the problem cannot be leduced to a 
system of equations, but by considering combinations of pnirs of assets, the efficient 
frontier can be found The general solution is as follows: 

w, 

w) o 

a )2r' - 6r + 5 

6.7 THE TWO-fUND THEOREM* 

r 
2 

-, r-
2i', + 2" 

o 

)2,.' - tor + t3 

The minimum-variance set has an important property that greatly simplifies its com­
putation Recall that points in this set satisfy the system of 11 + 2 tinear equations 
rEqs (6 Sa-e)l, which is repeated here: 

" 
LaiJlVj )...;:1 fl 0 (or i 1,2, ,II (68a) 
)=1 

" 
LID/FI i' (68/J) 
i=1 

" I>; (68e) 
i=1 

Suppose that there are two known solutions, Wi (wi, wi. , WI~)' )...1, /1 1 and 
w2 (wf.1/)5, , w~), )...2, /1 2, with expected rates of return pI and ;:2, respectively 
Let us form a combination by multiplying the first by a and the second by (l a) 
By direct substitution, we see that the result is also a solution to the 11 + 2 equations, 
corresponding to the expected value apl + (l a )p2 To check this in detaif, notice 
that awl + (l -a )w' is " legitimate portfoHo with weights that sum to l; hence (6 8d 
is satisfied Next notice that the expected return is in fact arl + (l -ali',; hence (6 8b) 
is satisfied for that value Finaify, notice that since both solutions make the left side 
of (6 8a) equal to zero, their combination does also; hence (6 8a) is satisfied This 
implies that the combination portfofio awl + (l a)w2 is also a solution; that IS, it 
also represents <J point in the minimum-variance set This simple result is usuaHy quite 
surprising to most people on their tlrst exposure to the subject, but it highlights an 
important property of the minitllum-variance set 
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To use this result, suppose Wi and \\,2 me two dIfferent portfolios in the l11inimum~ 
variance set Then as [i varies over -co < [i < co, the portfolios defined by 
[i\V i + (1 a)w2 sweep out the entire minimum-variance set We can, ot course, 
.elect the two original solutions to be efficient (that is, on the upper portion of the 
minimum-variance set), and these will generate <Jlf other efficient points (as well as 
all other points in the minimum-variance set) This resufl is often stated in n form that 
has operational significance tor investors: 

The two~flllld theorem Twa eflicie1l1 flllub (poI1Jolio.\) call be e.\lab!i.~hed.w that all\' 
effidem p01tfolia call be dllplicated, ill tel1m oj meall alld vllIiam .. e, {lj {l combination 
oj tltese two III olbel WOlds, all illve.HOI.S .\eeking efficient fJOItfolio\' /leed Oil/V illveH 
ill combillatioll5 oj these tWo fllnds 

This result has dramatic implicc1tions According to the two-fund theorem, two 
mutual funds3 could provide H complete investment service for everyone There would 
be no need for anyone to purchase individual stocks sepatately; they could just pur­
chase shares in the mutual funds This conclusion, however, is bc1sed on the assumption 
that everyone cares only about mean and variance; that everyone has the same nssess­
ment of the means, variances, and co variances; and that a single-period ftamewOlk 
is appropriate All of these assumptions are quite tenuous Nevettheless, if you are 
an investor without the time 01 inclination to make careful assessments, you might 
choose to find two funds managed by people whose assessments you tlUSt, and invest 
in those two funds, 

The two-fund theOlem also has implications for computation In order to solve 
(6 Sa-c) for all values of r it is only necessary to find two solutions and then fOim 
combinations of those two A particularly simple way to specify two solutions is to 
specity values at A and I"' Convenient choices are (a) A = 0, f1- = I and (b) A = l, 
f1 = ° In either of these solutions the constraint L:1

.=1 Wi = I may be violated, but 
this can be remedied later by normalizing all wi's by H common scale factor The 
solution obtained by choice (a) ignores the constraint on the expected mean rate oj 
return; hence this is the minimum-variance point The overall procedure is illustrated 
in the following example 

Example 6.11 (A securities portfolio) The information concerning the I-year co­
variances and mean values of the rates ot return on five securities is shown in the top 
pmt ot Table 62, The mean values are expressed on a percentage basis, whereas the 
co variances are expressed in units of (percent)::! /100 Fat example, the first security 
has an expected rate of return of IS 1%= . f 51 and a variance ot return of ,023, which 
twnslates into a standard deviation of "J023 = 152 = 152% per yeO! 

J A mUlual fund is an investmenl company that act:'cpts invcstmcnl capital trom individuab .md reinvc,'>ll> 
thut capital in U diversity of individual stocks Each individual h entiI\ed to his or her proportionule share 
of the rund s portfolio value. less ccrlain operating fees and cOl1l1nissions 
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TABLE .,2 
A Securities Portfolio 

Security Covariance V 

I 230 93 62 74 - 23 
2 93 140 22 56 26 
3 62 22 1 80 78 27 
4 74 56 78 340 - 56 
5 - 23 26 -27 - 56 

v' v' w' w' 

141 .3 652 088 158 
401 3583 251 155 
452 7248 282 314 
166 874 104 038 
440 7706 275 334 

Meun 14413 15202 

Variance 625 659 

SId dev 791 812 

The (o\'(JricU!C/!~ alld 111('(11/ rat/!I oj retum are 
~holl'I{Jotfi\'e ~eClllitie~ Thl! portfolio w' is lIn' 
lIlillillll/111-Variallce paim. a1ld w2 iI anOTher c/w 

Jidt'/If pOf tJolio meuh' flom t!rele fiv/! I(!CIlri'tk'\ 

260 

15 I 
125 
147 
902 

17 68 

We shall nnd two funds in the minimum-variance set First we set).. = 0 nnd 
fl = I in (6 5) We thus solve the system of equations 

5 

Lajjv) = I 
j=d 

tor the vector VI = (v:' v~, ,vJ) This solution can be found using a spreadsheet 
package that solves linear equations The coefficients of the equation are those of the 
covariance matrix, nnd the right-hand sides are all l's The resulting vf's are listed in 

the first column of the boltom part of Table 6 2 as components of the vector vi 

Next we normalize the v}'s so that they sum to I, obtaining w}'s as 

1 __ V_/_ 
Wi - "£}=1 v) 

The vector WI = (wI. W5, , w~) defines the minimum-variance point. 
Second we set fl = 0 and !-. = I We thus solve the system of equations 

5 

Lajjv]=ri' i = 1,2, ,5 
j=-l 
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for a solution v2 = (uT, v~, ,v~) Again we normalize the resulting vector v:? 
so its components sum to I, to obtain w2 The vectors VI, v2, WI, w2 ale shown 
in the bottom part of Table 62 Also shown are the means, variances, and standard 
deviations conesponding to the portfolios defined by Wi and w2 All efficient pOltfoiios 
are combinations of these two 

6.8 INCLUSION OF A RISK-FREE ASSET 

In the previous lew sections we have implicitly assumed that the 11 assets available 
are all risky; that is, they each have a > 0 A risI{~f['ee asset has a retUi n that 
is deterministic (that is, known with celtainty) and therefore has a = 0 In other 
words, a fisk-free asset is a pure interest-bearing instlUlTIcnt; its inclusion in a portfolio 
corresponds to lending or bOllowing cash at the lisk-tree rate Lending (such as the 
purchase of a bond) corresponds to the risk-free asset having a positive weight, whereas 
borrowing corresponds lo its having a negative weight 

The inclusion of a risk-free asset in the list of possible assets is necessUlY to 
obtain realism Investors invariably have the opportunity to bOrTOW or lend Fortu­
nately, as we shall see shortly, inclusion of a risk-free assel introduces a mathematical 
degeneracy that greatly simplifies the shape ot the efficient frontier 

To explain the degeneracy condition, suppose that there is a risk-tree asset with 
a (determinislic) rate of relurn If Consider any other risky asset with rate of return I, 
having mean r and variance a:2 Note that the covariance ot these two retulns must 
be zem This is because the covariance is defined to be E[ (I 1')(1 J I J) 1 Dc 

Now suppose that these two assets arc combined to form a portfolio using a 
weight ot a for the risk-free asset and i-a fOi the risky asset, with a :s i The mcan 
rate of return of this pOitfoiio will be al J + (I a)rc The standard deviation of the 

return will be /(1 - a):2a:2 = (l a)a This is because the risk-flee asset has no 
variance and no covaliance with the Jisky asset The only term left in the tOIlTIula is 
that due to the risky assct 

If we define, just tOi the moment, a; = 0, we see that the portlolio late of 
retUln has 

rnean = al; + (I a)r 

standmd deviation aaJ + (I ala 

These equalions show that bOlh the mean and the standard deviation of the portfolio 
vary linemly with a This means that as a valies, the point representing the portfolio 
tlUces out a straight line in the r-a plane 

Suppose now that there are 11 risky assets wilh known mean rates of letlll n r, 
and known covariances ail In addition, there is a risk-free asset with rate ot !etUIn If 
The inclusion ot the risk-free asset in the list of available assets has a plOfound eitect 
on the shape of the feasible legion The reason 1'01 this is shown in Figure 6 l3(a) 
FilSt we constlUct the ordinary feasible region, defined by the II lisky asset" (This 
region may be either the one constructed with shOJ ting allowed or the one constructed 
without shOlling) This legion is shown as the dmkly shaded region in the figure Nexl, 
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(a) (b) 

fiGURE 6.13 Effecl of a risk-free asset. Inclusion of il risk-free ilsset adds lines \0 the feasible region (a) If both 
borrowing and lending are allowed, il complete infinite triangular region is obtained (b) If only lending is allowed, 
the region will have a triangular front end, but will curve for larger cr 

tor each assel (or porlfolio) in this I'egion we form combinalions with the risk-free 
assel In forming these combinalions we allow bOlTowing or lending of the risk-free 
asset, but only pUlchase of the risky asset These new combinalions trace oul lhe 
infinite straight line originating at the risk-free point, passing through the risky asset, 
and conlinuing indefinilely There is a line of lhis lype fOl every assel in the original 
feasible set The totality 01 these lines forms a tliangularly shaped feasible legion, 
indicated by the light shading in the figure 

This is a beautiful result The feasible region is an infinite lriangle whenever a 
risk-free assel is included in the universe of available asselS 

If bOlfowing of the risk-Iree asset is not allowed (no shorting 01 this asset), we 
can adjoin only the finile line segmenls belween the risk-free assel ,;md poinls in lhe 
original feasible region We cannol ex lend lhese lines further, since this would entail 
bonowing of the risk-flee assel The inclusion of lhese finile line segments leads to 
a new feasible region with a slraight-line if'Ont edge bUl a lounded top, as shown in 
Figure 6 13(b) 

6.9 THE ONE-FUND THEOREM 

When risk-free borrowing and lending me available, the efficient set consists of a single 
straight line, which is the top of the triangular feasible region This line is tangent 
to the original feasible set of risky assets (See Figure 6 14) Tilere will be a point 
F in the original feasible set that is on the line segment defining the overall efficient 
set It is clem lhat Wl)' efficienl point (any point on the line) can be expressed as a 
combination of this asset and the risk-free asset We obtain different efficient points by 
changing the weighting between these two (including negative weights of the risk-free 
asset to bonow money in order to leverage the buying of the risky asset) The portfolio 
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fiGURE 6.14 One-fund lheorem When bOlh 
borrowing <1nd lending al the risk-free rate are 
allowed, there is <l unique fund F of ris!,y (lss(;'ls 
tnat is efficient All points on the efficient frontier 
are combinations of F and the risk-free <IsseI 

represented by the tangent point can be thought of as a fund made up 01 assets and 
sold as a unit The JOle of this fund is sUnll11aIized by the tollowing statement: 

The olle-fund theol'em Thel e iJ a .\iugle fillld F oj I i.\k" CBsets .Well tltat all\' efliciellf 
pOItfolio [{Ill be £.01l5tl1/{.ted {n a £.omhiuatioll oj the {uud F amI the li\k-.flee mset 

This is a final conclusion of mean-variance portfolio theory, and this conclusion 
is the launch point for the next chapter It is fine to stop reading here, and (aiter doing 
some exercises) to go on to the next chapter But if you want to see how to calculate 
the special efficient point F, read the specialized subsection that follows 

Solution Methocl* 

How can we find the tangent point thal represents the efficient fund? We just chaHlctel­
ize that poinl in tel ms of an optimizalion pJOblem Given a point in the feasible region, 
we dlaw a line between the Iisk-free asset and that point We denote the angle belween 
that line and the horizontal axis by e For any feasible (risky) portfolio p, we have 

tane 

The langent portfolio is the 1ea~ible poinl that maximizes f) OJ, equivalently, maxi­
mizes tan e It llll ns out that this problem can be reduced to the solution 01 a syslem 
01 linear equations 

To develop the solution, suppose, as usual, that thele are J1 risky assets We 
assign weights w], w'!, • IV" to the Jisky assets such that E/=l W, I There is 
zero weight on the risk-free asset in the tangent fund (Note that we are allowing short 

selling among the risky assels ) FOI 'II L::'=I W,'" we have rp E;'=l W,T; and 
'} E;·'=l w,lf Thus, 

tane 
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It should be clear thut multiplication of all W; 's by a constant will not change the 
expression, since the constant will cancel Hence it is not necessary lo impose the 
constraint L:~~I W, 1 here 

We then set the derivative of tane with respect to each IJJI.; equal to zero This 
leads (see Exercise 10) to the following equations: 

" 
LUkiAWi TI.:. 1/, k 1,2, ,II (69) 
f,:,d 

where A is an (unknown) constant Making the substitution v, AWi fOi each i, (69) 
becomes 

" LUki tJ , Tk If, k 1,2, ,II (6.10) 
i=1 

We solve these linear equations to! the V, '5 and then normalize to determine the Wi'S; 

that is, 

W, 

Example 6.12 (Three uncorrelated assets) We consider again Example 69, where 
the three risky assets were unconelated and each had variance equal to I The three 
mean rates of return were fl I, f2 2, and f3 3 We assume in addition that 
there is a lisk-free asset with late 1 f 5 

We apply (69), which is very simple in this case because the covaliance, are 
all zero, to find 

VI 

V, 2 15 

2.5 

We then normalize these values by dividing by theil sum, 45, and find 

I 
9' W] 

Example 6.13 (A larger portfolio) Consider the five risky assets of Example 6 II 
Assume also that there is a risk-free asset wilh If 10% We can easily find the 
special fu nd F 

We note that the system of equations (6 10) is identical to those used to find Vi 

and v' in Example 6 I J, but with a different right-hand side Actually the right-hand 
side is a linear combination of those used for VI and v2; namely, Tk-l f 1 Xh-l f x 1. 
Therefore the solution to (6.10) is v v' -I 'Iv I Thus (using I flO to be consistent 
with the units used in the earlier example), v (2242, 427,2728, 786,3306) 
We normalize this to obtain the finallesult w (317, 060, .386, 111,468) 

Basically, we have used the fact that pOitfolio F is a combination of two known 
efficient points 
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6.10 SUMMARY 

The study ot one-period inveslment situations is based on asset and porlfolio returns 
Both total returns and rates of retUi11 ale used The return of an asset may be uncerlain, 
in which case it is uscfullo consider it fOlmally as a random vmiable The plObabilislic 
propeJties 01 such 1f1l1dom relurns can be summarized by their expected values, lheil 
variances, and theil covariances with each othel 

A portfolio is defined by allocating hactions of initial wealth to individual assets 
The fractions (or weights) must sum to I; but some of these weights may be negative 
if short selling is allowed The return of a portfolio is the weighted sum of the returns 
of its individual assets, with the weights being those that define the pOitiolio The 
expected return of the portfolio is, likewise, equal to the weighted average of the 
expected returns ot the individual assets The variance of the portfolio is detellnined 
by a more complicated formula: a 2 L:;J J=l WiWjai j, where the w,'s are the weights 
and the aU'S are the covariances 

From a given collection of 11 risky assets, thele results a set of possible portfolios 
made from all possible weights or the 11 individual assets It the mean and the stundard 
deviation of these portfolios are plotted on a diagram with vertical axis r (the mean) 
and horizontal axis a (the standm'd deviation), the legion so obtained is called the 
feasible region Two alternative feasible regions are defined: one allowing shOiting of 
assets and one not all owing shm ting 

It can be argued that investors who measure the value of a portfolio in terIllS of 
its mean and its standard deviation, who are risk avelse, and who have the nonsntiation 
property will select pOitrolios on the upper left-hand portion of the feasible region-the 
efficient Irontier 

Points on the efficient hontiel can be chmacterized by an optimization problem 
originally formulated by Markowitz This problem seeks the portfolio weights tilat 
minimize variance for a given vahle ot mean return Mathematically, this is a problem 
with a quadratic objective and two linear constraints It shorting is allowed (so that 
lhe weighls may be negalive as well as positive), the optimal weights can be found by 
solving a system of II + 2 linear equations and II + 2 unknowns Otherwise if sholling is 
not allowed, the Markowitz problem can be solved by special quadratic programming 
packages 

An important propetty of the Matkowitz problem, when shorting is allowed, is 
that if two solulions are known, then any weighted combinalion ot these two solutions 
is also a solution I his leads to the fundamenlal two-tund theorem: inveslors seeking 
efficient pOitiolios need only invest in two master efficient fHnds 

Usually it is appropriHte to assume that, in addition to II risky assels, there 
is available a risk-free assel with fixed rale of return If The inclusion of such 
an aSset gteatly simplifies the shape of the feasible region, transforming the up­
per boundary into a straight line This line is the efficient frontier The straight­
line hontiel touches the original feasible legion (the legion defined by the lisky 
assets only) at a single point F This leads to the important one-fund theorem: in­
vestors seeking efficient pOitfolios need only invest in one master fund of risky assets 
and in the lisk-free asset Different investOis may prefer diflelenl combinations of 
lhese two 
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EXERCISES 

IAJUM 

The single efficient fund of risky assets F can be found by solving a system of 
11 linear equalions and 11 unknowns When the solution to this system is normaltzed 
so that its components sum to 1, the resulting components <lIe the weights of the risky 
assets in the master fund 

1. (Shorting with margin) Suppose Ihm to shoH a stock you are required to deposit an 
amount equallo the initial price ;\"(1 of the stock At the end of I year the slock price is X'r 
and you liquidate your position You receive your profil from shorting equal 10 X'D X'r 
and you recover your original deposit If R is the IOtal return 01" the slock, what is the lOlal 
return on your shon? 

2. (Dice producl) Two dice are rolled and the two resuiling values are muiliplied together to 
fonn the quantity.:: What are the expected value and the variance of the random variable 
::;1 [Him Use the independence of the two separate dice] 

3. (Two correlated assets) The correlation p between assets A and B is 1, and other data 
are given in Table 63 [Note p aAIl/(a"oh) ] 

TABLE 6.3 
Two Correlated Cases 

Asset 

A 100% 15% 
B 180% 30% 

(a) Find the proportions 0' of A and (I - 0') of B that denne a portfolio of A and B having 
minimum standard deviation 

(b) What is the value of this minimum standard deviation? 
(c) What is the expected return of this portfolio? 

4. (Two stocks) Two stocks are available The corresponding expected rates of return are fl 
and f2; the corresponding variances and covariances are a"f, ai, and Ul2 What percentages 
of total investment should be investeu in each of the two stocks to minimize the total 
variance of the rate of return of the resulting portfolio? What is the mean rute of return of 
this portfolio 1 

5. (Rain insurance) Gavin Jones's friend is planning to invest $ I million in a rock concert 
to be held I year from noW The friend figures that he will obtain $3 million revenue from 
his $1 million investment-unless, my goodness, it rains If it rains, he will lose his entire 
investment There is a 50% chance that it will rain the day of the concert Gavin suggests 
that he buy rain insurance He can buy one unit of insurance for $ 50, and this unit pays 
$1 if it rains and nothing if it does not He may pUlchase as many units llS he wishes. up 

to $3 million 
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(a) What is the expected Hlte of return on his investment if he buys /I units of insurunce'! 
(The cost of insurance is in addition to his $1 million investment) 

(b) What number of units will minimize the variance of his return? What is this minimum 
vulue? And what is the corresponding expected mte of return'? [Hint Before calculating 
a gencmi expression for variance, think about a simple answer] 

6. (Wild cats) Suppose there are fI llsscts which are uncorrelated (They might be fl different 
"wild cat" oil well prospects) You may invest in <my one, or in any combination of them 
The mean rate of return r is the same for each asset, but the vmiances are different The 
return on asset i has a variance of a/- for ii, 2, ,1/ 

(a) Show the situation on an r-(J diagrnm Describe the efficient set 
(b) Find the minimum·variance point Express yOUi result in terms ot 

" I ( )-' 
+.;;:;;; 

7. (Markowitz tun) There nrejust three assets with rates of return 'J, 1:;, and fJ, respectively 
The covarillnce matrix and the expected rates of return are 

v [~ ~ ~], 
o I 2 

(a) Find the minirnum"vuriance portfolio [Hint By symmetry WJ W3 ] 

(b) Find .mother etficient portfolio by setting A I, J1 0 
(c.) If the risk-free Jate is If 1, find the efficient portfolio of risky assets 

8. (Tracking) Suppose th;lt it is impractical to use all the assets that are incorporated into 
a specified portfolio (such us a given efficient porttolio) One alternative is to find the 
portfolio, made up 01 a given set of n stocks, that tracks the specified porttolio most 
closely-in the sense of minimizing the variance of the difference in returns 

Specifically, suppose that the target portfolio hus (r.'lndom) rate of return 1/1/ Suppose 
that there are II assets with (random) rates of return 1 J, r:;, , r ll We wish to find the 
portfolio rate of return 

O'J1J +0':;1:;+ +O'nlll 

(with L:;I""J 0'1 I) minimizing V<lf(I 1 AI) 

(0) Find a set ot equations (or the ai's 
(b) Although this porUolio tracks the desired portlolio most closely in terms of varitmce, 

it may sacrifice the mean Hence a logical approach is to minimize the variance of 
the tracking error subject to achieving a given meun return As the mean is varied, 
this results in a family of porttolios thnt arc efficient in u new sense-say, tracking 
efficient Find the equation for the 0'1' s that tire tracking efficient 

9. (Betting Wheel) Consider a general betting wheel with 11 segments The pnyoft for a $1 
bet on a segment i is AI Suppose you bet an amount 8 1 1/ AI on segment i for each 
i Show thnt the amount you win is independent ot the outcome of the wheel What is the 
risk~free rate of return for the wheel? Apply this to the wheel in EXtlmple 6 7 
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THE CAPITAL ASSET 
PRICING MODEL 

T
wo main problem types dominate the discipline ot investment science The first 
is lO determine the best COUlSC ot action in an investmenl situation Problems 
of this type include how to devise the best pOltfolio, how to devise the optimal 

strategy 101 managing an investment, how to select from a group of pOlential invesl­
menl projecls, and so forlh Several examples of such pwblems were trealed in Part I 
ot lhis book The second type of problem is to determine the correct, arbitrage-flee. 
fair. or equilibrium price of an asset We saw examples 01 this in Part I as well, such 
us the formula tor the correct price of a bond in lerms of the lerm Slruclure of inleresl 
tales, and the fmmula for the appropriale value of a firm 

This chapler concentrates mainly on the pricing issue, It deduces the COIf eel 
price of a risky asset within the framewOfk of the mean-variance selting The result is 
the capital asset pricing model (CAPM) developed primarily by Sharpe, Lintner, amI 
Mossin, which follows logically trom the Markowitz mean-variance portfolio theory 
described in the previous chapter Laler in this chapter we discuss how lhis result can 
be nppJied lo investment decision problems 

7.1 MARKET EQUILIBRIUM 

Suppose lhal everyone is a mean-variance optimizer us described in the previous 
chapter Suppose further lhat everyone agrees on the probabilistic structure ot asselS; 
lhal is, everyone assigns lo the returns of assels the same mean values, the same 
variances, and the same covariances FUIlhennOle, assume that there is a unique risk­
free rale of borrowing and lending lhal is available lo all, and that lhere are no 
transactions costs With these assumptions what will happen? 

From the one-fund lheorem we know that everyone will purchase a single fund ot 
risky assets, and lhey may, in addition, bOITOW Of lend at the fisk-tree rate Furthermore, 
since everyone uses the same means, variances, and covariances, everyone will use thc 
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same Iisky fund The mix of these two assets, the risky fund and the risk-free asset, 
will likely vary across individuals Llccording lo their individual lasles for risk, Some 
will seek to avoid fisk and will, accordingly. have a high percentage of the risk-free 
asset in their portfolios; olhers, who are mOre aggressive, will have a high percentage 
of the risky rund However, every individual will fOlITI a portfolio that is a mix of the 
risk-free asset and the single, risky olle (fmd Hence the O1te !;md in the them em is 
really the 0111), {tlltd that is used 

If everyone purchases the same fund 01 risky assets, what must that fund be? 
The Ull,Swel to lhis que~tion is the key insight underlying the CAPM A bil of renec­
tion reveals that the answel is that this lund must equal the marI{et portfolio. The 
mmkel POllfolio is the summalion of all assets In the W01ld ot equity securities, it 
is the totality of shares 01 IBM, OM, DIS, and so 100th If everyone buys just one 
tund, and their pUlchases add up lo the market, then that one fund must be the market 
as well; lhat is, it musl conlain shllles ot every stock in proportion to that stock's 
represenlation in the enthe mmkel 

An assel's weight in a porttolio is defined as the proporlion of porlfolio capital 
lhal is allocated to lhat asset Hence the weight of an llssel in the market poltfolio 
is equal to the proportion of that asset's lotal capital value lo the lotal market cap­
ital value These weights are termed capitalization weights. It is lhese weighls thal 
we usually denote by Wi In olher \VOIds, the WI'S ot the market porlfolio are lhe 
capitalizalion weighls ot the assels 

The exact definition of the mmket ponfolio is illustrated as follows Suppose 
there are only thlee stocks in the matket: Jazz, Inc, Classical, Inc, uno Rock, Inc 
Their oUlstanding shares and prices are shown in Table 7 L The market weighls ate 
PlopOitional lo the lotal market capitalizalion, not to the number of shares 

In the silualion where everyone follows the mean-variance methodology with 
lhe same eSlimales of parameters, we know lhal the efficient fund of risky assels will 
be the markel p01tfolio Hence undel these nssumplions there is no need 1'01 us to 
formulate the mean-variance problem, to eSlimale the underlying parameters, or lo 
solve the system 01 equations that define the optimal portfolio We know that the 
optimal portfolio will turn out to be the market portlolio 

TABLE 7.1 
Marl<et Capitalization Weights 

Security 

Jazz, Inc 
CJassiclll, Inc 
Rock. Inc 

Total 

Shares 
outstanding 

10,000 
30,000 
40,000 

80,000 

Relative shares 
in market 

118 
3/8 
1/2 

Price 

$600 
$400 
$550 

Capitalization 

$60,000 
$120,000 
$220,000 

$400,000 

Weight in 
marl{et 

3/20 
3110 
11120 

The flL'/U'lItrlg!' of\lu/r/?1 of (/ \tot-k 1/1 Ihe IIl11/ke! portfolIO il (/ Ihme-lI'eiglUl!d 1)1 OpOl tiOlI of (ottll 
I/WI1!\ TIlde Ih'/H'IItOg/!1 Ole nOl till! 11/(11/.:(.'1 florlfoUo wl'ightl The //Iarket portfolio weight of a 
\tOt-/': il PIOPOltiOl/(/llo wpirali::alioll H till' plit-I! of WI /1\'\('1 dUlIIgl!\ III/! Iflwl' !)l0J101tio/l\ d() 
I/ot t-hallge. hilt Ih/! t-apitali::a/[oll w6gflfl' do {.!JlllIge 
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How does this happen? How Can it be that we solve the problem even without 
knowing the required data? The answer rs based on an equilibrium at gumenl It 
everyone else (or at least a large number of people) solves the problem, we do not 
need to Il works Hke lhis: The return on <.111 assel depends on both ilS inilial price 
and its final price The other inveslors solve the menn-varrunce porltolio problem 
using lheir common eSlimates, and they place orders in the markel to acquire lheir 
pOIlfolios If the mders placed do nOl1l1alch whal rs available, the pIkes mUSl change 
The prices of assels under heavy demand wlll increase; the prices of assets under 
Hght demand will decrease These price changes affecl the eSlimates oj assel returns 
directly, and hence rnveslms will recalculale lheir optimal porlfolios This process 
conlinues unlil demand exaclly malches supply; lhal is, il conlinues unlH there is 
equilibrium 

In the ideaHzed world, where every investor is a mean-variance inveslOf and 
all have the same estimales, everyone buys the same pOilfolio, and lhal musl be 
equal lo the markel porlfoHo In olher words, prices adjusllo drive the markello ef­
ficiency Then afler olher people have made the adjuslments, we can be sure that 
lhe efficient POflfoHo is the markel pOftfoHo, ~o we need nol make any calcula­
lions 

This theory 01 equilibrium is usually applied to assets that are traded repeatedly 
ovel lime, such as the Slock markel In this case il is argued thal individuals adjusl 
their relurn eSlimates slowly, and only make a series of minol adjuslments lo their 
calculalions ralher than solving the entire portfoHo optimizalion problem alone lime 

Finally, in such equilibrium models it is argued that the appropriate equilibrium 
need be calculated by only a few devoted (and energetic) individuals They move 
prices around lo the proper value, and other investors follow their lead by purchasing 
the market portfolio 

These argumenls aboul the equilibrium process all have a degree of plausibililY, 
and all have weaknesses, Deeper analysis can be carried oUl, but for our pm poses we 
will merely consider thal equilibrium occurs Hence the ultimate conclusion of the 
mean-variance approach is lhat the olle jillld must be the markel pOltfolio 

7.2 THE CAPITAL MARKET LINE 

Given the preceding conclusion that the single efficient fund of risky assels is the 
markel pOitfolio, we can label this fund on the r-a diagram with an M for !!Imkef 
The efficient sel theretore consists of a single slraight line, emanaling from the risk­
free point and passing lhrough the market portfolio This line, shown in Figure 7 I, is 
called the capital market line. 

This line shows the relalion belween the expecled rate of relurn and the risk 
of relurn (as measured by the standard deviation) for efficient assets Of ponfolios of 
assets It is also referred to as a pricing line, since prices should adjust so that efficienl 
assets fall on this line 

The line has greal intuilive appeal It states that as risk increases, the correspond­
ing expected rate of retUlTI must also increase Furthermore, this lelationship can be 
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FIGURE 7 1 Capital market line, Efficient ns~ 
sets must all lie on the line determined by the 
risk~free rate and the market portfolio 

described by a straight line if risk is measured by standard devialion In malhemalical 
terms the capital markel line slales lhal 

(7 I) 

where fM and aM are the expecled value and the standard devialion of the markel rale 
of lelurn and P and a arc the expecled value and the slandrud devialion of the rate of 
relurn of an arbilrary efficienl assel 

The slope of the capital mmkct line is K = (PM '1)/aM, and this value is 
lrequently called the price of risk. It tells by how much the expected rate of return 
oj a porlfolio must increase if the slandald deviation of thal rale increases by one 

unit 

Example 7.1 (The impatient investor) Mr Smith is young and impatient He notes 
that the risk-free rate is only 6% and the market portfolio of risky aSsets has an 
expecled return of 12% and a slandard deviation of 15% He figures thal it would lake 
about 60 yem, fOl his $ 1,00000 nest egg to increase to $1 million it it earned the 
market rate of [etUln He can't wait that long, He wants that $1 million in 10 years 

Mr. Smilh easily delelmines that he must allaln an average rate of return of 
about 100% per year to achieve his goal (since $1,000 x 210 = $1,048,000) Corre­
spondingly, his yearly slandard devialion according lo the capilal markel line would 
be the value of a satisfying 

12 06 
10= 06+---a 

,15 

or a = 10 This cones ponds lO a = l,OOOO/O So lhis young man is ceIlainly nol 
guatanleed success (even if he could borrow the amounl required lo move far beyond 
the market on the capitol market line) 
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Example 7.2 (An oil venture) Consider an oil drilling venture fhe price of a share 
of this venture is $875 It is expected to yield the equivalent of $1,000 after I yem, 
but due LO high uncertainly aboul how much oil is at the drilling sile, the slllndard 
deviation of the return is a :::;:; 40% Currenlly the tisk-hee rale is lO% T'he expecled 
rate of return on the markel porlfolio is 17%. and the slandard deviation of this rale 
is 12% 

Lel us see how lhis venlure compares wilh assels on the capital market line 
Given the level of a, the expected rate of return predicted by the capital market line is 

.17 - 10 
10+-U 40 33% 

However, the actual expected late of return is only r = 1,000/875 - I = 14% There­
fore the point representing the oil venture lies well below the capital market line (This 
does l10t mean that the venture is necessruily a poor one, as we shall see laler, but il 
certainly does not, by itself, constitute an efficient portfolio) 

7.3 THE PRICING MODEL 

[3] ...••. [=zJ 

The capilal market line relales the expecled rate of relUln of an efficienl portfolio Lo 
ils standard deviation, but it does nol show how the expecled lale of return of an 
individual asset relales lo its individual risk This relation is expressed by the capilal 
asset pricing model 

We slale this m~ior lesull as a theorem The reader may wish merely to glance 
over the proof at first reading since il is a bit involved We shall discuss the implications 
of the result following the proof 

rile capi/al asset pricillg model (CAPM) 
expeLled /etllll/ Tj oj aI/V (l.\.\et i _wti~fie.\ 

If tire f/J(lIket pO/frolio !VI i.1 efficient, tire 

(72) 

(73) 

Proof: For any a consider the porlfolio consisling of a porlion a invested 
in asset i and a porlion I - a invesled in the markel porlfolio M (We allow 
a < 0, which corresponds to borrowing at the risk-free tale) The expecled 
rale 01 relUlll of lhis porlfolio is 

To = aT/ + (l-a)f.u 

and the slandard devialion of the lale of relurn is 

a(i = (a 2a? + 2a(1 - a)a/M + (I - a)2alf JI
/
2 

As a varies, lhese values llnce oUl a curve in the r-a diagram, as shown in 
Figure 7 2 In particular,,, = 0 corresponds to the market pOltlolio!VI This 
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FIGURE 7.2 Portfolio curve" The f<lmily of 
portfolios traces out n curve on the diagram This 
curve cannot cross the capital market line, nnd 
hence must be },mgent to that line 

curve cannot cross the capilal market line If il did, the porlfolio corresponding 
to a point above the capilal markel line would violale the very definition of 
the capital market line as being the efficient boundary of the feasible seL 
Hence as a passes lhrough zero, the curve musl be tang-e;i'-lo the capital 
markclline at M, This langency is the condition lhal we exploit to dellve the 
formula 

The langency condilion can be ltanslated inlo the condition that the 
slope of the curve is equal to the slope of the capital market line at the point 
M To set up this condition we need Lo calculale a few deIivalives 

First we have 

Thus, 

We then use the relalion 
dru dru/da 
-=---

Lo oblain 

dr. I 
daa (J"dl 

This slope must equal the slope of the capital market line Hence, 

Vi - "Pi\!)~M "Pi\! - Tf 

aIM-a;! ai\! 

We now just solve for "Pi. oblaining the final result 

_ (rM -'f) _ r/=If+ --2- ali\!=lf+{JI(r,u-1f) 
aM 

This is cleady equivalent to the stated formula I 
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T'he value fJl is 1 eteHed Lo as the beta of an assel When the asset is fixed in a 
discussion, we of len JUSl wrile bela without a subscripl-fJ An assel's beta is all thal 
need be known about the asset's risk chmaclerislics Lo use the CAPM formula 

The value ri - If is termed the expected excess ('ate of return 01 asset i; it 
is the amounl by which the rate of relurn is expecled Lo exceed the risk-free rate 
Likewise, rM - If is the expecled excess rale of relurn of the market porlfolio In 
terms 01 these expected excess rates of return, the CAPM says that the expected 
excess tate of return of an asset is proporlional Lo the expecled excess rate of return 
of the market portfolio, and the ptopOltionality factor is fJ So with If taken as a base 
point, the expecled returns of a parlicular asset and oj the markel above thal base are 
propOltional 

An alternative interpretation 01 the CAPM formula is based on the lactthat fJ is 
a normalized version of the covariance of the asset with the market portfolio Hence 
lhe CAPM formula slates that the expecled excess late of lelum ot an asset is directly 
proportionallo ils covruiance wilh the markel Il is this covariance that determines lhe 
expecled excess lale ot retUln 

To gain insighl inlo lhis result, let us consider some exlleme cases Suppose, 
lilSt, that the asset is completely /lIICOII elated with the market; that is, fJ = 0 Then, 
according to the CAPM, we have r If This is perhaps at first sight a surprising 
result It states that even it the asset is very risky (with huge a), the expected rate at 
lelurn will be that 01 the risk-free asset-lhere is no premium for lisk The reason tOl 
lhis is thal the tisk associated wilh an asset that is unconelaled with the market can 
be diversified away If we had many such assels, ench uncorrelated wilh the others 
and with the market, we could purchase small amounts 01 each of them, and the 
resulling lOlal variance would be small Since the final composile I elurn would have 
small variance, the corresponding expecled rale of relurn should be dose lo If 

Even more eXlreme is an assel wilh a negalive value of fJ In lhal case r < If; 

lhal is, even lhough the assel may have very high risk (as measured by ils a), ils 
expecled rale ot lelurn should be even less lhan the risk-tree rale The reason is lhal 
.such an <Issel reduce" the overall ponJolio risk when il is combined wilh the markel 
Inveslors are lheretore willing lo accepllhe lower expecled value Jor lhis risk-reducing 
pOlential Such assels provide a torm ot insurance They do well when everYlhing else 
does poorly 

The CAPM changes our concepl of the risk oj an assel from lhal ot a LO lhal 
01 fJ Il is slill lrue lhal, overall, we measure the risk oj a porlfolio in lerms of a, bUl 
lhis does nol lranSlale inlo a concetn for the a'S of individual assels For lhose, lhe 
propel measure is lheir fJ's 

Example 7.3 (A simple calculation) We illustrate how simple it is to use the CAPM 
formula lo calculale an expecled tale ot relurn, Lel the tisk-free rale be If = 8% 
Suppose the tale ot reluIn ot the markel has an expecled value ot 12% and a slandard 
devialion ot 15% 

Now consider an assellhal has covariance 01 045 wilh the markel Then we find 
fJ = 045/( 15)2 = 2 0 The expected retmn 01 the asset is r = 08+2 x ( 12- 08) = 
16= 16% 
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Betas of Common Stocks 

The concepl oj bela is well eSlablished in the financial communilY, and it is referred Lo 
frequenlly in lechnical discussions aboul parlicular slocks Bela values rue eSlimaled 
by various financial service organizalions Typically, lhese eSlimales me formed by 
using a record 01 past stock values (usually about 6 or 18 months of weekly values) and 
compuling, from the dala, avelage values of relurns, prodUCls of relurns, and squares 
of relurns in order Lo approximale expecled relurns, covariances, and vmiances The 
bela values So oblained dlifl around somewhal oVer lime, bUl unless lhere me draSlic 
changes in a company's siLUalion, ils bela lends to be relalively slable, 

Table 71 liSlS some well-known U S companies and lheir corresponding bela 
(fJ) and volatility (a) values as estimated at a parlicular date Try scanning the list 
and see if the values given supporl your inluilive impression of the company's markel 

TARLE n 
Some U S, Compa1lies: Their Hetns and Sigmas 

Ticker sym Company name Beta Volatility 

KO Coea-Cola Co I 19 189'0 
DIS Disney Produclions 113 21% 
EK Eastman Kodak I 43 34% 
XON Exxon Corp 67 18% 
OE Gencral Electric CO I 26 15% 

OM Gcneral MOlOrs Corp 81 19% 
OS Gillelle Co 109 21% 
HWP Hewlell-Paekard Co I 65 21% 
BIA Holiday Inns Ine 156 39% 
KM K-Man Corp 82 20% 

LK Loekheed Corp J 02 43% 
MCD MeDonalds Corp I 56 21% 
MRK Melek & Co 94 10% 
MMM Minnes-otu Mining & MIg 100 17% 
ICP Penny J Cine 122 20% 

MO Phillip Morris ltH~ 87 119'0 
PO Procter & Gamble 70 14% 
SA Saleway Stores Inc 71 149'0 
S Sears Roebuck & Co 104 19% 
SD Swndard Oil 01 Calif 85 24% 

SYN Syntex Corp I 18 31% 
TXN Texas Ins-trumenIs I '16 2)l;b 
X US Slee! COIP 103 26% 
UNP Union Paciik Corp 65 18% 
ZE Zenith Radio COlP 201 32% 

Soun:e: DfJi/.\'!lfll/liJ ~1O(t. D/JIII!/! Gllu/(' WiUiam 0 Neil & Co. Inc. Lo;, 
Angcb. Decemher 7 1979 Reprinted with pcnllissiOll Ilf Daily Graphs. 
PO Box 66919 tll\ AngclL'\ CA 90066 
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properties Generally speaking, we expecl agglessive companies Of highly leveraged 
companies La have high belas, whereas conservalive companies whose pertmmance 
is unrelaled Lo the genernl 111m kel behavim ale expecled La have low belas Also, we 
expecl lhal companies in the same business will have similar, bUl nol idenlical, bela 
values Compare, tor inslance, JC Penny wilh Sears Roebuck, Of Exxon with Slandrnd 
Oil of Calilomia 

Beta of a Portfolio 

Il is easy Lo calculale the over all bela 01 a pOiltolio in lei ms of the bews of lhe 
individual asselS in the porlfolio Suppose, Jm example, lhal a ponfoJio conlains II 

asselS with the weights WI, W::!, , WIJ The rale of leLUm of the pOftfotio is I 

L~J=I Wj'j Hence COV(/,',\/) L:J=I WI CQV(/j,/A/) Il tollows immedintely thal 

fJp tWifJi (74) 
i=1 

In other WOlds, the pmttolio bela is jusl the weighled average of the belas 01 lhe 
individu~l ~ssets in the pOl tfoJio, wilh the weighls being idenlical to lhose lhal definc 
the portfolio 

7.4 THE SECURITY MARKET LINE 

The CAPM formul~ can be explessec! in graphical tonn by legmding the tor mula as ~ 
linear lclalionship This relaliollship is lermed the security market line. Two versions 
are shown in Figwe 73 

BOlh graphs show the linea! varialioll of r The JiISl expresses il in covmiance 
torm, wilh COV(/, '/11) bcing the hOlizonlal axis The markel pOltfolio COl responds lo 
lhe point aJf on lhis axis The sccond graph shows the relalion in bela tOi m, wilh bela 
being the hOlizontal axis In this case the lTImket conesponds to the point fJ = I 

Both 01 these lines highlight the essence of the CAPM formula Under the 
equilibrium conditions assumed by the CAPM, any asset should lall on the secUlity 
m~rket line 

The securilY markelline expresses the risk-reward Sll ueturc of asselS according 
to the CAPM, and empha,c;izes lhat the risk of an assel is a tUl]clion 01 ilS covariance 
wilh the market or, equivalenlly, a funclion ot ils bela 

Systematic Risk 

The CAPM implies a speci~1 structwal pIOperty for the rclUln of an a.c;sel, and this 
property provides turther insighl as lo why beta is the mosl imporlanl measure 01 risk 
To develop lhis resull we wrile the (randol11) rale ot return of assel i as 

I, = 1 f + fJ, (I M If) + B; (75) 
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FIGURE 7.3 Security market line. The expech:;:d rale of relurn increases linearly as lhe covariance with lhe markel 
increases or, equivalenlly, as fJ increases 

This is jusl an arbilralY equalion al this point The random variable Ei is chosen Lo 
make il lrue However, the CAPM tor mula tells us several things aboul £1 

First, taking the expected value of (75), the CAPM says that E(E,) = 0, Sec­
ond, taking the correlation of (7.5) with I'M (and using the definition of (3i), we find 
cov(£/, aM) 0 We can therefore write 

al f3ta~f +var(£i) 

and we see that at is the sum ot two parts The first part, f31aXr' is lermed the 
systematic risk. This is the risk associated with the market as a whole This risk cannot 
be reduced by diversificalion because every assel wilh nonzero bela conl'!i~s ~is risk 
The second paIl, var(£i), is termed the nonsystematic, idiosyncratic, or specific risk. 
This Iisk is uncOlrelaled with the markel and can be reduced by diversification Il is 
lhe syslemalic (or nondiversifiable) risk, measured by beta, that is mosl impollanl, 
since il direclly combines wilh the syslemalic risk of other assets 

Consider an assel on the capital markel line' wilh a value of {J The standard 
deviation of lhis assel is {JaM Il has only syslemalic risk; there is no nonsystemalic 
risk This asset has an expected rate of retum equnl to r = If + {J(rM - I f) Now 
consider a whole group of other assets, all wilh the same value of {J According lo 
CAPM, these all have the same expecled rate of lelurn, equal to f However, if these 
assels carry nonsyslematic risk, lhey will nol fall on the capital markelline. Indeed, as 
lhe nonsyslematic risk increases, the poinls on the f~a plane represenling lhese assels 
drift lo the righl, as f.;hown in Figure 74 The hOI izonlal distance of a poinl from the 
capital market line is lherefore a measure of the nonsyslematic risk 

IOf course. 10 be cXllelly on Ihe line, Ihe <lssCI musl be equivalenllo a combinalioll of Ihe murkcl ponfolio 
am] the risk-free asset 



7 S INVESTMENT IMPLICATIONS 183 

Assels with 

FIGURE 7A Systematic and nonsys· 
tematic risk An asset on the capilal mar­
kel linc has only syslemaUc risk Assets 
with nonsyslemalic risk fall Lo lhe lighl 
of lhe capilal markelline 

!vi nonsyslenlatic risk 

--~~--
Asset wilh syslematic risk only 

7.S INVESTMENT IMPLICATIONS 

The question of intelest tor the inveSlOl is: Can the CAPM help with investment 
decisions? Thele is nol a simple answer Lo lhis question 

The CAPM states (or assumes), based on an equilibrium argument, that the 
solution to the Markowitz problem is that the mmket portfolio is the Ol1e fillld (and 
01111' flllld) of risky assets that anyone need hold This fund is supplemented only 
by the risk-free asset The inveslmenl recoml11endntion lhat follows this argumenl 
is that an investor should simply purchase the mmket portfolio That is, ideally, an 
investor should purchase a liltle btl 01 every assellhat is available, with the plOpOltions 
delermined by the relative amounlS that are issued in the mmkel as a whole It lhe 
world ot equity seculilies is taken as the set of available assets, then each person 
should plllchasc some shares in every available sLOck, in proporlion lo the stocks' 
monelary share of lhc lOlUI of all slocks outstanding It is nol necessary lo go lo the 
llOuble 01 analyzing individual issues and compuling a Markowilz solution Just buy 
the market porl/olio 

Since il would be rather cumbersome tor an individual lo assemble the market 
porllolio, mUlual funds have bcen designed lo malch the markel portfolio closely 
These tunds are lermed index funds, since lhey usually atlempl to duplicule the port­
folio 01 " major stock market index, such as the Stalldmd & POOl', 500 (S&P 500), 
an average of 500 stocks that as a group is lhoughl lo bc represenlative of the markel 
a~ t1 whole Olher indices usc even largel numbers ot slocks A CAPM purisl (llml 
is, one who lully accepts the CAPM theOlY as applied to publicly traded securities) 
could jusl plllchase one ot these index funds (lo serve as the aile faud) as well as 
Some lisk-Cree seculilics Stich as US TreasUlY bills 

Some people believe that they can do bettel than blindly purchasing the mUlket 
pOllfoJio The CAPM, ancr all, assumes lhal evcryone has idenlical inlormalion aboul 
the (uncerlain) reltllns ot all assels Clearly, lhis is not the case If SOmeone believes 
lhul he 01 she possesses superiOl intormalion, lhen presumubly lhul person could form 
a pOll(olio lhal would Otllpeltorm the markel We relurn lo lhis issue in tbe neXl 
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chapler, where questions concerning dala and informalion are explicitly addressed It 
is shown lhere lhal it if; nol al all easy to obtain accurate data for use in a Markowilz 
model, and hence the solulion computed from such a model is likely Lo be somewhat 
nonsensical For now we jusl slate lhnl the best designs seem Lo be those formulaled as 
devialions or eXlensions of the basic CAPM idea, rather than as bold new beginnings 
In olher wOlds, in conslrucling a portfolio, one plObably should begin with the mUlket 
pOltfolio and alteT it systematically, lather than attempting to solve the full Markowitz 
problem from scratch 

One area where the CAPM approach has direct application is in the analysis of 
assets that do not have well-established mmket plices In this case the CAPM can be 
used Lo find U leawnable price An imporlanl duss' of problems of lhis type arc the 
plOjecl evaluulion problems (varialions of capilal budgeling problems) lhal arise in 
jirms This applicalion is considered explicitly in Section 7 8 

7.6 PERFORMANCE EVALUATION 

The CAPM lheory can be used lo evaluate the performance of an inveslmenl portfolio, 
and indeed il is now common practice lo evaluale muny inslitulional pOllfolios (such 
os pension funds and mutual fund,) using the CAPM framework We ,hall present 
lhe main ideas by going lhrough a simple hypolhelical example, The plimary purpose 
of this section, however, is to use these performance measU]e ideas lo illustrnte lhe 
CAPM 

Example 7.4 (ABC fund analysis) The ABC mutual lund has the IO-year record 
01 rates 01 return shown in the column labeled ABC in Table 7.3 We would like to 
evaluale lhis fund's performance in terms oj mean-valiance pOllfolio lheory and lhe 
CAPM. Is il a good fund that we could recommend? Can il serve as the Ol1e ftmd for 
u pI udenl mean-variance inveslor? 

Step 1. We begin our analysis by computing the lhree quantities shown in Ta­
ble 7 3 below the given return dala: the average rale of retum, the slandatd deviation 
of the I ate as implied by the 10 samples, and the geometric mean rate of return These 
quanlilies are eSlimates based on the available dala 

In genel aI, given ," ii, 2, ,11, the avel age I ate of return is 

I " -2:>, 
11 i=1 

and lhis sel ves as an estimale of the true expected relurn r The aveluge variance i:;;2 

, ,- I " -2:), f.j' 
11 1 i=1 

2The reason IhM /I - I is useu in Ihe uenolllinillor in<;leau of 1/ i<; ulscusseu in Ihe nexl chapler 
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TABLE 7.3 
ABC Fund Performance 

Rate of return percentages 

Year ABC 

14 
10 

) 19 
4 -8 
5 23 
6 28 
7 20 
8 14 
9 -9 

10 19 

Avcmge 13 
Standard deviation 124 

GCOI11C tric mean 123 

Cov(ABC, S&P) 0107 
Beta 1 20375 

Jensen 0 00 I 04 
Shurpe 043577 

S&P 

12 
7 

20 
-2 
12 
23 
17 
20 
-5 
16 

12 
94 

116 

1 
000000 
046669 

T-bills 

7 
75 
77 
75 
85 

8 
73 

7 
75 

8 

76 
5 

76 

The tol' IW/ t oj the table ,\//011'\ the rate oj retllrn (/(/Jicl'cd 
by ABC 5&P 500 (/1/(/ T-/nl/I' OW.'I (I lO·ywr IJeriod The 
lower portioll I/WII'V the lelm!/l alld S/UlrpL' imliccl 

and the estimate .\ ot the SLandard deviation is the square root ot that It is also useful 
to calculate the geometric mean rate of return, which is 

This measures the actual rate ot return over the 11 years, accounting for compounding 
This value will generally be somewhat lower than the average rate of leturn 

Step 2. Next we obtain data on both the market pottfolio and the tisk-free tate 
of return over the 1()-year period We lise the Stallc/mc/ & POOl '.\ 500 stock average 
and the l-yeU! Treasuty bill tate, respectively These are shown in Table 73 We 
calculate average rates ot return and standard deviations of these by the same method 
as fOI ABC We also calculate an estimate of the covariance ot the ABC fund with 
the S&P 500 by using the estimate 

I " --I>, P)(I,\[, P,\/) 
11 I i:::::l 

We then calculate beta trom the standard formula, 

COV(I, ,,\/) 

vm(IM) 

This gives us enough infOlmation to cany out un interesting analysis 
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FIGURE 7.5 Performance indices for ABC The Jensen index measures !he heigh! above the security murket line; lhe 
Shmpe mUo measures the angle in the "i-a plane 

Step 3. (The Jensen index) We write the fOimul" 

r If=J+tJ(r.,I( If) 

This looks like the CAPM pricing tormula (72), except that we have replaced expected 
rates of return by measUled average returns (for that is the best that can be done in 
this situution), and we have udded an enOl term J The J here stands fO! Jensen's 
index. 

According to the CAPM, the value of J should be zero when true expected 
returns are used Hence J measures, approximately, how much the performunce of 
ABC has deviated from the theOletical value of zero. A positive value of .J presumably 
implies that the fund did bettel than the CAPM prediction (but of COUIse we recognize 
thut approximations are introduced by the use of a finite amount of data to estimate 
the important quantities) 

The Jensen index cun be indicuted on the security market line, as shown in 
FigUle 75(11) For ABC, we find that indeed J > 0, and hence we might conclude 
that ABC is an excellent fund But is this reully a correct inference? 

Aside from the difficulties illhelent in using short histories of data this way, the 
inference that ABC is a good mutual tund is not entirely warranted It is 1101 clear 
that it can serve as the one fund of lisky assets in an efficient portfolio The fact that 
J > 0 is nice, und may tell us that ABC is u good (/I)')et, but it does not say that the 
ABC fund is, by itself, efficient 3 

111 cUn be argued tlwt the Jensen index tells liS nOlhing. aboul Ihe fund. but instead is a measure of the 
vulidity 01 lite CAPM Ir the CAPM is valid. then every securilY (or !'und) must satisry the CAPM 10nnul1l 
exactly. since the fmmuln is an identilY if the markel portrolio is cflident. 11 ~ve find a security with a 
nonzero Jensen index, Ihen Ihat is a sig.n Ihat the market is not eflidel1l The CAPM fonnula is orten applied 
to (new) linanciul inslnlmen(!> or projecls that lire not traded ;ind hence not part 01 the market portfolio In 
this case, the Jensen index can be il lIseful mCilstlfC 
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Step 4. (The Shmpe index) In order to measule the etficiency of ABC we 
must see where it falls relative to the capital market line Only portfolios on that line 
ale efficient We do this by writing the formula 

r -I} Sa 

The value ot S is the slope of the line drawn between the risk-free point and the 
ABC poinl on the r-a diagram The S slUnds for Sharpe index. For ABC we find 
S = 43577 This muS! be compared wilh the corresponding value for the market­
represented by the S&P 500 We find the value tor the S&P 500 is S = 46669 The 
situation is shown in Figure 75(b) Clearly ABC is not efficient, at least as revealed 
by the available data 

We conclude Ihat ABC may be worth holding in a pOri folio By ilseif it is not 
quite efficient, so it would be necess,uy to supplement this fund with other assets 01 

funds to achieve efficiency Or, to attain efficiency, an investor could simply invest in 
a broad-based fund instead of the ABC fund 

7.7 CAPM AS A PRICING FORMULA 

The CAPM is a pricing model. However, Ihe slandard CAPM formula does not 
contain prices explicitly-only expected rates of return To see why the CAPM is 
called a pricing model we must go back to the definition ot return 

Suppose that an asset is purchased at price P and lalel sold at price Q The rale 
ot return is then 1= (Q - P)IP Hele P is known and Q ;s random Putting Ihis in 
the CAPM formula, we have 

P 
= If + {:J(rAi If) 

Solving for P we oblUin 

1+lf+{:J(r", If) 
P 

Q 

This gives the price of the asset accOlding 10 the CAPM We highlight this importanl 
result: 

Pricillg form oj Ilze CAPM T1!e pi ice P ~f a" (lI,Iel wilh pa"oJ! Q II 

P 
Q 

(76) 

wilele f3 is the beta oj tbe (l',.\et 

This pricing formula has a lorm that very nicely genelUlizes the lamilim dis­
counting formulH for detelininistic situations In the detelministic case, it is appropriate 
to discount Ihe future paymenl at the intereSI rate 'f, using a faCIO! of I I( I + If) In 
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the random case the appropriate intelest fute is 1 f + f3 (r AI -1 f), which can be regarded 
as a risk-adjusted interest rate 

Example 7.5 (The price is Tight) Guvin Jones is good at math, but his friends tell 
him that he doesn't alwnys see the big pictUle Right now, Gavin is thinking about 
investing in a mutual tund This fund invests 10% of its funds at the risk-free rate of 
7% and the remaining 90% in a widely diversified portfolio that closely approximates 
the market portfolio, which has an expected rate of return equal to f 5% One share or 
the mutual fund represents $100 of assets in the lund Having just studied the CAPM, 
Gavin wants to know how much such a share should cost 

Guvin figures out that the beta of the fund must be 90 The value of a shme 
after I year is expected to be 10 x 107+ 90 x I 15 11420 I-lence, according to 
(76), 

p 11420 
$100 

1.07 + 90 x 08 

Yes, the price of a share will be equal to the value of the funds it replesentS Gavin 
is reassured (but suspects he could huve figured that out mOTe simply) 

Example 7,6 (The oil venture) Considel again, as in Example 7 2, the possibility 
of investing in a share of a certain oil well that will produce 11 pay ott that is random 
because of the uncertainty t1ssociated with whether or not there is oil at that site and 
because of the uncertainty in future oil prices The expected payoff is $1,000 and the 
standard deviation of return is a relatively high 40% The beta of the asset is f:J 6, 
which is relatively low because, although the uncertainty in leturn due to oil prices 
is correlated with the market pOlttolio, the uncertainty associated with exploration is 
not The risk-tree rate is 1 f 10%, and the expected return on the market pOltfolio is 
17 What is the value of this share of the oil venture, based on CAPM? (Recall that 

earlier it was stated that the offered price wus $875 ) We have immediately 

p = -,--,--=---,-$-c'1 ',---OO--=O_-=:-
1.10 + 6( 17 - 10) 

and a does not enter the calculation 

$876 

The venture may be quite risky in the traditional sense ot having a high standmd 
deviation associated with its rctUIn But, nevertheless, it is fairly pIiced because of the 
relatively low beta 

Linearity of Pricing and the Certainty Equivalent Form 

We now discuss a very important property ot the pricing formula-namely, that it is 
linear. This means that the pr ice of the sum of two assets is the sum of their prices, 
and the price of a mUltiple ot an asset is the same multiple of the price This is really 
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quite stmtling because the formula does not look lineal at all (at least for sums) For 
example, if 

it does not seem obvious that 

I +I} +,!J1+2(r", -If) 

whele /31+2 is the beta of a new asset, which is the sum of assets I and 2 Fulthermore, 
based on OUI recognition that the covmiance between assets is important in assessing 
how to use them in <I portfolio, it may seem waemol/able that the pricing formula 
should be linear We can easily take care of the first doubt by converting the formula 
into another form, which appems linear; then we will discuss the intuition behind the 
result 

The form of the CAPM pricing formula that clearly displays linearity is called 
the certainty equivalent fo[,m. Suppose tiwt we lwve <In asset with plice P and final 
value Q Here again P is known and Q is uncertain Using the fact that I Q / PI, 
the value of beta [s 

This becomes 

,!J 
cov(Q, I,,) 

Pa~1 
Substituting this into the pricing formula (7c6) and dividing by P yields 

P(I + I f) + cov(Q, 1",)(1'" I f)/al l 

Finally, solving for P we obtain the following formula: 

Certaillty equil'alellt pricillg forllluia The pI ice P oj {m {(Het witlt j){(w?fi Q i\ 

P -1-[72 
1+1/ 

eov(Q, I ",)ei'", 
(77) 

Ihe term in brackets is called the certainty e(luivalent of Q This value is 
treated as a certain amount, and then the normal discount factor 1/(1 + I}) is applied 
to obtain P The certainty equivalent form shows clearly that the pricing rormulti is 
lineal because both tell11S in thc bHlckcts depend linearly on Q 

The reason tor linearity can be traced back to the principle of no albitItlge: if 
the price of the sum of two assets were not equal to the sum of the individual prices, 
it would be possible to make arbitrage plOfits For example, if the combination asset 
were priced lower than the sum of the individual prices, we could buy the combination 
(at the low price) and sell the individual pieces (at the higher price), thercby making" 
profit By doing this in large quantities, we could make arbitradly large profits It the 



190 Chapter 7 THE CAPITAL ASSET PRICING MODEL 

leVelSC situation held-it the combinntion asset were pticed higher than the sum of 
the two assets-we would buy the assets individually and sell the combination, again 
making arbitrage plofits Such ulbitJage oppoItunities me luled out if and only if the 
pI icing of tiS sets is Uneut This linearity of pricing is thelefore a fundnl11cntal tenet of 
financial theOlY (in the context of peltect mmkets), and we shall IetUIn to it fIequcntly 
throughout the text 

Example 7.7 (Gavin tries again) Gavin Jones decides to use the certainty equivalent 
form of the pricing equation to calculute the share price of the mutual fund considered 
in Example 7 5 In this case he notes that cov( Q, ''') 90al" where Q is the value 
of the fund after I year Hence, 

p 
11420 90 x 08 

107 

All is well ngain, according to his math 

7.8 PROJECT CHOICE* 

$100 

A film can use the CAPM as a basis fOl deciding which projects it should carry out 
Suppose, for example, that a potential project require, an initial outlay of P and will 
generate a net amount Q after I year As usual, P is known and Q is random, with 
expected value Q It is natural to define the net present value (NPY) of this project 
by the formula 

NPY -P+ , (7 8) 
a~1 

This formula is based on the certainty equivalent fotm of the CAPM: the first (negative) 
teliTI is the initial outlay and the second tetm is the certainty equivalent of the final 
payoff 

The film may lwve many dit'felent projects frOITI which it will select a tew 
What criterion should the fiBn employ in making its selection? Extending our knowl­
edge of the detellTIinistic case, it seems uppropriate fOI the firm to select the group 
of plojects thut maximize NPV Indeed this is the advice that is normally given to 
firm!i 

How would potential investOls view the situation? For them a pat ticular firm is 
only one of a whole gtOUp of firtllS in which they muy choose to invest Investors 
are concell1ed with the overall performance of their portfolios, and only incidentally 
with the internal dech;ions of a pm ticular firm If investors base their investment 
decisions on a mean-vmiance criterion, they want an individual fillll to operate so 
as to push the efficient h on tiel , of the entire universe of assets, as fm upward and 
leftward as possible This would improve the efficient trontiel and hence the perfor­
munce of n mean-valiance efficient portfolio Thelefore potential investors will llIge 
the manugement teams of firms to select projects thut will shift the efficient fron­
tier outwmd as tar us possible, then they will invest in the efficient portfolio, FOJ 
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firms to do this, they must account for the selections made by all other firms, lor 
it is the combined effect, accounting for interactions, that determines the efficient 
frontier 

The two criteria-net present value and maximum expansion of the eftlcient 
frontier-may, it seems, be in conflict The NPV criterion focuses on the fum itself; 
the eftlcient frontier criterion focuses on the joint effect of all firms But rcully, there 
is no conflict The two criteriil are essentially equivalent, as stated by the following 
version of the harmony theorem: 

Harmony theorem 
be expanded 

If (l finn doej 1101 11lari1llize NPV, lhen the efficient lionliel [all 

Proof: Suppose rum i is planning to operate in a manner that leads to a net 
present value of b. which does not maximize the net present value available 
The initial cost of the project is p;o Investors pay P; = p? + !; and plan 
to receive the reward QI, obtaining a rate of retulTI I, = (QI - Pd/P, We 
assume that firm i has a very small weight in' the market portfolio of risky 
assets and that projects have positive initial cost 

The current late of return 1/ satisfies the CAPM relation 

1', If = j:J;(rM -If) 

which as shown earlier is equivalent to 

Q -COV(Q,IM)(rM -If)/ITj;, o = - P, + =---=---"":":"-"'--'-'"-"'­
I +If 

Hence from the viewpoint of investors, the cUllent net present value is zero 
Suppose now that the firm could operate to increase the present value 

by using a project with cost p? and reward Q; Investors pay b. to buy the 
cOl11pany and pay the operating cost p?1 The total P/ = p? + b. satisfies 

cov(Q;, 'M )(rM 

I +If 

which, since P: > 0, implies that 

,; If -COV(/;,IM)(rM If)/(I~I > ° 
Now consider the porttolio with return 1 (X = 1/11 + eu; - f1I i where fi 

is the original weight of the firm i in the market portfolio This portfolio 
corresponds to dropping the old firm project and leplacing it by the same 
weight ot the new 

We want to show that this portfolio lies above the old efficient flontier 
To show this we evaluate 

for small fi > 0 Differentiation gives 

I dra 

(Ill' dfi 
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Using 

dra I = r; 1-1 
dO' 0'=0 

dUa I 
dO' 0'=0 

we find 

d tanea I 
dfi It=O 

1'1 r, T/II If (TMI' -aMi -- - --,-----
aM (TAl aM 

tJ;(ru -If)] > 0 

The final inequality tollows because the first bracketed term is positive and 
the second is zero Since fi is small this means that tan eo >- tan 80 Hence 
the efficient trontier is lurger than it was originally 9 

7.9 SUMMARY 

if everybody uses the mean-variance approach to investing, and if everybody hns the 
same estimates of the asset's expected leturns, variances. and covariances, then every­
body must invest in the same fund F oj risky us sets and in the risk-lree asset Because 
F is the same for everybody, it tollows that, in equilibrium, F must correspond to the 
market portfoliO M-the portfolio in which each asset is weighted by its proportion 
of total market capitalization This observation is the basis for the capital asset pricing 
model (CAPM) 

If the market portfolio M is the efficient portfolio of risky assets, it tollows 
that the efficient frontiel in the r-a diagram is 0 straight line that emanates from the 
lisk-free point ond passes through the point lepresenting M This line is the capitol 
market line Its slope is called the market pi ice of risk Any efficient portfolio must 
lie on this line 

The CAPM is delived directly from the condition that the market portfolio is 0 

point on the edge oj the feasible region that is tangent to the copital market line; in 
other wOJds, the CAPM expresses the tangency conditions in mathematical form The 
CAPM I esult states that the expected rote of return of any asset i satis fies 

r, 'i = tJ;(rM If) 

whelc /31 = COV{/I.//ld/a~1 is the beta of the asset 
The CAPM can be represented graphically as 0 secUi ity market line: the expected 

JUte of return of an asset is a stroight-line function oj its beta {OJ, alternatively, of its 
covariance with the market}; gleatel beta implies gleatel expected return Indeed, from 
the CAPM view it follows that the lisk of an asset is fully characterized by its beta 
It follows, for example, that an asset that is uncorrelated with the market (tJ = 0) will 
have an expected JUte of return equal to the risk-jree rate 

The beta of the mmket portfolio is by definition equol to I The betas of other 
stocks take othcr values, but the betas of most US stocks lange between 5 and 25 



EXERCISES 

EXERCISES 193 

The beta of a pOitfolio of stocks is equal to the weighted average of the betas of the 
individual a"ets that make up the pOJttolio 

One application of CAPM is to the evaluation of mutual fund performance The 
Jensen index measures the histOlical deviation of a fund from the secUJity market line 
(This measure has dubious value tOJ funds of publicly traded stocks, however) The 
Shmpe index measures the slope of the line joining the fund and the risk-tree asset 
on the r-a diagram, so that this slope can be compared with the market price of 
lisk 

The CAPM can be convelted to an explicit formula fOI the pi ice of on a~set 
.In the simple:-;t version, this fOllTIula states that plice is obtained by discounting the 
expected payoff, but the interest rute used fOJ discounting must be I} + fJ(f,\/ 'I)' 
where f3 is the beta ot the U:-i:'iet An aitemativc form expresses the price as a discounting 
of the certainty equivalent ot the payoff, and in this formula the discounting is based 
on the I isk-lree rate I I 

It is important to recognize that the pricing formula oj CAPM is linear, meaning 
that the price of u Sum ot assets is the sum of their prices, and the pi ice ot a multiple of 
an asset is that same multiple oj the basic price The certainty equivalent fOl mulation 
of the CAPM clearly exhibits this linear property 

The CAPM can be used to evaluate single-peliod pJOjects within firms Managels 
of films should maximize the net plesent value oj the firm, as calculated using the 
pricing form of the CAPM formula This policy will generate the greatest wealth for 
existing owners and provide the maximum expansion of the elticient hontfer for all 
mean-variance investors 

1. (Capilt\1 miJIket line) Assume Ihat Ihe expecred rate of relUrn on the market ponlolio is 
23% und the rme of return on T~bil!s (the risk~free rate) i11 7% The SIandurd deviation 01 
the market is 32% Assume thutlhe murkel ponlolio is elficient 

«(I) What is Ihe equution 01 Ihe capihd nJurkei line? 
(/;) (i) If an expected retUl n of 39)'(1 is desired, whut is the stlmdard deviation of rhis 

posilion? (it) II you have $1,000 to invest how should you alloc"\le il 10 achieve thl:: 
nbove position? 

«() If you inve~a $100 in the risk-free asset und $700 in rhe market portfolio, how nlUch 
money should yOIl expect 10 huve ut the end 01 Ihe year? 

2. (A sOlall world) Consider a world in which Ihere ure only two risky ussets, A and B. 
and a Iisk-Iree asset F The two lisky asseis are in eqmd supply in the market; Ihat is, 
tv! = ~(A + B) rhe lollowing infOlnHl,tion is known: '/, = 10, l1'~ = 04, a,\lI = 01, 
l1'h = 02. tlnd r,l/ = 18 

«(I) Find t\ geneHd expression (withoul substituting vulues) for l1'jl' flA ,Jnd f31l 
(b) According to the CAPM, wlUH are the numericul values 01 r,\ ufld r/l'1 

.J~ (Bounds on reI urns) Consider a universe 01 jusl three securities They huve expected 
lutes of return 01 10%. 20£;h. and 10% respectively 'Two portfolios urc known to lie 011 
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lhe minimum-variance set They {\Ie defined by the portfolio weights 

w = ~~], 
10 

80] 
"0 
40 

It is {llso known that the Illurkct portfolio is efficient 

(a) Given this information, what nre the minimum Ilnd maximum possible values for the 
expected rme 01 return on the murket ponfotio? 

(/J) Now suppose you are lOld that w represents the minimum-variance portfolio Docs 
this change your l\ns\Vcrs 10 purl (a)? 

4. (Quick CAPM derivalion) Delivc the CAPM formula for r~ -rf by using Equmion (69) 
in Chapler 6 lHil/J Note that 

~a,,1J), =oOV(r",,,)] 

Apply (69) bOlh to nS!'Iet k 1lnd to lhe ITIarket itself 

5. (Uncorrelated asselS) SUPPOI-lC Lhere are 1/ mulUally uncorrelatcd assets The return on 
1]sset i has variance a,2 The expecled rales of return are unspecified at Lhis point The loUJi 
amounl of assel i in the markel is KI We lel T = L:I::I KI and lhen set \"1 = KilT, for 
i = 1.1, .11 Henee the market portfolio in normalized form is x = (\"j,.t;!, ,xu) 
A;.;!'!ume there is a risk-free asset with Jate of return, f Find nn expression fOi f3J in terms 
of the XI '!'! and ai's 

6. (Simp leland) In Simpleland there arc only two risky stocks. A and B, whose det1Jils are 
listed in Table 7 4 

TABLE 7.4 
Details of Stocks A and B 

Number of shares 
outstanding 

Price Expected Standard deviation 
per share rate of return of return 

Slack A 
Stock B 

100 
150 

$150 
$200 

15('/0 
12% 

15% 
9% 

Furthelmore, lhe correl1Jlion coefficient between the returns ot stocks A and B is PAD = 3-
There is also a risk-free a.<;set, and Simpleland satisfies the CAPM exactly 

(a) What is the expected rate of return 01 lhe market portfolio? 
(b) Whal is the slandiJrd deviation or the market portfolio? 
«() What j;.; the bew of stock A? 

(d) WhLa is lhe risk-Iree rate in SimpleJand? 

7. (Zero~beta 1JsseL<;) Let \\'0 be the portfolio (weighls) of risky assets corresponding the 
minimum-variance point in lhe feasible legion Let WI be any other portfolio on lhe efficient 
frOnlieJ Dellne 'I) and, I to be the corresponding returns 
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(0) There is a fonnula of the fOlm aUI = A ali Find A [Hilll Consider the portfolios 
(I - a)wo + aWl. and consider smull variations of the vuriilncc of such portfolios neur 
a =0] 

(b) COlresponding to the portfolio WI there is a portfolio \V~ on the minimum-vmiance set 
that has zero bela with respect to WI: that is. al ;:: = 0 This pOilfolio can be expressed 
as w: = (1 - a)wo + aWl Find the proper value of a 

(c) Show the relatioll ot the Lhree portfolios on a diagram that includes the feasible legion 
(d) If there is no risk-free asset, it can be shown that other <IsseIs can be priced according 

to the formulll 

r, - r: = {J,M(rM -r:) 
where the .sUbSClipt M denoles the market portfolio and r;:: is the expected mte of return 
on the portfolio Ihat has zero beta with lhe murket portfolio Suppose tlmt the expecled 
returns on lhe market and the 7.ero~beta portfolio are 15% and 9%, respectively Sup~ 

pose that a stock i has a cotTell.ltion coefficient with the markel of 5 Assume also 
thaI the slandard deviation ot the returns of the markel and stock i are f 5% und 5%, 
respectively Find lhe expected return of slack j 

8. (Wizards 0) Electron Wizards, Inc (EWI) has a neW idea for producing TV sets, <md it i!ol 
planning to enter the development stage Once the product is developed (which will be al 
the end of I year), the company expecls 10 sell its new process fOJ a price p, with ~xpected 
value p = $24M Howevct, this s.t1e price wilf depend on lhe market for TV sets at the 
time By examining the stock histories of various TV companies, it is determined lhat the 
finnl sales price pis correlmed Wilh the market rerum us E[(p - P)(l ,11 - ru)] = $20Mail 

To develop the process, EWI must invest in a research and developmellt project 
The cost £. of this project will be known shortly after the project is begun (when iltechnicul 
ullcertainlY wil! be resolved) The current eslimme is thntthe cost will be eiIhel £. = $20M 
OJ c $16M, and each 01 these is equally likcly (This uncertainty iloi uncOJre!uted with 
the final price and is also uncorTehncd Wilh lhe m;:1fket) Assume thm the risk~free nne is 
(f 9% and the expected return on the 111m ket is r,11 33% 

(0) Whal is the expected rme of return 01 this project? 
(b) What is the bera of this project? [Hint In this c'lse, nolc that 

[(" 7i) - ] E -,- «(,II r,1d E U) E[(p-PJ(r", -r,\l)] ] 

(£.) Is lhis an accephlble project bnsed on a CAPM clileIion? In parlicular, whm is the 
excess rate of rerum (+ 01 -) above lhe relUrn predicted by the CAPM? 

9. (G'lvin's problem) Prove to G;:1vin Jones lhm the resuhs he obtained in EX;:lmples 7 5 and 
77 were not <1ccidents Specifically, tot <1 fnnd with rerum arf + (I a)l.H, show that 
borh CAPM pricing fOIlTIulas give lhe price of $100 wouh of fund assets as $100 

The CAPM lheory was developed independenIiy in relerences [1-4] There are noW numerous 
extensions and textbook accounts of thm theory Consuh any of the basic fimmce textbooks 
fisted as references for Chapter 2 The applicmion of lhis th~ory to mUlLUl.I fund pelformance 
evaluation was presented in [5, 6] An nherOl.1tive me'lsure, not discussed in this chapter, is due 
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to Treynor [7] FDl summaries of the ilpplication at CAPM 10 corporate analysis. see fS, 9] 
The idea of using <I zeJO~bela asset, as in Exercise 7, is due 10 Black [IO] 
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• MODELS AND DATA 

8.1 INTRODUCTION 

The theoty of the pJevious two chaptets is quite genetal, fOI it can be applied to bets 
on a wheel 01 tOJ tune, to analysis of an oil wild cat venture, to constlUction ot H 

portfolio of stocks. and to t1umy other single~period investment problems However, 
the primmy application of mean-variance theory is to stocks, and this chapter focuses 
primmily on those spechtl secUJities, although much of the material is applicable to 
othcl assets as well 

A major obstacle in the application of mean-variance theolY to stocks is the 
determination of the pmametcr values that the theOlY requires: the mean values of 
each ot the assets and the covariances among them These parametel values are not 
readily available for stocks and othel financial securities; nor can they be surmiscd 
by logical deduction as they can be for a wheel of fortune, which has clear payoffs 
and associated pJObabilities For stocks and OthcI financial secUJities. we must use 
indirect and subtle methods to obtain the information required fOJ a mean-variance 
formulation 

Ihis chapter examines how models of stock returns, suitable for mean-variance 
analysis, can be specified It shows how to build a factor model of the retulTI process 
to simplify the structure and reduce the number of required pmameters Along the way 
a new theory ot asset pricing, termed arbitrage pricing theory (APT), is obtained 
Later we turn directly to the issue of determining parameter values We consider the 
possibility of using historical data to detellnine parameter values, but we discover that 
this approach is of limited value 

It should become clear that the application of mean-variance theory and the 
CAPM to the design of a portfolio of stocks is not straightforward, but is fraught 
with many practical and conceptual difficulties, Understanding these difficulties and 
developing stJ ategies for alleviating them is an essential element of investment science 

197 
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8.2 FACTOR MODELS 

The information required by the mean-variance approach glows substantially as the 
number /I of assets increases, There are II mean values, n variances, and 11(11 1)/2 
covariances-a total of 211 + n(1l 1)/2 parameters When It is large, this is a very 
large set of required values For example. if we consider a universe of 1,000 stocks, 
501,500 values are required to fully specify a mean-variance model Clearly it is a 
lormidable task to obtain this information directly We need a simplified approach 

Fortunately the randomness displayed by the returns of II assets often can be 
traced back to u smaller number of undeilying basic SQUIces of randomness (termed 
factors) that influence the individual returns A factor model that I epresents this con­
nection between factors and individual returns leads to a simplified structure for the 
covariance matrix, and provides important insight into the relationships among assets 

The factors used to explain wndomness must be chosen carefully-and the 
propel' choice depends on the universe of assets being considered For real estate 
parcels within a city, the underlying factors might be population, employment rate, 
und school budgets For common stocks listed on an exchange, the factors might be 
the stock market average, gross national product, employment rate, and so forth Se­
lection of factors is somewhat of an art, or a trial-and-enOl process, although formal 
analysis methods can also be helpfuL (See Exel cise .3 ) 

This section introduces the factor model concept and shows how it simplifies 
the covariance stIucture 

Single-Factor Model 

Single-factor models are the simplest 01 the tacto! models, but they illustrate the 
concept quite well Suppose that there are Jl assets, indexed by i, with rates ot return 
} i, i = 1,2, "Jl There is a single lactor / which is a random quantity (such as the 
stock market average rate ot return for the period) We assume that the rates of return 
and the facto! are related by the following equation: 

I, = 0i + hi / + e, (8.1) 

for i = 1,2, ,II In this equation, the (Ii'S and the bi's are fixed constants The ei's 

are random quantities which represent errors. Without loss of generality, it can be 
assumed that the enors each have zero mean, that is, E(e,) = 0, since any nonzero 
mean could be transferred to Q, In addition, however, it is usually assumed that the 
errOl s are uncorrelated with f and with each other; that is, E[U - !)e, 1 = 0 fO! each 
i and E(e,ej) = ° for i "# j These are idealizing assumptions which may not actually 
be true, but are usually assumed to be true lor pUlposes of analysis It is also assumed 
that variances of the ei's are known, and they are denoted by a;' 

An individual factor model equation can be viewed graphically as defining a 
linear fit to (potential) data, as shown in Figure 8 I Imagine that several independent 
observations arc made of both the rate of return} I and the factor / These points 
are plotted on the graph Since both are landom quantities, the points are likely to be 
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FIGURE 0.1 Sinsle~faclor model. Re~ 
turns <Ire relaled linearly 10 Ihe f(lclor (, 
except Ihal random errors are added to 
Ihe relUrn 

scattered A stIl.lighl line is fitted through these points in such a wuy that the avcHlge 

value of the enOl, as merumred by the vel tical distance from u point to the line, is zero 
It is helpful to view Figure 8 I in two ways First, given the model (8 I), we 

can draw the line on the diagram before obtaining data points Then if we believe 
the model, we believe that the diHa points will lall in the kind of pattem shown in 
the diagram In the second view, we imagine that we filst obtain the data points, then 
we construct the line that fits the data When we dlUW the line, however, we are 
implying that additionul data are likely to support it in the sense ot falling in the same 
pattern 

When applied to a group of assets, the fitting process is carried out for each 
asset separately As a result, we obtain for each asset j an a, and b l The (II'S arc 
termed intercepts because Or is the intercept or the line fO! asset i with the veltical 
axis The bi's ore termed factor loadings because they measure the sensitivity of the 
return to the facto! 

If an historical record 01 asset leturns and the facto! values arc available, the 
pmumeters of a single-tactor model can be estimated by actually fitting straight lines, 
as suggested before Note, however, that different values of the OJ'S and b, 's me likely 
to be obtained for different sets of data For example, jj we use monthly data on 
returns and the factor / for one yem to obtnin values of the di'S nnd b/s, and then 
we do it again the next year, we are likely to get different values In what follows, we 
assume that the model is given, and that it lepresents our understl.Inding of how the 
returns are related to the tactor / We ignore the question of whele this model comes 
flOm-at least I'or now 

If we aglee to use a single-tactO! model, then the standard parameters 101 mean­
varinnce analysis can be determined directly from that model We cnlculnte 

b, = cov (/" f )/u} 

(820) 

(82b) 

(82L) 

(82d) 

These equations I eveal the primary advantage or a tactor model In the usuul 
representation of asset returns, n total ot 2u + 11(11 - 1)/2 parametels me requiwd to 
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specrfy means, variances, and covariances In a single-factor model, only the a l '5, /;/ '5, 

ae~'s, and 7 and aJ are required-a total of just 311 +- 2 parameters 

Portfol io Parameters 

When asset returns are described by a singIe-factor model, the return of any portfolio 
of these assets is described by a conesponding factor model equation of its own To 
verify this important property, suppose that there are II assets with rates of return 
governed by the factor model 

i = 1,1, ,11 

Suppose that a portfoIio is constructed with weights Wi, with L:;I""I WI = I Then the 
fate or return 1 of the portfolio is just the corresponding combination of individual 
rates of return; namely, 

11 II /I 

r = LWiQi + Lw1bif + LWie, 
i=! i""j i=! 

We can write this its 

where 

" 
b = Lw;b, 

1=1 

" 
e = Ll.Viei 

/",,1 

Both Cl and b are constants, whkh are weighted averages of the individual Qi'S and 
bl's The error term e is random, but rt, too, is an average Under the assumptions that 

E(e;) = 0, E[(f - ()e;] = 0, and E(e;ej) = ° for all i # j, it is clear that E(e) = ° 
and E[ (/ - {)e 1 = 0; that is, e and fare uncorrelated The variance of e is 

where we have used the fact that the e, 's are unconelated with each other Thus we 
have a simple and full description or the portfolio return as a ractor equation 

A factor model is a good model to use to explore the effects of diversification, 
showing how risk can be reduced but not entiJely eliminated For simplidty, let us 
assume that in the one~factor model a;, is the same for all i; say, a,7, = .,2 Suppose that 
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a pOl tlolio is iOllllCd by taking equlli flllctioilS 01 each asset; that is, we put W, = I In 
101 each i In that case, i'rom belore, we lind 

o 10 
at~ = ;;~-

Hence as }} --+ 00 we see thllt a; --+ 0 So in n wcll-divelsified pOltlolio the ell'Ol 

teml in the lactor equMion is smull 
The ovelHll v:.uirll1ce 01 the pOitlolio is 

a 2 = IJ"!.aJ + at~ 
The u(: term goes to zew, but since h is an avcHlge of the hi's, the !J"2ul tellll Icmains 
mOle OJ less constant Hence the vmiance of the pOltiolio tends to" dcclcase as Jl 

incleases because ul7 goes to zelO, but the portlolio vmiunce does not go to zero 
This obselv~ltion leads to a genelHi conclusion FOI any onc asset with a lHte 01 

I elU! n desclibed by a facto! model 

} I = a, + III t + e, 

thew arc two soulces 01 lisk: that due to the b, t term and that due to e, The Jisk 
due to e, is said to be diversifiable because this term's contribution to ovelHll risk 
is essentiully zero in a well-divelsified pOitlolio On the othel hand, the hi / term 
is sflid to be u systematic or llolldiversifiable risl\:, since it is piC sent even in a 
divelsified pOitfolio The systematic lisk is due to the fuctOi that inOuences every 
ilsset, so divclsilkHtion cannot eliminate it The risks due to the e,'s are independent 
and, hence, eaeh can be leduced by divel sification 

Example 8.1 (Four slocl" and one index) The uppel pOllion 01 Table 8 I shows 
the historicallHtes 01 rctUin (in pel cent) 101 fOUl stocks over a pedod of 10 years Also 
shown is a lecOid of an industrial price index ovel this sume peliod We shall build 
<'1 single-index model tOi each 01 the stocks using this index as the lactOi As a {lIst 
step, we calculate th~ histOlicnl avt!lUges 01 the letUins and the index We denote the 

avelHges by fr/ and 7 to distinguish these v<.llues 110m the true (but unknown) vl.llues 
r, unci 7 

Lell;, 101 k = 1.2. . Ill, denote the 10 samples or the late olletUII1I, Then 
the estimute of r/ is 

I 10 

fr, = - I>~ 
10 k=1 ' 

We estimute the vnJiances with the 100J11ull.l 

I 10 ~ "l 

V'U(I,) = 9 L (I; - r,t 
1.:=1 

which is the stl\ndmd way to cstimate VllJ lance I Analogous 100mui<ls are used to 
culcuhne estimates 01 the mean and the vuriance of the index 

I Sec Section S (I lor dctail~ on tlli~ c~tilllati(lil !ormulu 
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TABLE 0.1 
Factor Model 

Year Stocl,1 Stocl, 2 Stocl,3 Stock 4 Index 

11 91 2959 2327 2724 1230 
1837 1525 1947 1705 550 

.J 64 353 -658 1020 430 
2437 17 67 1508 2026 670 
.3042 1274 1624 1984 970 
-145 -256 -1505 I 51 8.30 
2011 2546 17 80 1224 560 
928 692 1882 16 12 570 

9 1763 973 305 2293 570 
10 1571 2509 1694 349 360 

liver 1500 1434 1090 1509 674 
var 9028 10724 16219 6827 699 
cov 234 499 545 11 13 699 

033 071 078 I 59 100 
a 1274 95.3 565 436 000 

e~Vl.lr 8949 103 68 15795 5055 

The recortl oj che ralel oj !elllm for jOllr slOch tllld till index oj il/dl/f­
erial prkeJ tire IhoWII The avert/gel alld I'm ;allu'f are all ((Impuced, 
liS well as the COI·admlce of cOl.h willi the illdex From chelt! quaI/ci­
ties. cite bl '\ alld the a,', (lrc calclliated Film/!.\', ell/.! uJIIlpllwd arm­
I'llrh/llw\' are also sholl'l1 T1Ie illdex dOt! I IIOC eXI)lai1l cite Hock i)lice 
variac/mil Vel}' \Veil 

Next the covuriances of the leturns with the index are estimated The formula 
used for this purpose is 

(8 3) 

Once the covarianccs are estimated, we find the values of bi and Qi from the fonnulas 

b; 
COV(I;, f) 

var(f) 

(The first of these is obtained by forming the covariance with respect to / of both 
sides of the factor equation) 

After the model is constructed, we estimate the variance of the error under the 
assumption that the eHors are unconelated with each other and with the index Hence 
using (8 lb) we write 

var(e,) = var(, ,) - b; varU) 

These values are shown in the lru;t row of Table 8 I Notice that these elTor variances 
are almost ru; large as the vatiances of the stock returns themselves, and hence the 
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factor does not explain much ot the variation in returns In other words, there is high 
nonsystematic risk. Furthermore, by applying a version of (8 3) to estimate cov(ej. ej)' 

it turns out that the eaars are highly correlated For example, the estimation tormula 
gives cov(ej, e:d = 44 lind CQV(C2, e3) = 91, whereas the factor model was constructed 
undel the assumption that these error covarhmces are zero Hence this single-index 
model is not a very accurate representation of the stock I eturns (A better model tor 
these data is given in the next section) 

Multifactor Models 

The preceding development can be extended to include more than one tactor For 
example, it there are two factors Ii and h, with perhaps the first factOl being a broad 
index of the market retulTI and the second an index of the chfUlge since the previous 
period of consumel spending. the model tor the rate of retUITI of asset i would have 
the 101m 

Again the constant eli is called the intercept, and b li and b2i are the factor loadings The 
tactors II and h and the en or el are random variables It is ussumed that the expected 
value of the enor is ZelO, and that the error is unconelated with the two tactOls and 
with the errolS of other assets However, it is not assumed that the two tactors are 
uncorrelated with each othel fhese factors are presumably observable variables, and 
their statistical properties can be studied independently of the asset returns, 

In the case ot the two-factOi model we easily derive the tol1owing values for 
the expected rates ot return and the covaril.lnces: 

"P, = ai + blttl + b2i f2 

{ 
b"btp}, + (b"b,) + b"b'j)cov(l!, (o) + b"b,p}" i # j 

cov{1i,lj) = ")") ")") 'J 

biia]) + 2bllb2Icov(li, 12) + bija]! + a~, i = j 

The bli'S and h2i'S can be obtained by formrng the covariance of Ii with Ii and 
h leading to 

cov(1" Id = hila]) + b2j a!1 h 

COV(li, h) blta!, h + h2I a]! 

These give two equations that can be solved for the two unknowns bit and b2i 

A two-factor model is often an improvement of a srngle~tactor model FO! ex­
ample, suppose a single-tactor model were proposed und the aj 's and bl 's dete!mined 
by fitting data It might be found that the resulting error terms nre large und that they 
exhibit COl relation with the facto! and with each other In this case the srngle~factor 
model is not a good represenL:1tion of the actual returns structure A two-factor model 
may lead to smaller error terms, and these terms may exhibit the assumed correlation 
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propeJties The two-factor model will still be much simpler than a full unstructured 
covariance matrix 

It should be clear how to extend the model to include a greatel number ot factors 
Quite comprehensive models of this type have been constructed It is generally agl eed 
that for models of U S stocks, it is appropriate to use between 3 and 15 factOis 

Selection of Factors 

The selection oj appropriate factors for il Jactor model is pnrt science ilnd part mt (like 
most practical onalyses) It is helptul, howevel, to place iactOis in tiuee categories 
Once these categOlies are lecognized, you will no doubt be able to dreili11lip additional 
lIseful factors Here me the categories: 

1. External factors Very commonly, factors Hie chosen to be variables that 
me external to the securities being explicitly considered in the model Examples are 
gross national product (GNP), consumer price index (CPI), unemployment rate, or a 
new construction index The U S Govel nment publishes numerous such statistics It is 
pOl:;siblc to USe other external variables as well, such as the numbel of traffic accidents 
in a month or Slln spot activity 

2, Extracted factors It is possible to extract factors from the known intorma­
tion about security returns< For example, the factor used most frequently is the rate 
of retllrn on the market portfolio This factor is constructed directly from the let urns 
ot the individual securities As anothel example, the rate of return of one secuJity 
can be used as a factor for other!> More commonly, an average of the retuJlls of the 
secuJitiel> in an industlY il> w;cd as a factor; tor example, there might be an industrial 
lactOl, a utilitiel> lactor, and a transportation factor Factors can also be extracted by 
the method ot principal components (See Exercise 3 ) This method USes the ~ovari­
ance matrix oj the retull1s to find combinations of secll1ities that have lalge variances 
Indeed, extracted loctors me usually lineat combinations oj the returns oj individual 
securities (as in the pleceding exmnples) Factols cun be extIacted in more complex 
ways For example, a facto! might be defined as the ratio ot the I eturns of two stocks, 
the numbel oj days since the last market peak, 01 a moving average oj the market 
retuln 

3. Firm characteristics Firm:" are characterized financially by a number 01 
firm-specillc values, such as the pI ice-em nings ratio, the dividend-payout ratio, an 
ealilings fOJecast, and many other variables Abollt 50 sllch variablel> Jor each majOi 
setutity are available from vm ious data services These chafl.lcteristics can be used in 
a Jactor model The characteristics do not serve as factors in the usual sense, but they 
playa similar lOle As an example, suppose that we decide to use a single factor t (of 
the norm:'ll kind) and a single Jilin characteristic g (such as last quarter's price-earnings 
ratio) We then represent the lute of letUIn on secuJity i as 

" = el, +- Il, / + £.g, + e j (84) 
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In this model, the constant c is the same for each security, but gl (the value of 
the characteristic) varies The charactelistic telID docs not contribute to systematic (01 

nondiversifiable) risk, but rather it may reduce the variance ot the elror tellTI e l In 
other words, the tellTI cgi can be regarded as an estimate ot the errOl term that would 
appear in the standard single-factor model Firm characteristics are etfective additions 
to factor models 

8.3 THE CAPM AS A FACTOR MODEL 

The CAPM can be derived as a special case of a single-factor model This view adds 
considerable insight to the CAPM development 

The Characteristic Line 

Let us hypothesize a single-factor model for stock returns, with the factol being the 
mmket rate of retulTI 1 AI For convenience we can subtract the constant 1 j from this 
factor and also from the rate ot return 1 i, thereby expressing the model in terms 01 
the excess returns 1 i-I / and 1 AI - '/ The factOi model then becomes 

li-I/=a/+fJi{lM ,/)+ei, (85) 

It is conventional to use the notation a , and fJ, for the coefficients of this special 
model, rather than the a/s and b,.'s that are being used more genelaliy Again it is 
assumed that E(e,) = 0 and that e, is uncorrelated with the market return (the factor) 
and with other ej's 

The characteristic equation or characteristic line conesponding to (8 5) is the 
line formed by putting e, = 0; that is, it is the line 'I IJ = Cil + {Jill" 'I) drawn 
on a diagram of Ii vel sus I AI> Such a line is shown in Figure 82 A single typical 
point is indicated on the line If measurements ot 1, '/ and 1 M 1/ were taken and 
plotted on this diagram, they would fall at various places, but the characterislic line 
would presumably define a good Ilt through the scatter of points 

FIGURE 8.2 Characteristic linc. This line 
represents a single-factor model Ihat has 
rhl - r, as the factor for the variable r, - If 
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The expected value of this equation is 

r,-lf=ct,+{J,(fAl If) 

which is identical to the CAPM except f 01' the pr esence of ct; The CAPM pi edicts 
that ct; = 0 

The value ot fil in this model can be calculated directly We take the covariance 
of both sides of (85) with I AI This produces 

and hence 

fJi = UI~I 
(IA/ 

This is exactly the samc expression that holds for the {J; used in the CAPM (and that 
is why we uSc the same notation) 

The chmactclistic line is in a sense more general than the CAPM because it 
allows ctj to be nonzero From the CAPM viewpoint. ctj can be regarded as a measUie 
of the amount that asset i is mispliced, A stock with a positive a j is, according 
to this view, performing better than it should, and a stock with a negative a j is 
perfOlming worse than it should Some financial services Olganizations (and some 
highly technical investors) estimate a as well as fJ for a large assOitment of stocks 
Note, however, that the single-tactOi model that leads to the CAPM formula is not 
equivulent to the genelal model undeJiying the CAPM, since thc general model is 
based on an arbitrary covariance matrix, but assumes that the market is efficient The 
single-Iactor model has a vely simplc covariance structure, but makcs no assumption 
about etficiency 

Example 8.2 (Four stocks and the market) Let us rework Example 8 I by using 
the excess market leturn as a factol We assllme that the market consists of just the 
lour stocks, with equal weights Therefore the market return in any year is just the 
average of the returns of the foUl stocks These are shown in the upper portion of 
Table 8 2 We also adjoin the historical value 01 the risk-free rate of return for each of 
the 10 years The relevant statistical quantities are computed by the same estimating 
t0ll11ulas as in the earliel example, except that the lactor is takcn to be the cxcess 
return on the market, which will change the formula for (1/ to ai As seen hom the 
table, a Imge portion 01 the vmiability of the stock rctullls is explained by the lactor In 
othcr words, there is Iclatively low nonsystematic risk FuIthenTIOle, a side calculation 
shows that the elIors me close to being uncolIelated with each other and with the 
mmket return For example, the data provide the estimates cov(eJ, e2) -14 and 
cov (e2, e3) 2, which alC much smallcr than 1'01 the emlier model Wc conclude that 
this single-tactor model is an excellent representation of the stock returns of the four 
stocks In other wOlds, fOi this example, the malket retUin serves as a much better 
factOl than the industrial index factOi used earlier However, this may not bc true fOi 
othcr examples 
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TABLE 8.2 
Factor Model with Marl<et 

Year Stoci,1 Stock 2 Stock 3 Stock 4 Market Riskless 

/ / 9/ 2959 2327 2724 2300 620 
/837 /525 /947 17 05 /754 670 

3 364 353 -658 /020 270 640 
4 2437 /767 /508 2026 /934 570 
5 3042 1274 1624 1984 /98/ 590 
6 -/45 -256 -1505 /5/ -439 520 
7 20 1/ 2546 17 80 1224 /8.90 490 
8 928 692 /882 /6/2 1278 550 
9 /763 973 .J 05 2293 1334 6/0 

10 1571 2509 1694 .J 49 1531 580 

aver 1500 1434 1090 1509 1383 584 
var 9028 10724 162 19 6827 72 12 

COY 6508 7362 10078 4899 7212 
fJ 90 102 140 68 100 

I 95 34 -611 382 000 
e~var 3154 3209 21 37 3499 

Noll' tIle factor iI' It/h'll 10 bt: the (':0:((.'1'\ refilm 011 flw tt/{((ket portfolio Tile 
I'(Ui(lt101I ill ,\'rock refllrtll 1.\ Imgt:ly explailled bv rhh rdl/lIl /lilt/the CU'OT.I 

(In' III/wire/aled willi t:lIch other {lnd wflh the market Tlth model prol'idl!J 
{/II exu.:llelft fit to lIlt! d(/ta 

8.4 ARBITRAGE PRICING THEORY* 

The factor model ft amework leads to an altel native theory of asset pricing. termed 
arbitrage pricing tbeor'Y (APT) This theory does not requite the assumption that 
investots evaluate portfolios on the basis of means and variances; only that, when 
returns mc certain, investots prelet greater return to lesser retliin In this sense the 
theoty is much mote satisfying than the CAPM theoty, which relies on both the 
mean-variance framewotk and a suong version of equilibrium, which assumes that 
evetyone uses the mean-vruiance fJamework 

The APT docs, howevet, requite a special assumption of its own This is the 
assumption thnt the universe ot assets being considered is large For the theory to work 
exactly, we must, in tact, assume that there are an infinite number ot securities, and that 
these securities diffet from each othet in nontrivial ways This assumption is generally 
telt to be satisfied well enough by, say, the universe of all publicly traded US ,tocks 

Simple Version of APT 

To explain the concept underlying the APT, we fit st considet an idealized special case 
Assume that all asset tates of return satisty the following one-factor model: 

l/=o/+bif 
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Different assets will have diffelent (lj'S and hi's This factor model is special because 
there is no enm term TIle uncertainty associated with a return is due only to the 
uncertainty in the factor t _ The point of APT is that the values of {II and hi must 
be related if arbitrage opportunities are to be excluded To work out the reiMionship 
between OJ and hi we write the model tor two assets i (as before) and j. which is 

Ij =aj +bjf. 

The only requirement in the selection of these two securities is that hi =I bj Now 
fOlm a pOl1folio with weights Wi = wand Wj = I w We know th<1t the rate of 
retllrn of this portfolio is 

r = wa, + (I w)a) + iwb, + (I w)bj]t 

We shall select w so that the coefficient of t in this equation is ZeIO, Specifically, we 
select w = bj/(/}j b,) This yields a rate of return of 

I = wa, + (I w)aj=~+~ 
bj bi bi bj 

(86) 

This special portfolio is risk free because the equation for 1 contains no random 
element If there is <1 separate risk~tree asset with rate of return If, it is clear that 
the portfolio constructed in (86) must have this same tate-otherwise there would 
be an mbitrage 0ppOitunity Even if there is no explicit risk~free asset, all portfolios 
constructed this way, with no dependence on t, must have the same rate of return We 
denote thi~ rute by Ao, recognizing that Ao = 1 J it there is an explicit risk-free asset 

Setting the right-hond ,ide of (8 6) equal to Ao, we find 

which Can be learranged to 

aj Ao = at ~ )y) 

hj hI 

This is a general relation that must hold for all i and j Therefore, 

a j )y) 
---=c 

hj 

holds for <111 i tor some constant c, This shows explicitly that the values of OJ and h j 

ate not independent Indeed, al = )y) + hic 
To see that such a lelation is reasonable, suppose we take t to be the rate of 

retUIn on the S&P 500 average It aj and hi were albitraJY, we might specity a stock 
i with (lj = 50 and hI = I 0, which would give i a r<1te ot return of 50% plus 
the S&P 500 rate Cleoriy this is umeasonably high No stock does tl,is well More 
realistically, if we have a j = 50, then hi will be negative so that, overall, 11 makes 
sense As <lnother case, it aj is the risk~rree late, then hi should be zelO The relation 
a j = An + hje keeps things in plOper alignment 

We can use this information to write a simple formula fOJ the expected rate of 
return of asset i We have 

r, = a, -I- bif = AO + bie + bif 
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or, alternatively. 

(87) 

for the constant AI = C + 7 We See that once the const<lnts AO and AI are known. the 
expected return of an asset is determined entirely by the factol loading hi (since aj 

must tollow bi) 

Notice that the pricing formula (87) looks similar to the CAPM If the factor 
j is chosen to be the I ate of retui n on the mar ket 1 M. then we Can set ~) = If and 
AI = I'M I f' and the APT is identical to the CAPM with bi = {J, 

For additional factors the result is similar We now give a mOle general statement 
and proof; 

Simple APT Suppme l/ral/here are 11 W"el,' \I'/ro3e lale., oj lel1l111 me governed bv 
111 < 11 fO[1015 (fC[ording 10 lire equatioll 

'" 
1/ = 0 1 + Lb,}i] 

f=t 

{Of i = 1,2, ,11 Tllell rhele me COlUI(flllJ An, At. • A/II .Hldr l/rtll 

fO! i = I, 2, , 11 

'" 
rl = Ao + Lbi/Aj 

j=1 

Proof; We prove the statement for the case of two tactOis Suppose we 
invest a dollar amount Xi in asset i, i = 1,2, ,11, in order to satisfy 
L:;I=t XI = 0, L~I=t Xi bit = 0, and L:;I=I x)Ji? = 0 This pOitfolio requires 
zero net investment and has zero tisk Therefore its expected payoff must 
be zero Hence L:~I=t _l):-j = 0 Defining the vectors x = (.It. X::!, , l"/I), 

bt = (b",b", ,b"t), b, = (lJt2,b",b", ,b",), I = (I, I, ,I), 
and r = (rt, r'2, ,rll ), we cun restate the foregoing as follows: For any 
x satistying xtl = 0, x' bl = 0, and xtb, = 0 it follows that x7 , = 0; 
that is, any x orthogonal to I, bt, and b, is also olthogonal to, It follows 
from a standard result in linear algebw2 that r must be a lineal combination 
ot the vectots I, bt, and b2 Thus there are constants Ao, At, A2 sllch that ,= Aol + b,A, + b,A, This is identical to the given statement m 

To undelstand this result, let us look at some special cases If all the bO's 

are zelO, then there is no risk and we have 01 = Ao, which is appropJiate It a bl ] 

is nonzero, then Pi increases in proportion to blj; the value Aj is the price of risk 
associated with the fuctor /i, otten called the factor price. As one accept~' greater 
amounts of /1' one obtains greateJ expected return 

2you can viSUlllize Ihis in Ihe three dimensions of a roOn! Fix a VCCWI h, suy, running ulong the iloor and 
perpendiculllr 10 II Willi Suppose Ihat for (11I;x wilh x7h = () there also holds ~"r = 0 The set of x s :Ire 
loose on Ibe wull Ihen you should see Ihal r = Ah for some A 
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Well-Diversified Portfolios 

We now consider more realistic factor models, which have enOl terms as well as factor 
term..:; Suppose there are a total of 11 assets and the rute of retum on aSset i satisfies 

'" 
1; =0, + Lbil/j +e/ 

j'::;:.t 

where E(e,) = 0 and E[e,f = u;, Also assume that e, is uncorrelated with the factors 
and with the error terms of other assets Let us form a portfolio using the weights 

WI. W2. • WII with :L;''''''I Wi = I The rute of return of the portfolio is 

'" 
I = a + I)j fj + e 

j=1 

where 

" 
a = LWiG, 

;:":,, 

" 
bj = Lw,bij 

i=1 

" (7; = Lwlu;, 
i=1 

Suppose that for each f there holds u;, :$ S1 for some constant S Suppose also that 
the portfolio is well diversified in the sense that for each i there holds Wi :s W /11 

tor some constant W ~ I This aSSUl es that no one asset is heavily weighted in the 
portfolio We then find tl,at 

We now let 11 --+ 00 While doing this we aSsume that the bound u£~ :$ S2 remainR 
valid for all i Also for each 1/, we select a portfolio that is well diversified As If ---+ 00, 

we see that u(: --+ 0 In other words, the error term as~;ociated with a well-diversified 
portfolio of an infinite number of a<;sets has a variance of zero, For n finite, but large, 
number of assets the enOl term has approximately zero variance 

General APT 

We now combine the ideaR of the preceding two subsections We imagine forming 
tllOusands of different well-diversified portfolios, each being (essentially) enor free 
These portfolios form a collection of assets, the return on each satisfying a factor 
model without eflor We therefore can apply the simple APT to conclude that there 
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are Constants AO. AI. • AII/ stich that for any well~diversified portfolio having a rate 
of return 

'" 
I =a+ Lbj!j 

j=1 

the expected rate of return is 

'" r=Ao+ LbjAj 
1'=1 

Since various well~diversified portfolios can be formed with weights that ditfel on 
only a :-;ma!l number ot basic assets, it tollows that these individual assets must also 
satisfy 

'" 
P, = AO + LbijAj 

j=1 

(This argument is not completely rigorous; but a morc rigorous argument is quite 
complex) 

This is again busica!ly a relation that says that 0 1 is not independent ot the b,j's 
The lisk-flee term must be related to the factor loadings This is true even when there 
are enor terms. provided there is a large number of assets so that errOl terms can be 
effectively diversified away 

APT and (APM 

The tactor model underlying APT can be applied to the CAPM framework to derive 
a relation between the two theories 

Using a two-factor model we have 

I, = (Ii +b,1 II + bi'2h + e, 

We find the covariance of this asset with the market portfolio to be 

COV(I M,li) = b,ICOV(I/IJ. II) + bt,!COV(1 III, h) + COV(1 M. ei) 

It the market represents a well-diversified portfolio, it will contain essentially no 
error term, and hence it is reasonable to ignore the term COV(1 Iff. ei) in the foregoing 
expression We Can then write the beta of the asset as 

where 

fi, = bi I fiJI + /J,2fih 

fi/! = UM II /u~1 

fih = "M h/"~f 
I-Ience the overall beta of the asset can be considered to be made up from underlying 
factor betas that do not depend on the particular asset. The weight of these tactor betas 
in the overall asset beta is equal to the factor loadings. Hence in this framework, the 
reason that different assets have different betas is that they have different loadings 
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8.5 DATA AND STATISTICS 

Mean-variance portfolio theory and the relnted models ot the CAPM and APT are 
frequently applied to equity securities (that is, to publicly traded stocks) Typically, 
when using mean~variance theory to construct a portfolio, a nominal investment pe~ 
riod, or planning horizon, is chosen-say, I year 01 I month-and the portfolio is 
optimized with respect to the mean and the variance fOI this peIiod However, to 
callY out this procedure, it is necessary to assign specific numeric<ll values to the 
parameteHi ot the model~ the expected returns, the variances of those returns, and 
the covariance!; between the returns of different securities Where do we obtnin these 
parametel values? 

One obvious source is historical data of security 1 eturns For example, to obtain 
the expected monthly rate ot return of a particular stock, we might average the monthly 
ratcs of return of that stock over a long period of time, say, 3 years This average 
over the past should, hopetully, give a leasonable estimate of the true expected value 
of thc rate of retUln ovcr the next month Likewise, we might estimate the variance of 
the stock by averaging the square of the month's dcviations from the expected value 
The covariances could be estimated in a similar manner 

This method of extracting the basic parameters from historical leturns data is 
commonly used to structure mean-variance models It is a convenient method since 
suitable sources ot data are readily available Some financial service organizations 
eithel supply the data 01 provide the parameter estimatcs based on the data The 
mcthod is also reasonably reliable for certain of the parameters such as the vari­
ances and covariances; but it is decidedly 1111leliable for other paHlIl1etcrs, such as 
the expected returns The lack 01 reliability is not due to faulty data or difficult com­
putation, it is due to a fundamental limitation of the process of extJucting estimates 
from data It is a statistical limitation, which we loosely telm the blur of history. It 
is important to undelstlmd the basic statistics of data processing and this tundamental 
limitation 

Period-Length Effects 

Suppose that the ycarly retUln of a stock is I +1 v This yearly return can be considered 
to be the lesult of 12 monthly letUlns and thus'can be wJitten as 

I +ly (l +11)(1 +1,) (I +1f21 

In this equation the monthly returns ate 1101 nleasUled in yearly terms; they me the 
actual retUlns fOI the month FOJ small values of the II'S we can expand the product 
and keep only the first-older telms, as 

(88) 

In other words, 1 y ~ L~I=ll i, which means that the yearly rate of rettun is l.lpproX­
imately equal to the sum of the 12 individual monthly Jetums This appJOximation 
ignoJes the compounding eitect, but it is good enough for our present purpose, which 
is to estimate the rough magnitudes of the parameteJs 
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Assume that the monthly returns of a given stock all have tIle same statistical 
properties and are mutually uncone!ated; that is, each monthly 1 i hns the same expected 
value r and the Sl.lme vaJiance u:" Using the approximation (8,8) we find that 

ry 121' 

Likewise, we find 

u,~ 
[ I' 

E ~{li Dr [ I' E ~(II rf] 12u2 

where in the second step we used the tact that the retUIns are uncorrelated TUIn­
ing these eqtultions around and taking the square foot of the vmiance, we obtl.lin an 
expression fOI the monthly values in teInlS of the YCtlI!y values, 

r= 

- I 
,,= y'j2"" 

This analysis can be generalized to any length of pedod, such os a week Of a day It we 
asslIme that the IetUInS in different (identical length) periods have identical statistical 
properties and arc uncoIIell1ted, we obtain a similal lesult Specifically, it the peIiod 
is p part of a yem (expressed tIS a fwction of a yem), then the expected IetUITI and the 
stanclaId deviation of the I ~period rate of Ietum can be found by genetalizing from 
monthly peliods whele p = 1/12 We htlve fOi general p 

r" = pry 
up = ../Pa.l 

(89a) 

(89b) 

It is the square-root telm that causes the difficulty in estimation ploblems, as we 
shall see 

The effect of the period length on the expected rate of return nnd the standard 
deviation of the peIiod letuI1\S is shown in FigUIe 8 3 The values tOI a I-year period 
me normalized to unity fOl both the expected rate of leturn and the standard deviation 
As the period is leduced, both the expected rate ot return and the standard deviation of 

p (yeilrs) 

FIGURE 8.3 Period effects. The expecled Iille 
of reI urn over iI period incrcilscs approximately 
lineilrly wilh Ihe lenglh of Ihc period The slan­
durd deviation illcre<lses <IS the squurc rool of Ihe 
lenglh of the period 
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the period returns decrease, The expected rate of return is directly proportional to the 
length of the period However, the standard deviation is proportional to the square root 
of the length of the period This means that the Intio of the two-the ratio of standard 
deviation to expected rate of retUIn-illcleases dramatically as the peri-cd length is 
reduced In tact, this I alio goes to infinity as the period length goes to zero Therefore 
the rates of return for small periods have very high standard deviations compared to 
their expected vlllues 

Let us apply this analysis to a typical stock Thc mean yearly r ate of return for 
stocks ranges hom around 6% to 30%, with a typical value being about 12% These 
mean vnlues change with time, so any patticular value is meaningful only for about 2 
or 3 years The standard deviation ot yearly stock returns ranges from around 10% to 
60%, with 15% being somewhat typical 

Now let us translate the values of mean and variance into conesponding monthly 
values Accordingly, wc set p = 1/12 in the formulas (8 9a) and (8 9b) Let us u,e 
the nominal values of rv = 12% tor the yearly expected rate of return, and U v = l5% 
for the yearly standard deviation This leads to rl/12 = I % and ul/12 = 4 .33% for the 
corresponding 1110nthly values Hence the standard devilltion of the monthly return is 
43 times the expected rate ot return, whereas tor the yearly figures the ratio is I 25 
The relative error is ampliHed as the period is shortened Let us go a bit further and 
assume that returns are generated through independent daily returns Assuming 250 
hading days per yem, we set p = 1/250 Then rl/250 = 048% and ul/250 = 95% 
are the corresponding daily values The ratio of the two is now 95/048 = 19 8 
This result is confirmed by ordinary experience with the stock mar ket On any given 
day a stock value may easily move .3 to 5%, whereas the expected change is only 
about 05% The daily mean is low compared to the daily vmiancc 

Mean Blur 

We now show how this amplification eiteet makes the estimation of expected (or 
mean) rates nearly impossible 

Lct liS select a basic period length p (such as p = 1/12 for a monthly period) 
We shall tJy to estimate the mean rate of leturn fOf this period That is, we assume 
that the statistical pIOpeIties of the retUInS in each of the periods are identical, with 
mean value r and standard deviation u We also assume that tile individual returns 
arc mutually uneonelated We wish to estimate the common mean value by using 

historical data 
Suppose that we have Il samples of these period Ieturns The best estimate of 

the mean rate of IetUIn is obtained by avemging the samples Hence, 

~ I II 

r= - I>, 
Il i=l 

(8 10) 

The value of f: that we obtain this way is itself random If we weIe to use a different 
set of Il data points, we would obtain a diffeIent value of f:, even if the probabilistic 
ehataeter of the stock did not change (that is, it the true mean Iemained constant) 
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Howcvel, the expected value of the estimate (8 10) is the Bue value r since 

We want to calculate the stundmd deviation of the estimate f, for it shows how 
accUI ale the estimate is likely to be We have immediately 

Hence, 

(J 

ai: = ./ii (8 II) 

This is the basic tOlJ11ula {OJ the eoO[ in the estimate ot the mean value 
Let us pul a few l1lUnbelS into the fOIl11u!a We take the period length to be 

1 month, FOJ the numbers usee! eoIiiel, the monthly values nre r = 1% nnd a = 4 33% 
If we use 12 months 01 data, we obtain (J~ = 4 33%/ffi = I 25% Hence the standard 
deviation of the estimated mean is !mgeI than the mean itself If, using! yea! of data, 
we find f: = ! 0/0, we me only able to say, roughly, ""the mean is 1 % plus Of minus 
125(70" This is not a good estimate If we use 4 yeats of datu, we cul this slandwd 
deviation down by a [aclor ot only 2-which is sti11 poor In Older to get a good 
estimate, we need a standard deviation of about one-tenth of the mean value itself 
This would require II = (433)' = 1,875,01 about 156 years 01 data However, the 
mean values me not likely to be constant OVeI that length ot time, and hencc the 
estimation pJOceciUJe is notleally improved by much 

This is the historical blUJ pJOblem tOJ the measurement of r It is basically illl­
po.\.\ible to measure r to within workable accuracy using histOlical data Furthellnore, 
the problem cannot be improved much by changing the period length If longer periods 
arc used, each sample is more leliable, but fewel independent samples are obtained in 
any year Conversely, if smaller peliods are uscd, mOle samples are available, but each 
is WOlse in telms of the JUtio of standutd deviation to mean value (See Exercise 5 ) 
The problem 01 l11ean blur is tI tundamenwl difficulty 

Example 8,,3 (A statistical try) We simulated 8 years 01 monthly rates 01 return ot 
a stock thm had a monthly Illean 01 I % and a monthly standald dcvintion of 4 33%, 
conesponding apploximately to yeaJly values ot 12% and 15%, respectively Random 
monthly letUl11s welc genelated using a nOlmal distribution with these parametels, and 
these retUlns nrc shown in the uppel portion ot Table 83 The swnple means were 
calculated each yem lor the entire 8-year period The sntnp1c means 10l each yCUJ 
me indicatcd below the monthly returns fOJ thm yem The sample standard deviation 
is also indicated (Note that the sample standard deviations are also estimates-the 
accUJacy ot these is discusscd in the tollowing subsection) Note how the individual 
yearly estimates 01 the mean, as detclmined by the sample averages, jump nround 
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TABLE 63 
Monthly Rates of Return and Estimation of Mean (Expressed as Percent) 

Year of return 

4 6 8 Overall 

Jan -865 261 639 -452 128 449 -144 ]30 
Feb 861 -238 -J 22 230 14 758 -434 J75 
Mar 550 -328 I 12 -396 -263 502 124 395 
Apr 204 745 369 - 84 315 51 892 -3 J3 
May 751 796 28 35 - 47 - 19 - 46 - 31 

Jun -250 -937 361 696 704 I 18 828 89 
Jul 228 -727 -145 423 368 161 -5 J3 -639 

Aug I 85 -530 683 21 274 262 -101 - 60 
Sep 586 569 232 14 -208 -232 377 -76 
Ocl I 37 524 -J79 -648 I 7l -308 418 192 
Nov 3 17 294 52 -I II 618 542 -227 -397 
Dec 923 194 277 286 38 293 491 5 18 

Mean 302 52 167 01 176 206 I 37 17 I 32 
(J 501 588 321 381 298 324 466 355 4 12 

Each colllllln repreH'IfH (I yem oj nll/Juml)' gel/cUlletil t'JlII7H '/1IC IllIe I/lel/ll VO/II/!\ are (}II 1%. 
Imilit/! tH/;malel (Iel'illlt' ligmjic(l/ff/y}i'mll Illil v(lille 

quite a bit from year to year From this analysis we expect these estimates to have a 
stundmd deviation ot I 25%, and the results appem to be consistent with thac Even 
the 8-year estimate is quite far hom the true value We certainly should hesitate to 
use these estimates in 11 mean-variance optimization problem 

A histogram of the individual monthly returns is shown in Figule 8A Note that 
the standard deviation of the samples is 1m ge compmed to the mean One can see, 
visually, that it is impossible to detelmine an acculate estimate of the tlue mean hom 
these samples The mean value is too close to zero compared to the breadth of the 
distIibution; hence one cannot pin down the estimate to within a small ft action of its 
actual val ue 

08 06 04 02 

Relurn 

02 04 06 08 

FIGURE (1.4 Histogram of monthly re­
lurns. The distribution is too broad to pin 
down the true mean of 01 to within a small 
fraction of its value 
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8.6 ESTIMATION OF OTHER PARAMETERS 

Estimates of othel pmumeleIs flom hisloIIcal data are also subject to error In some 
cases the CITO! level is tolerable and in otheIs it is not In any event it is important to 
Iecognize the presence of enOIS and to determine theiI rough magnitudes-otherwise 
one might plOpose elabOime but fundamentally flawed procedures tor portfolio con­
struction 

Estimation of a 

The blurring effect is not nearly as strong 101 the estimation of variances and covnri­

ances as it is tor the mean Suppose again that we have n samples of period rales of 
return 1\, '2, ,1/1 We calculate the sample mean 

" 1 /I 

r=- I>, 
11 i=1 

and the sample variance 

.\-= 
1/-

The use of 11- I in the denominator instead of II compensates fOJ the tacl that f is used 
instead ot the true (but unknown) r It then follows that E(.I') = ,,' (See Exercise 4) 
Hence .\'2 provides an unbiased estimate of the variance 

The accllIacy 01 the estimate 52 is given by its variance (or its standard deviation) 
It can be shown that it the original samples are normally distributed, the variance of 
,\2 is 

or, equivalently, 

.., 2a -l 
var(n =--

11-1 

This shows that the standard deviation of the variance is the tiaetion )2/(" - I) times 
the hue vmiance, and hencc the relative enOl in the estimate ot a 2 is not too extreme 
if 11 is reasonably large 

Example 8.4 (One year of data) Suppose we again use n pedod length ot I month 
Using 12 months of data, we obtain stdev(s') ,,'/235, which is aheady less than 
half of the value of a 2 itself Hence the vmiance can be estimated with leasonable 
accuracy with about I yeal of histOlical data 

This conclusion is validated by the expedment shown in Table 83 The yearly 
estimates ot a shown in the bottom lOW are al1leasonably close to the Bue value ot 
433% (certainly they are much bellel than the estimates ot 1'), and the full 8-year 
estimate is really quite good 
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a Blur 

The blur phenomenon applies to the pa,"meters of a factor model, but mainly to the 
determination of a In faCl the presence of a blur can be deduced from the mean-blur 
phenomenon, but we omit the (somewhat complicated) details 

The inherently poor accuracy of 0:' estimates is reflected in a so-called Beta 
Book, published by Menill Lynch, a page of which is shown in Table SA. Note that 
the reported standard dcviation for " is typically largeT than the value ot" itself The 
relative elIOI in estimating f3 is ~omewhUl beller 

8.7 TILTING AWAY FROM EQUIUBRIUM* 

One way to use mean-variance theory is to rely on the insight ot thc CAPM that if 
everyone followed the mean-variance approach and everyone agreed on the parame­
ters, then the efficient fund of risky assets would be the mruket portfolio Using this 
idea, you need not compute anything; just purchase a mixture of the market portfolio 
and the risk-free asset 

Many investors ate not completely satisfied with this solution and believe that 
a supctior solution can be computed by solving the Markowitz mean-variance portfo­
lio ploblem directly, using appIOptiate parameters Wc have seen, however, that it is 
fundamentally impossible to obtain accuratc estimates of expected returns ot common 
stocks using histotical data The standard deviation (or volatility) is just too gleat Fur­
thermore, the solution of the Markowitz mcan-variance porttolio problem tends to be 
fairly sensitive to thesc values This, untOItunately, makes it cssentially meaningless 
to compute the solution to the Markowitz problem using historical data alone The 
Markowitz appIOach to portfolio conslIuction can be salvaged only if better estimates 
of thc mean valucs me obtained 

Beller estimates can only bc obtained if there is intOImation regarding the fu­
ture pIOspects of the stock available that supplements the information contained in the 
historical record Such infOlmation can bc obtaincd in a variety of ways, including: 
(I) from detailed fundamcntal analyses ot the lirm, including an analysis of its future 
projects, its management, its financial condition, its competition, and thc projected 
market {OI its pIOducts or services, (2) as a composite of otheI analysts' conclusions, 
OI (3) fIom intuition and hunches based on news Ieports anu personal expcricnce Such 
information can be systematically combined with the estimates derived fIom historical 
uma to uevelop superlOI estimates 

HoweveI, the solution to the Markowitz problem will still be sensitive to the esti­
mates used, and it is theIetOIe likely that the solution obtained using the new estimates 
will diffeI substantially from the market portfolio An invcstor might feel uncomtort­
able dcpalling so significantly hom the CAPM's Iecommendation to select the matket 
portfolio A compromise uses both the CAPM view and additional infOImation This 
is the idea pIesented in this section 
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Equilibrium Means 

The fiISl parl of the apploach uses the CAPM in a revctsc 11lshion It determines the 
expected rates of Icturn that would be requited to ploduce the matket portfolio That 
is, a set of expected fateS of Icturn is lound, which, when used as the fates in dlC 

metm~variance problem, will lead to the mUlkel pOItfoHo as the solution Lel us see 
how that WOI ks 

The required CAPM lates ale given by d,e CAPM forlllula; namely, 

ij = If + {3,(rM -If} 

We have added the superscIipt e to emphasize dWl this is the value oj 'PI obtained 
~uough the equiliblium argument Note that this value 0[0' is fairly easy to obtain It is 
only necessary to estimate f3i (whlch can be estimated quite reliably) and 'PM (which is 
more difficult, but often a consensus view can be used) No equations need be solved 

Information 

The tIUe expected rates of return are tandom vaIiables that we cannot know with cet­
tainty The equilibrium values computed before give us some information about these 
vttlues, but these too ate only estimates We expect that these estimates each have some 
variance and they me conelated with each othet We thete[ore wIite the equation 

[or each stock i to express the [act that the true value of r; is equal to the values 
obtained by the equilibIiuTIl mgument plu~ some eITor The enOl E; has zeIO mean 
FOI convenience, often all the enor variances are set to ~ome small value T, and the 
error covllIiances me assumed to be zero, 

Othet infOlmation about expected tates of tetum can be expressed in a ~imilar 
way For example, to incOlporate historical data on usset i, we might write an equation 
of the rOlm P, =;:',' + e;, wheIe r:' is the value of 1-, obtained from historical data and 
e, has valiance equal to that implied by the length of the histmical IecOId 

Likewise, we might include subjective information about the expected IetUIn, 
01 infOlmation based on a careful analysis of the flInl In eadl case we also assign a 
variance to the estimate 

We can imagine building up the estimate in steps We can start with the estimate 
based on the equilibIium expected telUms This will lead to the malket pOltfolio as the 
~olution to the Mrukowitz problem As additional infOlmation is added, the solution 
will tilt away hom that initial solution The degree of dcpartUle, or tilt, will depend 
on the nalUIC of the adjoined equations and the degree oj confidence we have in them, 
as expressed by the valiances and covmiances of the enOl tenlL';; 

Example 8.5 (A double use of data) Refel to Example 8 2 and ~le data of Table 8 2 
Most 01 the summmy pall of this table is repeated here in Table 8 5 The first lOW or the 
table gives the IO-yem avetage lelUInS. It is easy to calculate the cOITesponding CAPM 
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TABLE 8,5 
Data for Tilling 

Stock 1 Stock 2 Stock 3 stock 4 Market Riskless 

aver 1500 1434 10 90 1509 1383 584 
var 9028 10724 16219 6827 7212 
cov 6508 7362 10078 4899 7212 
# 90 I 02 140 68 100 
CAPM 1305 1400 1701 1127 
tilt 13 82 1414 1417 1252 

TIll.! Itiuoriw/ tII'crage reflill/I' arc I/O! C(II/{// fa flu..' t/I'cJ'(/ge n!llm/I prl!tiiucd 
!;,. CAPM Baril IJI'timtlfe\' IW)'e l.'ll'ms hill r/Jt'\' WII he (;Ombillcd to IOlll/lIt'\I' 

C\',illwtt!j called tilt 
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estimates Fot example, 101 stock I we have ~ = 5 84 + 90( ]3,83 - 5 84) = 1305 
These estimates are c1eafly not equul to the historical averages 

To form new, combined, estimates, we assign a variance to each estimate Since 

there are 10 years of data, it is "PpIOp""te to use (8 II) to write ai' = a,/M lor 
the standard deviatIon ot the eHOI in the historical estImate of P, FOI stock 1, this is 

a:' = J90 28/10 = 3 00 
To assign enol' magnitudes to the CAPM estimates, we notice that these estimates 

are based on our estimates of 'f' {3" and PM Let us ignOie all errors except that 

contained rM. The standmd deviation of the elTor in r~ is thus {h x aM/M = 

90Jn 12/10 = 2 42 
For stock 1, it we treat these two estimates of PI> the historical and the CAPM 

(equilibrium) estimates, as independent, then they are best combined by) 

r = --'- + --'- --- + --- = 1382 [
?' r] [I I ]-' 

, (3 00)' (242)' (3 00)' (2 42)2 

(See Exercise 8) The new estimates for the other stocks me found in <I similar fashion 

8.8 A MULTIPERIOD FALLACY 

The CAPM theory is a beautilt,l and simple theolY that follows ve,y logically hom the 
single-period mean-variance theOlY of Markowitz In practice, howevel, both Illean­
variance theory and the derived CAPM are applied to situations that are inhercntly 
ITIultiperiod, such a~ the construction of portfolios of cOlllmon stocks that can be traded 
at any time 

The simplest way to apply mean-variance theory to the multipetiod case is that 
implied by the statistical plocedUlcs used to estimate parameters Speciflcal1y, a basic 

J Ihe:;e two e:;tl!mte:; nrc not reu!ly imlcl!eudellt siw.:e the historical umrket rclUrn is bu!-.ed ill purt Oil the 
Id:;torical retur1I of stock I. Furthermore the CAPM errors of differcllt stocks arc highly correlated since 
they ,!II depeud On the murkl-'i We ignore these correlations for the :mkc 01 :;implicity 
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peliod length-say, 1 month-is selected The Markowitz plOblem is fOlnlUlated for 
this period If this problem is solved, it should, according to the CAPM assumption, 
prescribe that the optimnl poltfolio weighting veclal W is equallo the market portfolio 
This idea can then be carried forward another peliod If it is assumed that the statistical 
propellies of the returns fOI the next period are identknl to those of the previous 
pCliod and the new lelurns are uncorrelated with those of the previous period, the 
new weighting vector w will be equallo that 01 the plevious period However, in the 
meantime the prices will have changed lclative to each other; and hence the vector 
w will no langei conespond to the market pOltiolio since the market weights me 
capitalization weights, nnd a price variation changes the capitalization This is a basic 
fallacy, or contladiction, since the Markowitz model keeps giving the same weights, 
but the market pOllfolio weights change evclY pedod 

Let us considel a simple example Suppose that there me only two stocks, cach 
having the same initial price of, say, .'111, the same mean and vmiance 01 return, and 
zero corrclation with each other Both stocks me in equal supply in the market-say, 
1,000 shares 01 each Suppose th,lt we have an amount Xo to invest By symmetry, the 
mean-variance solution will be w = (t ~); hence we should pUlchase equal amounts 
of both assets (equal dollar amounts, which is equivalent to equal numbers of shares 
since the pi ices of thc two stocks are equal) This solution corrcsponds to the market 
pOi tfolio 

Suppose th,u dUlillg the first period the first stock doublcs in value and the 
second does not change Hence now PI = $2 and P'2 = $1, and our total wcalth 
has incleased to I 5Xo Since the statistical propcrties remain unchangcd, the optimal 
mean-vari;:mce solution will still have w = (*' t) This implies thtlt we should again 
dividc OUI money evenly betwcen the two st;cks But if we do that we wi11 purchase 
t I 5Xo shares 01 stock I and! 1.5Xo shares of stock 2 This does HoI cOlTespond to 
thc m.llket pOltfolio, which still has equal numbcls 01 shmes ot the two stocks In 
general, as prices change relative to each othel, the dollar plOportions lepresented in 
the market also change; but a repeating mean-variance model dictates that the dollar 
proportions of an optimal porliolio should rem,lin fixed, which is a contradiction 

The fallacy can be I epaired by assllming that the expected returns change each 
period in a way that keeps the market portfolio optimal; but this destroy!'> the elegance 
of the model It is more satislying to develop a lull mliltipel iod applOach (as in 
Pmt 4 or this text) The muitipcriod approach reverscs some conclusions of the singlc­
pel iod theolY For examplc, the multi period thcory suggests that price volatility is 
actually desirable, rathel than undesirable Ncveltheless, the single-peliod hamcwork 
01 Mmkowitz and the CAPM me beautifultheolies that usheled in all em 01 qualHilative 
analysis and have plOvided an elcgant foundmion to support funhcI work 

8.9 SUMMARY 

Special analytical pi ocedUics and modeling techniques can make mean-variance port-
10lio theory more plilctical than it would be if the theory wCle used in its bmest form 
The procedures and techniques discussed in this clwptel include: (I) lacto! models to 
reduce the numbcr ot pmamcters requiled to specify a mean-variance slillcture, (2) use 
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at APT to "dd tactor; to the CAPM "nd also to avoid the equilibrium a,"umption that 
underlies the CAPM, (3) recognition of the errors inherent in computing pmameter 
estimates flom historical records of returns, and (4) blending of different types of 
parametel estimates to obtain intormed and reasonable numerical results 

A factor model expresses the rale of return of each asset as a linear combination 
of certain specified (random) factol vmiables The same factors me used for each asset, 
bUl the coefficients ot the linem combination 01 these {actols arc diBetent fOI different 
assets In addition to the factor tellllS, thcIC ute a constant term {I, and an cnol tell11 
ej The coefficients of the tactors arc called factor loadings In making culculations 
with the model, it is usually assumed that the eHor telIDs are unconelated with each 
other and with the factols 

A great advantage of u factOl model is that it has far fewel patameters than 
a standard mean-variance lepresentation In practice, between thtee and fifteen fac­
tors can plovide a good representation of the covariance properties of the relUlns of 
thousands of US stocks 

There ate scveral choices for fuctols The most common choice is the relUIn 
on the malket pottfolio A factol model using this single factol is closely related to 
the CAPM Other choices include vUlious economic indicatolS published by the US 
Government 01 factOIs extIacted as combinations of cellain usset lCttunS It is also 
helpful to supplement a factol model by including combinations of company-specific 
financial chatacteristics 

When the excess mmketletUIn is used as the single factor, the lesulting factOl 
model can be intelpreted as defining a stlaight line on a gruph with 1 M -I f being the 
horizon wi axis and 1 - 1 f the vertical axis This line is called the chatacteristic line of 
the asset Its vertical intercept is called alpha, and its slope is tl,e bew of the CAPM 
The CAPM predicts that alpha is zero (but in practice it may be nonzero) 

Arbitrage pricing theory (APT) is built directly on a tactor model For the theory 
to be useful, it is impottant that the undellying factor model be a good representation 
in the sense that the enol telms are unconelated with each othel and with the factolS 
In that case, the enor tellns can be divelsified away by fonning combinations 01 a 
large numbel of assets 

The result of APT is that the coerticients at the underlying factor model must 
satisfy a linear lelation In the speciul case whele the undedying facto I model has 
the single factor equal to the excess lelUIn on the markct ponfolio, the CAPM theOlY 
states that 0:' 0. This is a special case 01 APT, which states that the constant {l in the 
expression for the lelUIn of an asset is a lineal combination 01 the factol loadings of 
that asset Again, the difficult pall 01 applying APT is tl,e determination ot appropriate 
factors 

It is tempting to assume that the paw meter values necessary to implement mean­
variance thcory-the expected lelUInS, variances, and covUlhmces tOl a Markowitz 
1'00lllulation, or the {ll 's and blj's for a factOI model lepresentation-<:an be estimated 
trom histolical letUlns data Although some patmneter values can be estimated this 
way, others cannot In pUlticulal, 1'01 stocks the vaIiances and covatiances can be 
estinwted to within reasonublc accuHlcy by using about I yem of weekly 01 daily 
retUInS data Howevel, the expected lates OllelUlTI (the means) me subject to a blulfing 
phenomenon and thelefore cannot be estimated to within workuble accuracy, even if 
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EXERCISES 

a record of 10 yeurs of relUtnS is employed This blulTing phenomenon applies to the 
estimation of the a coeJ ficients in {actor models as well 

The statistical analysis of estimates based all historical data tells us that we 
must supplement such estimates of expected returns with estimates obtained by other 
methods This conclusIon is not altogether surplising It asserts that actIve portfolio 
management (as opposed to a passive strategy of investing only in the market portfolio 
and the risk-free asset) cannot be relegated to a pure computer analysis of historical 
data Some additional intelligence is required II this intelligence can be cast into the 
form of estimates, with aS50craled variances, these estimates can be logically combined 
with the estimates based on historical data to produce refined estimates with smaller 
errors An additional estimate of this type is provided by the CAPM formula itself 

The Markowitz mean-variance formulation of portfolio theory and the subse­
quent theories 01 CAPM, factor models, and APT provide an elegant foundation for 
single-period investment analysis These developments have elaboHlled the benefit~ 
01 divelsification and deepened OUi understanding or risk in a market environment 
These theories have also plovided approaches that can be implemented Indeed, this 
whole area has had a profound influence on the practice of portfolio management: 
index funds now abound, betas are computed and widely discussed in the financial 
community, large quadratic programming plograms have been written to solve the 
Markowitz problem, numerous factor models have been constructed and tested, and 
trillions of dollars have been managed with at least some guidance from these ideas 
and methods 

But mean-variance theory is not a universal investment panacea The aSl'umption 
that all investors fOCllS exclusively on mean and variance is questionable, it is hard to 
estimate the required parameter values, it seems unlikely (as requited of the equilibrium 
argument) that evelyone has the same estimates or the parametel values, and the 
approach must be modified in a multiperiod framewOlk Each of these difficulties can 
be ovelcome to some extent by extending the model, living with approximations, of' 
looking deepel into the properties ot the assets under consideration A great deal of 
innovative el'fort has been so devoted But ultimately, to make significant progress, 
we must expand the fundamental tools of analysis beyond mean-variance We must 
formulate a theory that, built on the insights 01 the mean-variance approach, treats 
unceltainty more explicitly and is directed at multiperiod situations 

1. (A simple portfolio) Someone who believes that [he collection of all stocks !-latisfiet; a 
single-factor model with the mmket portfolio serving as the factor gives you inform<ltion 
011 thlee stocks whieh make up 1\ portfolio (See Table 8 6) In l\ddition, you know thal the 
mJIket portfolio has an expected lUte of return of 12% and a standllid deviation 01 18% 
The risk-free rate is 5% 

«(I) What is the portfolio's expected rate of return? 
(b) A,I;suming the factor model is accurate, what is the stand!IId deviation of Ihis wte of 

relurn? 
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Stock Beta Standard deviation of random error term Weight in portfolio 

A 
B 
C 

110 
080 
100 

70 C/o 
23% 
10% 

2OC/(l 
50% 
30% 

2. (APT factors) Two stocks are believed to satisJy the two-Iuctol model 

'1::::::: (/1 +2/1 +h 

I, a,+3/,+4h 

In addition, there is" risk-lree asset with u rate oj return of 10% It is known that rl 15% 
and r'2. 20% What are the v:.tlucs 01 A{l, AI. ,md A~ for this model? 

3. (Princip,ll components (;1) Suppose there arc II random variables Xl, .\"1, ,XII und let V be 
the corresponding covariance matrix An eigenvector oj V is a vector v (VI, V1 , , I!,d 
such that Vv AV for some A (c<llIed an cigenvHlue oj V) The random y,uiable lil.\"1 + 
1)2.\:1 + +- 1!1l.l1l is a pril1cipal component. The first plincipal component is the one 
corresponding to the hugest eigenvalue of V, the sccond to the second largest, and so 
lorth 

A good candidnte for the Jactor in a one~Jactor model oj II assct rcturns is the first 
principal componcnt extractcd rrom the II retuflls thcmsclves; that is, by using the principal 
eigenvcctor of the covariance ll1utrix oj thc returns Find the first principal component Jor 
the data 01 Example 82 Docs this Jactor (when normalized) resemble thc rcturn on the 
markct portfolio? [Note For this part. you need an eigenvcctor calculator as a"'.lilable in 
most matrix operations pack,lgcs 1 

4. (Variance estimate) Let II' 101 i I, 2, ,/I, be independcnt samplcs oj " rcturn I oj 
mcan T and variance 0 2 Definc thc estimates 

I " 
'\' I, 

ilL. 
",,,1 

5. (Arc morc data hclplul"o) Suppose <1 stock's rate 01 return hus annual Il1c<Jn and variance 
01 T and o~ To estimate these qunntities, we divide I year into II equul periods and record 
the return Jor each period Lct Til and 0

1
; be the mc,m and the varinnce fur the rnte 01 

return for each period Specilicaliy, <ISSUme that Til ::::::: T /11 and 0;; = 01/11 If Til and al~ me 

the cstimates 01 these, thcn f IIfll and a~ ::::::: lIal~ Lct o(h and 0(0- 1) be the standard 
deviations of these cstim,ltes 

«(/) Show thut o( f) is independent 01 1/ 

(b) Show how 0(0-1) depends on /I (Assume the retUins arc normal nmdom varinbles) 
Answcr thc question posed as the title to this exercisc 
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TARLE R,7 
Record of Rates of Return 

Month Percent rate of return Month Percent rate of return 

10 13 42 
5 14 45 

.3 42 IS -25 
4 -27 16 2 I 
5 -20 17 -17 
6 35 18 37 
7 -3 I 19 J 2 
8 4 I 20 -24 
9 17 21 27 

10 I 22 29 

" -24 23 -19 
12 12 24 II 

6" (A record) A record of annual percentage rutes of return of the stock S is shown ill 
Table 8 7 

(a) Estimate the arithmetic meun mtc of return, expressed in percent per year 
(b) Estimnte the arithmetic standard deviation of these returns, again llS percent per year 
(c) Estimnte the llCCUIUCY of the estimates round in parts (a) and (b) 
(d) How do you think the anSWers to (c) would change if you had 2 years of weekly data 

instead of monthly data'? (See Exercise 5 ) 

7. (Clever, but no cigar 0) Gavin Jones figured out II clever way to get 24 samples of monthly 
returns in just over one year instead of only 12 samples; he takes overlapping samples; 
that is, the first sample covers hn I to Feb I, and the second sample covers Jan 15 to 
Feb 15, and so forth He figures that the error in his estimate of r, the mean monthly 
return, will be reduced by this method Analyze Gavin's idea How does the variance of 
his estimate compare with that of the usual method of using 12 nonoverlapping monthly 
returns? 

8. (General tilting 0) A general model for information about expected returns can be ex~ 
pressed in vector-matrix form as 

p = Pr+ c 

In the model P is an III x 11 m,ltrix, r is un lI~dimensional vector, and p and cure 
lII~dill1ensional vectors The vector p is a set of obsel v<ltion v<llues and c is a vector of 
errors having zero mean The error vector h",; a covariance matrix Q The best (minimum~ 
variance) estimate of r is 

(8 12) 

(ll) Suppose there is a single asset and just one measurement of the form p r + e Show 
that according to (8 12), we have r::::::: p 

(b) Suppose there are two uncorrelated measurements with values PI and P2, haVing 
variances a [ and a; Show that 
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(c) Consider Example 85 There are measurements of the form 

rl ::::::: JJI +e, 

rJ ::::::: jJJ +eJ 

r., ::::::: p., +e~ 

;:, ::::::: If + fJl i", 

1', = I} + {hj", 

;:3 ::::::: If+- {hiM 

r~:::::::lf+fJdM 
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where the el's are ullcorrelatcd, but where caYCe,. 1M) ::::::: 25a? Using the drtttl of the 
cxmnplc, nnd assuming the fJ,'S are known exactly, find the best estimates of the;:I's 
[Note You should only need to invert 2 x 2 mntrices 1 

The factor analysis approach to structuring a Jurnily of returns is quite well developed A good 
survey is contained in [I] Also see [2] The APT was devised by Ross [31 For a practical 
application see [41 For introductory presentations of factor models and the APT consult the 
finance textbooks listed as references for Chapter 2 The ttnalysis of errors in the estimation of 
return parameters from historical data hils long been available, but i:; not widely employed See 
[5J for a good treatment A det;:tiled exttmple of tilting applied to global asset management is 
contained in [61 
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GENERAL PRINCIPLES 

9.1 INTRODUCTION 

Fundamentally, thew ate two ways to evaluate a tandom cash flow: (I) directly, using 
measures such as expected value and variance; and (2) indirectly, by reducing the 
flow to u combination of other flows which already have been evaluated This chapter 
focuses on these two approaches, showing how they apply to singJe-peIiod investment 
problems-and showing how they work together to plOduce stlOng and uselul pricing 
I eiationships 

This chapter is more abstract than the previous chapters and serves primadly as 
preparation fOl the study 01 general mulliperiod plOblems in Parts 3 and 4 The reader 
may wish to skip ahead to Chapte, 10 (or even Chapter II) sincc most of the material 
in Part 3 can be undelstood without studying this chapter One strategy is to study the 
first part of this chapter-the first five sections, which cover expected utility theory 
Then laler, when approaching Part 4, the reader can come back to the second part 
of this chapter to study general pricing theory Other leaders may wish to study this 
chapter in sequence, for it is a logical culmination 01 the singlc~period framework 

9.2 UTILITY FUNCTIONS 

228 

Suppose that, silting here today, you have a number 01 different investment opportu~ 
nitics that could influence your wealth at the end of the yem Once you decide how 
to allocate your money among the altcrnatives, your luture wealth is governed by 
corresponding random variable~ If the outcomes flom all altcrnatives wele certain, 
it would be easy to ,ank the choices--you would select the one that produced the 
greatest wealth In the general random C'lse, however, the choice is not so obvious 
You need a procedure for ranking random wealth levels A utility lunction provides 
such a procedure 

FOI mally, " utility function is " function U delined on the real numbers (rep­
lesenting possible wealth levels) and giving a real value Once a utility function is 
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defined, .. Ill uitemalive 1l.1Ildom wealth leveLs me I .. mked by evaluating theil expected 
utility values Specifically, you compare two outcome random wealth variables 1: and 
v by compming the cOllesponding values ElV(r)] and E[V(v)]; the large, value is 
plcferred 

The specific utility iunction lIsed varies among individuals, depending on theh 
individual risk tolemnce rrnd their individual tlnancial environment The simpiesllltilily 
function is the lineal one U(x) r An individual using this utility function ranks 
random wealth levels by the!1 expected values This utility lunction (and an individual 
who employs it) is said to be risk neutral since, as will become clear latcl, no account 
for lisk is made Othcl utility functions do account for lisk 

The one general restIiction that is placed on the torm 01 the utility lunctIon IS 
that it is an ilIuemilIg continuous function That is, if x and \' are (nomandom) real 
values with r> v, then V(I') > V(,,) Other than this restriction, the utility function 
can, at least in theory, take any lorm In practice, however, certain standard types are 
popular Hele are some 01 the most commonly used utility functions (see Figure 9 I): 

1. Exponential 

lor some parameter a > 0 Note that this utility has negative values This negativ~ 
ity does not maHer. since only the ,e/arjpe values me important The function is 
increasing towmd zero 

2. Logarithmic 

Vir) In (r) 

Note that this Illnctiol1 is defined only 101 I' > 0 It has a severe penalty for 
x "" 0 In fact, il there is allY positive probability of obtailling all outcome of 0, 
the expected utility will be -00 

Ulx) 
Power 

Quadratic 

Logarithmic 

x 

FIGURE 9"1 Some popular utility fundions. Util­
ity fundions should increilse with weillth, since 
greilter wealth is preferled to less wealth Func­
tions with simple ilnillyUc forms are convenient for 
representiltion ilnc! ilnillysis 
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3. Power 

U(x) = bx" 

for some parameter b :0: I, b '" 0 This family includes (for b = I) the risk-neutral 
utility 

4. Quadratic 

U(x) = x b.t2 

for some parameter b > 0 Note tirat this function is increasing only for x < 1/(2b) 

We shall discuss how an investor might select an appropriate utility function 
after We examine a few more properties of utility functions and study some examples 
of their use 

Example 9.1 (The venture capitalist) Sybil, a venture capitalist, is considering two 
possible inveslment alternatives for the coming year Her first alternative is to buy 
Treasury bills, which will give her a wealth of $6M for sure The second alternative 
has three possible outcomes They will produce wealth levels $IOM, $5M, and $IM 
with conesponding plObabilities of 2, 4, and 4 She decides to use the power utility 
U(x) = x r/2 to evaluate these alternatives (where x is in millions of dollars) 

The tlrst alternative has an expected utility of J6 = 2A5 111e second has an 
expected utility of 2x JIo+ 4x./5+ 4xJT = 2x3 16+ 4x2 24+ 4 = 193 
Hence the first alternative is preferred to the second 

There is good justification for using the expected value of a utility function 
as a basis for decision making, Indeed, the approach can be derived hum a set of 
reasonable axioms that describe rational behavior I Overall, this method has the merit 
of simplicity, good flexibility due to the possibility of selecting a variety of utility 
functions, and strong theoretical justification 

Equivalent Utility Functions 

Since a utility function is used to plOvide a ranking among alternatives, its actual 
numerical value (its cardinal value) has no real meaning AlI that matters is how it 
ranks alternatives when an expected utility is computed It seems clear that a utility 
function can be modified in certain elementary ways without changing the ran kings 
that it provides We investigate this property here 

First, it is clear that the addition of 0 constal1t to a utility function does not affect 
its rankings That is, if we use a utility function U(x) and then define the alternative 

1 There are severa! axiomatic frameworks thnt lead 10 lhe conclusion that mtiollal investors use utility 
functions The carliest ~et is Ihe von Neumann-MorgcnslCm 'lxiolliS AnOlher importanl sel is the Savage 
axioms (Sec Ihe references ill the end of the chapler ) 
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function V(x) U(r)+h, this new function plOvides exactly the .sarne lunkings u.s the 
oJiginal This follows hom the lineaJity of the expected value opcHltion Specifically, 
ErV(x)l E[U(r) + bl ErU(t)] + /; Hence the Hew expected utility values me 
equallo the old values plus the constant b This addition does not change the wnkings 
of Val iOllS ,lilernalives 

In a similat lashion it can be seen Uml the lise of the function v (r) aU (r) 
101 a constant 0> 0 cloes not change thc .anking because ErV(t)] E[oU(r)] 

(lElU('ll 
In genclH1, given n utility function VCr), any function 01 the 101m 

Veri (lU(r)+b (9 I) 

with (f > 0 is a utility function equivalent to U (x) Equivalent utility functions give 
identicallanklngs [It can be shown that the tlansforl11Htion (9 I) is the only twnstOl~ 
mation that leaves the lunkings of all random outcomes the some 1 As an example, 
the utility function vet) = In(cr(l) with (f > 0 is equivalent to the logmithmic utility 
tunction U(r) = Inx because In(c r(/) = aln f + Inc 

In plactice, we lecognize that a utility function can be changcd to an equivalent 
one, and we may use this tact to scale a utility function conveniently 

9.3 RISK AVERSION 

The main pUipose of a utitity function is to plOvide a systematic way to lank alterna~ 
tives that capttnes the plinciple of Ib;k Hversion This is accomplished whenevel the 
utility function Lll concave We spell out this definition formally: 

COllcal'e utility alld risk al'ersioll A limellol1 U de filled 011 all haell'al [a, /1] (d leal 
l111mben i.\ ,wid 10 be cOllcm'e H 1'0l all\' a Ivilil 0 ::::: a .:::: I and (ll/\' rand \' ill [a, /; I 
Ibel e bold.\ 

U[(yx + (f ,,),,12:: "U(t) + (f ,,)U(\') (92) 

A llIWI\' li11101011 U i,\ ,\(lid 10 be risk Gl'el!)C 011 ra, b1 U il i\ COI1(aVe 011 la. hI l! U i\ 
COllU(I'e evel \'wlleu!, il 1\ \aid 10 be lisk al'el'Se. 

This definition is illusuated in Figure 92 The figure ShOW.ll a utility function 
tllat is concave To check the concavity we take two mbiumy points rand" as shown, 
and any a, 0::::: a .:::: I The point r" = ar + (l - a)" is a weigbted average 01 rand 
v, and hence r' is between rand " The value of the function at this point is gleHtcr 
than the value ilt r+ of the suaight linc connecting the function values tlt U (r) and 
U(\') In genelal, the condition for concavity is that the suaiglll line drawn between 
two points on the function must lie below (or on) the function itself In simple terms, 
an incleasing concave function has n slope that flattens for inclCasing values 

The same figUle can bc used to show how concavity of the utility function is 
related to risk avelsion Suppose that we have two altemativcs 1'01 future wealth The 
first is that we obtain eithel r or \', each with a probability of { The second is that 

we obtain ~ r + i \' with cellainty Suppose our utility function -is the one shown ill 
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U FtGURE 9 2 Concavity and risk aversion. The 
straight line connecting x and y lies below the 
function at any intermediate pOint As a special 
case, a sure value of )(. :::= \:.; + ~y is preferred 
to a 50-50 ch.:tnce of )( or-y -

Figure 9 2 The expected utility of the first alternative (the 50-50 chance) is equal to 
the value of the straight line at the point x~ = ~\ + ~Y. because this is the weighting 
of the two utility values The expected utility of the -second option (the riskless one) 
is equal to the value of the function at the point x* = ~x + ! V This value is greater 
than that of the first alternative when the utility function is concave Hence the sure 
wealth of *1." -+ ~)' is preferred to a 50-50 chance of x or )' Both alternatives have 
the some expecte-d value, bUl the one without risk is preferred 

A special case is the Iisk-neutral utility function U(.Y.) = x [and its equivalent 
forms V (x) = a.r +b with a > OJ This function is concave according to the preceding 
definition, but it is a limiting case Strictly speaking, this function represents risk 
aversion of zero Frequently we reSelve the phrase 1hk aWl1 ~e for the case where U is 
':iofetlv cOllce/ve, which means that there is strict inequality in (9.2) whenever x =F V 

Example 9.2 (A coin toss) As a specific example suppo~e thnl you face two options 
The first is based on a toss of a coin-heads, you win $10; tails. you win nothing 
The second option is that you can hove an amount M for certain Your utility function 
for money is .r .04x2 Let us evaluate these two olternatives The filst has expected 
utility E[U(.t)] = hto 04 x lO2) + to = 3 The second alternative has expected 
utility M 04M': If M = 5, tor example, then this value is 4, which is greater 
than the value of the first alternative This means that you would favOi the second 
alternative; that is, you would prefel to have $5 fOi .sure rather than a 50-50 chance 
of getting $ to or nothing 

We can go a step further and determine what value of M would give the same 
utility as the first option We solve M 04M' = 3 This gives M = $349 Hence 
you woutd be indifrerent bet ween getting $349 for sure and having a 50-50 chance 
at getting $to or 0 

Derivatives 

We can refate important properties of a utility function to its derivatives First, U (r) 
is increasing with respect to x if U'(r) > 0 Second. U(x) is stIictly concave with 
respect to .\ if U"(x) < 0 For example. consider the exponential utility function 
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U(r) = _e-a , We find U'(r) = (/e-a., > 0, so U is increasing Also, U"(x) = 

_a'2e-nl < 0, so U is concave 

Risk Aversion Coefficients 

The deglee ot risk Hvelsion exhibited by a utitity function is leiated to the magnitude 
of the bend in the function-the stronger the bend, the greater the risk aversion This 
notion can be quantified in terms 01 the second derivative 01 the utility function 

The degree at risk aversion is tormatly defined by the ArTow-Pratt absolute 
risk aversion coefficient, which is 

(/(C)= 

The term U1(r) appems in the denominator to normalize the coefficient With this 
normalization a(r) is the same tor a11 equivalent utility functions Basicalty. the co­
efficient function a(r) shows how lisk t1version changes with the wealth leve! For 
many individuals. risk aversion dccleaSes as their wealth increases, reflecting the lact 
that they arc witling to take more risk when they me fInanciatly secure 

A,< a specific example consider again the exponential utility function U (x) 
_e-U

.
I We have U'(r) ae-a.1 and U" (l") -a:!e-u.I TherefOle a(r) = a In this 

case the risk Hversion coelficient is constant lor aIt r If we make the same calculation 
for the equivalent utility function U (r) be-II

.\ we find that U'(r) bCW-H
•
I 

and U!I (r) = -lw:!e-I/·I So again a(t) = a 

As anothcl example, consider the logarithmic utility function U (x) = In r Herc 
U'(t) l/x and U"(t) = -t/r' Therefore a(t) = t/,: and in this case, risk 
aversion decleaseg as wealth incleases 

Certainty Equivalent 

Although the actual value of the cxpected utitity at a ",ndom wealth variable is 
meaninglcss except in comparison with that 01 anothcl alternative, there is a derived 
mea,stue wi!h units that do have intuitive meaning This meastrre is the certainty 
eqUJvulent.-

The certainty equivalent of 11 Hlndom weafth variable r is defined to be the 
amount at a certain (that is, risk-free) wealth that has a utility tevet equat to the 
expected utility of r In other words, the certainty equivalent C at a random wealth 
variable x is that value C satisfying 

U(n E[U(x)] 

The cCrlninty equivalent 01 a random vmiable is the same 10l atl equivalent utility 
I unctions and is measured in unit.s 01 wealth 

!This general t:ol\cept 01 ccrtuilHY c(luivnIL'IH iii ilHJircetly related to the concept with tlw iinme l\aO\c t1~ed 
in Seetiou 77 
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u FtGURE 9,3 Certainty equivatent. The certainly 
equivalenl is always Jess lhan lhe expecled value 
for a risk-averse inveslor Reprinted with permis~ 
sion of Fidelity lnveslments 

As an example, consider the coin toss example discussed eallier Our computa­
tion at the end of the example found that the certainty equivalent of the 50-50 chance 
of winning $!O or $0 is $.3 49 because that is the value that, if obtained with certainty, 
would have the same utility as the reward based on the outcome of the coin toss 

For a concave utility function it is always true that the ccrtninty equivalent of 
a random outcome x is less than or equnl to the expected value; that is, C :::::: E(x) 
Indeed, this inequality is another (equivalent) way to define risk aversion 

The certainty equivalent is illustrated in Figure 9 3 for the case of two outcomes 
XI and Y2. The certainty eqUivalent is found by moving horizonlalfy leftward from 
the point where the line between U (y,) and U (X2) intersects the vertical line drawn 
at E(x) 

9.4 SPECIFICATION OF UTILITY FUNCTIONS* 

Thew are systematic procedures COl assigning an appropriate utitity function to an 
investor, some of which are quite elaborate We outline a few general approaches in 
simple foml 

Direct Measurement of Utility 

One way to measure an individual's utility function is to ask the individual to assign 
certainty equivalents to various risky alternatives One particulmly elegant way to 
organize this process is to select two fixed wealth values A and B as reference points 
A lottery is then plOposed that has outcome A with probability p and outcome B with 
probability I p. For various values of p the investor is asked how much certain 
wealth C he or she would accept in place ot the lottery C will vary as p changes 
Note that the values A, B, and C arc values for total wealth, not just increments based 
on a bet A lottery Witll probability p has an expected value of e pA + (I p)B 
However, a risk-averse investor would accept less than this amount to avoid the risk 
of the lollery I-Ience C < e 
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~ ______ L-________ ~ ______ ~ 

A 

(al 

8 Expected 
value 

U(xl 

A 8 

(bl 
FIGURE 9.4 Experimental determination of utility function. (al For lotteries that pay either A or B and have expected 
value e, a pC/son is asked ro state rhe certainty equivalent C (b) Inverting this relation gives the uriliry function 

The values of C reported by the investor for various p's are plotted in Fig­
ure 94(n) Tile value of C is placed above the corresponding e A curve is drawn 
through these points, giving a function C(e) To define a utility function from this 
diagram, we normalize by setting VIA) A and V(8) 8 (which is legitimate 
because a utility function has two degrees of scaling freedom) With this normaliza­
tion, the expected utility 01 the lottery is pV(A) + (l p)V(8) pA + (1 p)8, 
which is exactly the same as the expected value e TherefOic since C is defined so 
that V (e) is the expected utilily of the lottery, we have the relation V (C) e, Hence 
C V-I (e), and thus the curve defined by C(e) is the inverse of the utility function 
The utility function is obtained by flipping the axes to obtain the inverse function, as 
shown in Figure 9 4(b) , 

Example 9.3 (The venture capitalist) Sybil, a moderately successful venture capi­
talist, is anxious to make her utility function explicit A consultant asks her to consider 
lotteries with outcomes 01 either $IM or $9M She is asked to follow the direct pro­
cedure as the probability p of receiving $IM varies For a 50--50 chance of the two 
outcomes, the expected value is $5M, but she assigns a certainty equivalent of $4M 
Other values she assigns are shown in Table 9, I 

Tire utility lunction is also shown in Table 9 I, since VIC) e (We just read 
tram the bottom lOW up to the next row to evaluate V) For example, V (4) 
However, the values ot C in the table arc not all whole numbers, so the table is not in 
the form that one would most desire A new table ot utility values could be constructed 

~IJ different values of A and B are used a new utility function is obtained, whlch is cquivl\Jent to the 
original olle; thut is it iii just l\ J\nC1!f trl\nsfomllUion of the original onc (Sec Exercise 5 ) 
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TABLE 901 
Expected Utility Values and Certainty Equivalents 

p 0 3 4 5 7 9 
e 9 H 2 74 66 58 5 42 34 26 I 8 
C 9 784 676 576 484 4 324 256 196 144 

by interpolating in Table 9 I For example (although perhaps not obviously), 

3 4(2 00 I 96) + 2 6(2 56 200) 
V(2) 

256 I 96 
265 

Parameter Families 

Another simple method of assigning a utility function is to select a parameterized 
family of functions and then detellnine a sllitable set of parametci values 

This technique is often carrjed out by as~uming that the utility function is of the 
exponential form U Cr) -e- II

.\' It is then only necessary to determine the parameter 
a, which is the risk aversion coefficient tor this utility function This parameter can be 
determined by evaluating a single lottcIY in certainty equivalent tClms For example, 
we might ask an investor how much he or she would accept in place of a loHelY that 
offels a 50-50 chance 01 winning $1 million or $100,000 Suppose tl1e investor felt 
that this was equivalent to a certain wealth of $400,000 We then set 

_e--1()O DOOa 5e-! (Joo OOOa 5e- JOO,OOOa 

We can solve this (by an iterative procedurc) to obtain a = 1/$623,4260 
Many people pICfer to use a logarithmic or power utility function, since these 

functions have the property that risk aversion decreases with weaHh Indeed, for the 
logarithmic utility, the risk aversion coefficient is aCl) I/r, and for the power 
utility function V(o') VXI' the cocfficient is a(x) (I V)/x Thcrc are also 
good argumenls based on the theory of Chapter 15, which suggest that these are 
appropriate utility functions tor investors concerned with long-term growth of their 
wealth 

A compromise, or composite, approach that is commonly used is to recognize 
that while utility is a function of total wealth, most investment decisions involve rel­
atively small increments to that wealth Hence if .to is the initial wealth and w is 
the increment. the proper function is U (-1:0 + w) This is approximated by evaluating 
increments directly with an exponential utility function _e-aw However, it we as­
sume thnt the true utility function is In x, then we usc a l/.to in the exponential 
approximation 

Example 9,4 (Curve fitting) The tabular results of Example 93 (for the ventule 
capitalist Sybil) can be expressed compactly by fitting a Clilve to the results If we 
assume a power utility function, it will have the form U (x) ax)' + c Our normal-
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ization requires 

a +c = I 

a9" + c = 9 

Thus a 8/(9)' -I) and c (9)'-9)/(9)' I) Therefore it only remains to determine 
y We can find the best value to fit the values matching U(C) to e in Table 9 I We 
find (using a spreadsheet optimizer) that, in fact, y = t provides an excellent fit 
Hence we set U (x) = 4ft - 3; or as an equi valent fOlm~ V (x) = ft 

Questionnaire Method 

The risk aversion charactclistics of an individual depend on the individual's feelings 
about risk, his or het cunent financial situation (such as net walth), the prospects 
tor financial gains 01 requirements (such as college expenses), and the individual's 
age One way, therefore, to attempt to deduce the appropriate risk factor and utility 
function for wealth increments is to administer a questionnaire such as the one .shown 
in Figure 95, prepared by Fidelity Invc!-ltments, Inc This gives a good qualitative 
evaluation, and the results can be used to assign a ,<.;pecitic function if desired 

In the questionnaire, note that five items (numbers I, 6, 7, 8, 9) concern the 
investor's situation, five others (numbers 2,4, 5, II, 12) concern the investor's in­
vestment approach (mllinly characterizing the level of comfOit for risk), one item 
charnctelizes the mmket, and one item asks about the value of a mnnaged fund This 
questionnaire therefore reflects the notion that risk tolerance is determined both by 
internal feelings toward risk and by an investor's financial environment 

9.S UTILITY FUNCTIONS AND THE MEAN-VARIANCE CRITERION* 

The mean-variance criterion used in the Markowitz portfolio problem can be recon­
ciled with the expected utility approach in either of two ways: (I) using u quadratic 
utility function, or (2) making the Llssumption that the random variables that charac­
terize returns are normal (Oaussian) random variables These two special cases are 
examined hel e 

Quadratic Utility 

The quadratic uti lily functioIl can be defined as U(t) ax - !b\-::!, where a > 

() 'Uld b ?: 0 This function is shown in Figure 96 
This utility function is really mermingful only in the range x :::: alb, fOi it is 

in this range that the function is increasing Note also that for b > 0 the tunction is 
striclly concave everywhere and thus exhibits risk aversion 

We assume that all random variables of interest lie in the feasible lange x:::: alb; 
thl.tt is, within the meaningful I ange of the quadratic utility function 
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FIGURE 95 Risk quiz, An ilwes!or's atli!ude !oward risk and !oward !ype of inVeSh))en! migh! be inferred from 
n::sponses !o a questionnaire such as !his one Source: Fie/elit}' fnvestments, 1991 Deve!oped in association wi!h 
Andrew Comrey, Ph D, Professor of Psychology. Univcrsi!y of California a! Los An~e!es 
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FIGURE 9.6 Quadratic utility function. This 
funclion is me.mingful (lS (l utili!y function only 
ior)\ <: alb 

Suppose that a portfolio has a random wealth value of V Using the expected 
utility criterion we evaluate the portfolio using the value 

EfU (v)] E(a)' - ~b)'2) 

a E(v) - !bE(v2) 

aE(v) - ~b[E(v)l2- !bvar(y) 

T he optimal portfolio is the one that maximizes this value with respect to all feasible 
choices of the random wealth variable V 

This can be seen to be equivalent to a mean-variance appJOuch First, for con­
venience, suppose that the initial wealth is I Then V corresponds exactly to the return 
R. Suppose also that the solution has an expected value E(v) M Then clearly, )' 
must have minimum variance with respect to all feasible v's with E(v) M 1+111 
(where III is the mean late ot retuJn) Since V R, it follows that the solution must 
concspond to a mean-variance efficient point 

Different mean-variance efficient points are obtained by selecting different val­
ues for the pal ameters a and b Likewise, if the initial wealth is not 1, a different 
factor is intloduced (See Exercise 5 ) 

Normal Returns 

When all returns are normal random variables, the mean-variance criterion is also 
equivalent to the expected utility approach for any risk-averse utility function To 
deduce this, select a utility function U Consider a random wealth variable V that is 
a normal random variable with mean value M and standard deviation a Since the 
probability distribution is completely defined by M and a, it follows that the expected 
utility is a function ot M and a: that is, 

E[U(v)J f(M,a) 

(It may be impossible to determine the function f in closed form, but that does not 
matter) If U is risk averse, then f (/vI, a) will be increasillg with respect to M and 
decreasing with respect to a Now suppose that the returns of all assets are normal 
random variables Then (and this is tile key property) any linear combination of these 
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assets is a normal random variable, with some mean and standard deviation (See 
Appendix A) Hence any portfolio of these assets will have a return thut is a normul 
random variable The portfolio pIOblem is therelore equivalent to the selection of that 
combination of assets that 1TI1iXimizes the function J (M, a) with lespect to all feasible 
combinations FOI a I isk-averse utility this again implies that the vmiance should be 
minimized tOJ any given value of the mean In other words, the solution must be 
mean-variance efficient Therefore the mean-variance cIiteIion is appropriate when 
all retUIJ1S me normal random vmiubles 

9.6 LINEAR PRICING 

We now turn attention to a fundamentul properly of secUIily pi icing-namely, that 
of linearity We shall find that this propCIty has plOfound implications and by itself 
explains much of the theory developed in ptevious chapters (The lemaining sections 
of the chapter might be best read after completing Pmt 3 ) 

We formalize the definition of a security as a random payoff variable, say, d 
The payoff is revealed and obtained at the end of the period. (The payoff can be 
thought of as a dividend, which justifies the use of the letter d) Associated WiU, a 
seculity is a price P As an example, we can imagine a security that pays d $10 
if it rains tomorrow or d -$10 it it is sunny, with zero initial price (This would 
correspond to a $10 bet that it will rain) Or we could consider a share of IBM stock 
whose value at the end ot a year is unknown The payoff d is that random value The 
price is the current price of a share of IBM 

Type A Arbitrage 

Linear pricing of securities follows from an assumption friat the most basic form 
of arbitrage is not possible We define this basic form of arbitrage as follows If 
an investment plOduce!) an immediate positive reward wHh no tuture payoff (either 
positive or negative), that investment is said to be a type A arbitrage. 

In othel words, if you invest in a type A arbitrage, you obtain money imme­
diately and never have to pay anything You invest in a seculily that pays zero with 
certainty but has a negative price It seems quite leasonable to assume that such things 
do not exist 

To see that lineal pricing tollows trom the assumption that there is no possibility 
of type A arbitrage, suppose that d is a security with pI ice P Consider the security 2d 
that always pays exactly twice what d p,rys Suppose that its price werc P' < 2P Then 
we could buy this double security at the reduced price, and then break it apart and sell 
the two halves at price P for each half We would obl1lin a net profit of 2P - P' and 
then have no further obligation, since we !-lold what we bought We have an immediate 
profit, and hence have found H type A albilrage This argument can be levelsed to 
show that the price ot the double seculily cannot be greater than 2P The argument 
also can he extended to show that tor any leal number 0' the price of O'd must be 0' P 
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Likewh:e, it d l and lh are secutities with prices PI and p;.. the price ot the 
secutity dl + lh must be PI + P,! For if the price of dl + d'1 were pi < PI + Pl. we 
could purchase the combined security for pi, then break it into d l and d2 and sell these 
for P, and P" l'espectively As a lesuit we would obtain a profit 01 P, + P, - pc > 0 
As befOle, this argument can be leversed it pi > PI + P'1 Hence the pIice ot d l + d2 

must be PI + P,! In general, therefore, the price ot adl + f3d2 mllst be equal to 
a P, + f3 P, T his is linear pricing:' 

In addition to the absence ot type A arbilIUge, the preceding argument assumes 
un ideal functioning ot the mmket: it aSSllmes thLlt securities can be ulbitrarily divided 
into two pieces, and it assumes that there Ute no transactions costs In practice these 
requirements are not mel perfectly, but when dealing with large number...; ot shutes of 
traded securilies in highly liquid malkets, they me closely met 

Portfolios 

Suppose now that there are /I securities dl, th, ,lIlI A portfolio ot these securities 
is represented by an n-dimensional vectol () = «()I, ()'2, ,011) The ith component (); 
lepresents the amount of ,e"wity i in the pOlttolio The payoff of the pOltfolio is the 
Hlndol11 vHtiable 

lI=t();d, 
i=1 

Under the a,sumption ot no type A alllilrnge, the price ot the pmtlolio e is lound by 
Iineurity Thus the tOlnl plice is 

H 

P= I),p, 
i=1 

which is a more genernl expression 01 Iinem pricing 
Recall that the CAPM formula in pricing lorm is linear 

Type B Arbitrage 

Another fOlm of arbitrage can be identified It an investment has nonpositive cost but 
has a positive probability 01 yielding a positive payo!! and no plObability of yielding 
n negative pflyoft, that investment is said to be a type B arbitrage. 

In other wOlds, a type B arbiuuge is a situation where an individual pays nothing 
(01 II negative amount) and hrls a chance ot getting something An example would be 
a tree 10ttelY ticket-you pay nothing for the ticket, but hHve a chance of winning a 
prize Clearly, such tickets me rfire in securities mmkets 

The two types ot arbitrage are distinguished only fOI clarity of the concepts 
involved In further developments we shall usually assume that neithel type A nor 
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type B is possible, and we shall just say that there is no arbitrage possibility. However, 
we huve shown that ruling out type A is all that is needed to establish linear pricing 
Ruling out type B as well allows Us to develop stronger relations, a.s shown in the 
next section 

9.7 PORTFOLIO CHOICE 

We at e now prepmed to put many of the earlier sections of this chapter together and 
consider the pOltfolio problem of un inveslor who uses an expected utility critetion to 
rank alternatives 

If x is a random variable, we write x 2: 0 to indicate that the variable is never 
less than zero We write _\ > 0 to indicate that the variable is never less than zero and 
it is stlictly positive with some positive probability 

Suppose that an investor has a strictly increasing utility function U and an 
initial weaHh W There are 11 securities dl , {h, ,dn The investor wishes to form a 
portfolio to maximize tile expected utility of final wealth, say, x We let the portfolio 
be defined by 0 = (0"0,, , 0,,), which gives the amounts of the various securities 
The investor's problem is 

maximize E[U(.<)] (93{1) 

" subject to LOid, =, (93b) 
i=1 

x 2.:0 (93c) 

" 
LOiPi:":W (93d) 
i=1 

This problem states thnt the investor must select a portfolio with total cost no greater 
than the initial wealth W (the last constraint), that the final wealth x is defined by 
the portfolio choice (the first constraint), that this final wealth must be nonnegative 
in every possible outcome (the second constraint), and that the investor wishes to 
maximize the expected utility of this final wealth 

We now show how this problem is connected to the arbitrage concepts 

Port/olio choice theorem Suppose that U(x) i'i cOlllilluous alld illClea5e~ toward 
illfillitv as x -+ 00 Suppose al50 thatthele is Q portfolio eO weh that L;I=I epdj > 0 
TheIl tile optimal portfolio plOblem (9 3a) IUH a mlution if alld olllv {f thele is 110 
arhitwge po Bihilitv . 

Proof: We shall only prove the Dilly if portion of the theorem Suppose that 
there is a type A arbitrage produced by a portfolio 0 = (Or, O2 , ,0,,) Using 
this portfolio, it is possible to obtain additional initial wealth without affecting 
the final payoff. Hence arbitrary amounts of the portfolio 0° can be purchased. 
This implies that E[U(x)] does not have a maximum, because given a feasible 
portfolio, that portfolio can be supplemented by arbitrary amounts of 0° to 
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increase EI U (t)l If there is a type B orbillage, it is possible to obtain (at zero 
or negative cost) an assel that has payoff x > 0 (with nonzelo probability 
of being positive) We can acquire arbitrarily huge amounts of this asset to 
increase E[ U (x) j arbitrarily Hence if there is a solution, there can be no type 
A or type B ar bitrage I 

We can go turther than the preceding result on the existence of a solution and 
actually characterize the solution We assume that there are no arbitrage opportunities 
and hence there is an optimal portfolio, which we denote by 01' We also asSUme 
that the corresponding payoff xt = L;'=I O/cll satisfies x1' > 0 We can immediately 
deduce that the inequality 2::;'=1 0, P, ::: W will be met with equality at the solulion; 
otherwise some positive fraction of the portfolio 0" (or 0') could be added to improve 
the result 

To derive the equations satisfied by the solution, we substitute x = L;I:::::I (),d, in 
the objective and ignore the constraint x 2: 0 since we have assumed that it is satisfied 
by strict inequality The problem theretore hecomes 

" 
subject to L 0, P, = W 

i:::::l 

By introducing a Lagrange multiplier A for the constraint, and using x* = L:':::::! O/,d, 
tor the payoff of the optimal portfolio, the necessary conditions are found by differ­
entiating the Laglangian (see Appendix B) 

with respect to each OJ This gives 

E[U'(x')d,j = )'P, (94) 

tor i = 1,2, ,II This represents II equations The original budget constraint 
L;I=I 01 Pi = W is one more equation Altogether, theretore, thele me II + I equa-
tions for the II + I unknowns Ot. O'l, ,011 and A It can be shown that A > 0 

These equations are l'el), important because they serve two loles First, and most 
obviously, they give enough equations to actually solve the optimal port/olio prob­
lem An example ot such II solution is given soon in Example 9 5 Second, since these 
equations are valid if there me no arbitrage opportunities, they provide a valuable chru­
acterization ot plices under the assumption of 110 arbitrage This use of the equations 
is explained in the next section 

If there is a risk-free asset with total return R, then (9A) must apply when 
d, = Rand P, = I Thus, 

), = E[U'(t')jR 
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Substituting this value of A in (94) yields 

E[U'(x')d,] 
RE[U'(x')] = Pi-

Because ot fhe importance of these equations, we now highlight them: 

Portfolio pricing eqllation 
ploblem (9 3a), lileu 

E[U'(x')di ] = ,Pi 

lOI i = 1,2, ,11, w/lCle A> 0 1/ rilele i'l a I irk-jiee aHel wi/lilelUlIl R, rlwll 

EfU'(x')diJ 
RElU'(x')] = Pi 

fOl i = I. 2, ,11 

(95) 

(96) 

Example 9.5 (A film venture) An investor is considering the possibility of investing 
in a venture to produce an entertainment film He has learned that such ventures 
Llre quile risky In this particular Case he has learned that there are essentially three 
possible outcomes, as shown in Table 9 2: (I) with probability 3 his investment will 
be multiplied by a factor of 3, (2) with probability 4 the factor will be I, and (3) with 
probability 3 he will lose the entire investment One of these outcomes will occur 
in 2 years He also has the oppo!tunity to earn 20% risk free over this peliod He 
wants to know whether he should invest money in the film ventule; and if so, how 
much? 

This is a .simplification ot a fairly realistic situation The expected retum is 
3 x 3 + 4 x I + 3 x 0 = I 3, which is somewhat better than what can be obtained risk 

free How much would "Oll invest in such a venture? Think about it tor a moment 
The investor decides to use U (.\) = In \ as a utility function. This is an excellent 

general choice (as will be explained in Chaptel 15) His problem is to select amounts 
OJ and O2 of the two available seculities, the film venture and the risk-free opportunity, 

TABLE 9"2 
The Film Venture 

Return Probability 

High SUccess 3 0 () 3 
Moder<lte success I 0 () 4 

Failure 0 0 0 :1 

71WH" {lI1! tlll!!1! po,Hib/1' o!/1UJ/III!\ with llHO­
Limed IOwl ICI!l{ll\ llnd prolmbilililJ\ \Iw\\," 
71wrlJ;\ llllrl {/ rilk-jrlJe 0PPoII/min' wit/! toml 
fetllml] 
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each of which has a unit price of I Hence his problem is to select (8,,8,) to solve 

maximize l 3 In(38, + I 28,) + 41n(8, + I 20,) + 3 In(l 28,)] 

subject to 8, + 8, W 

The necessmy conditions from (95), OJ by direct calculation, are 

.9 .4 
~--;--::-:- + --- = A 

8, + 128, 

.48 .36 
+ 8, + I 28, + I 28, 

These lWo equalions, together with the conslwinl 8! + 82 W, can be solved fOl 

the unknowns 8" 8" and A (A quadratic equation must be solved) The ,esult is 
8, 089W, 8, 911 W, and A I/W In other words, the investor should commit 
8 9% of his wealth to this venture; the rest should be placed in the risk-free security 

Example 9.6 (Residual rights) While pondering the possibility of investing in tl,e 
film venlure of the previous example, an investor discovers that it is also possible to 
invest in film residuals, which have a large payoff if the film is highly successful 
Each dollar invested in residual rights produces $6 if the venlure has high success and 
zero in the other two cases Now what should the investor do? 

He musl solve the porttolio optimization problem again with this new informa­
lion There are now three secUlilies: the original HIm venture, the risk-free allemalive, 
and residual rights He will purchase these in amounts 8!, (h, and 83. respectively The 
necessary equations are 

9 4 

38, + I 28, + 68, 
+ 

8, + I 28, 
A 

36 48 .36 

38, + I 28, + 68, 
+---+ 

8, + I 28, 
A 

1.8 

38, + I 28, + 68, 
A 

In addition there is the wealth constraint 8, + 8, + 8, W These equations have 
solution 8, -I OW, 8, 15W,8, 5W, and A = I/W In other words, the 
investor should short the ordinary HIm venture by an amount equal to his total wealth 
in order to invest in the other two allematives 

9.8 lOG-OPTIMAL PRICING* 

The porttolio pricing formula 

E[U'(r')d,j = AP" 1,2, . II (97) 

of the previous section is a general resull with many important ramiHcnlions It can be 
llansformed to produce a variety of convenient special pricing formulas This section 
presents one especially elegant version 
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The main idea ot these pricing relations is to tum the equation around to give an 
expression tor the prices Pi Remember that the prices were already known, and we 
used them to find the optimal x* Now we are going to use the optimal ,x* to recover 
the prices That is all there is to it 

We shall choose UCt) = In x and W I as a special case to investigate 
The Hnal wealth variable x' is then tlle one that is associated with the portfolio that 
maximizes the expecled logarithm ot tinal wealth In this special case we denote this 
t* by R", since R'+ is the relurn that is optimal for the logarflhmic utility We refer 
to R' as the log-optimal return. 

Since d In t/dx = I/x. the pricing equation (97) becomes 

(98) 

for all i Since this is valid lor every security i. it is. by linearity. valid for the 
log-optimal portfolio itself This portfolio has price I. and therefore we Hnd that 

Thus we have found the value of A for this case 
If there is a risk-free asset. the portfolio pricing equation (97) is valid for it as 

well The risk-free asset has a payoff identically equal to I and price 1/ R. where R 
is the lotal risk-free return Hence we find 

E(I/R') I/R 

Therefore we know that the expected value of I/R' is equal to I/R 
Using the value of A I, the plicing equation (98) becomes 

Since this is true for any securily i, il is, by linearity, also true for any portfolio I-Ience 
we have the tollowing general pricing resull: 

Log-optimal pricing TlIe plice P oj all), \"ecmitv (01 portfolio) with dividend d i<; 

(9.9) 

w/rele R" 1\ tlIe retUlIl 011 tlIe log-optimal pOlrjo/io 

Isn't this a simple and easily remembered resull? The formula looks very similar 
to the expression P d / R that would hold in the case where d is deterministic In 
the random case we just substilute R" tot R and put ,In expected value in front If d 
happens to be deterministic, this more general lesult reduces to the simple one because 
E(l/R') I/R 

Example 9.7 (Film variations) Suppose that a new secUlily is proposed with payoffs 
that depend only on the possible outcomes of the Him venture For example, one might 
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propose an inveslment that paid back something even it the venlure was a failure A 
general seculity of this type will have payoffs d l "t2, and ,t', corresponding to high 
success, moderate success, and failure, respectively We can tind the appropriate plice 
ot such a security by using the log-optimal portfolio that we calculated in Example 9 6 

Note that we cannol usc the simple log-optimal portfolio of the first film venlure 
example, because that example only considered the film venlure and the risk-free 
security It a new security were a combination ot those two, then we could use the 
simple log-optimal porlfolio fot pricing Bul it the new security is a general one, we 
must use the log-optimal portfolio of the second example, since it includes a complete 
sel of three seclllilies tor the three possibilities Any new seclllity will be a combination 
of these three 

The log-optimal porttolio has the following retUln: 

High Success Moderate Success Failure 

18 18 

These letUIns are calculated from the 81 's tound in the residual tights example For 
example, under high success R' -lOx 3 + I 5 x 12+ 5 x 6 18 

The value of a secmily with p:tyotls d', d', d' is E(dIR'), which is 

dl {(2 d3 
P 318 + 48 + 318 

You can tly this on the three secllIities we have used before; their prices should all 
tum out to be L For example, for the original venture, P 3fs + 4~ ! + ! I 

We shall leturn to this log-optimal plicing equation in Chapter IS For the 
moment we may regmd it simply .;ts a special version of the general pricing equation­
the version obtained by using In t as the utility tunction 

Rcmembel what is happening here The prices of the original securities were 
used to find x" Now we use x~ to find those prices again However, since pI icing is 
linear. we can find the price of any security that is a lineal combination of the original 
ones by the same formula 

What about a new security d that is not a lineal combination ot the original 
ones? We could entel it into the pricing equation as well, but the price obtained this 
way may not be correct The formula is valid only for the securities used to derive it, 
or for a linear combination of those Oliginal securities 

9.9 fiNITE STATE MODElS 

Suppose thtlt there are a finite numbel of possible states that desctibe the possible 
outcomes ot a specific investment situation (see Figure 97) At the initial time it is 
known only that one ot these states will OCCUI Atthc cnd of the period, one specific 
state will be revealed Somctimes states describe certain phySical phenomena For 
example, we might define two weather states for tomoIIOW: sunny and rainy We 
do not know today which of these will occur, but tomonow this uncertainty will be 



248 Chapter 9 GENERAL PRINCIPLES 

States FIGURE 9] States. Stales represent uncertainty in a 
simple but effective manner 

Initial ""'l~:=--------
point 

resolved, Or, us another example, the slales may correspond to economic events, as in 
the Him venture example, which has lhe three possible slules of high success, moderate 
success, and failure Normally we index the possible states by numbers II, 2, ,S} 

Slales define uncertainly in a very basic manner II is not even necessary to 
introduce probabilities of the states, altllOugh this will be done later Indeed, one of 
the main points of this section is that a great deal can be said without reterence to 
probabilities In an important sense, plobubililies are irrelevant fOl plicing relations 

A security is defined within the conleXl ot slales as a sel of payoffs-one payoff 
for each possible slale (again without reference to probabililies) Hence a securily is 
represented by a vector of the form d (d', d 2 , ,d') We use the notation ( ) 
lo denole veclors whose componenls are slale payoffs In lhis case, lhe componenl 
d', \ = 1,2, ,5, represents the payoff that is obtained if state \ occurs As befOle, 
associaled with a security is a price P Our earlier example, al lhe beginning of 
Section 96, of a security that pays $10 if it rains tomorrow and -$10 if it is sunny 
(with zero price), wOlks here as well; and it is nol necessary lo specify probabilities 
This seculity is leplesented as (10, -10) 

State Prices 

A special torm ot security is one lhal has a payoff in only one slale Indeed, we can 
deHne the 5 elementary state securities e,. = (0,0, .,0, 1,0, ,0), where the I 
is lhe componenl \ for s = 1,2, ,5 If such a security exisls, we denole its price 

by V', 
When a complele sel of slale seCUI ities exisls (one for each slale), it is easy lo 

determine the price of any othel security The security d = (d', d 2, ,d') can be 
expressed as a combinalion of lhe elemenlary slale securilies as d = L,;.=I d~e~, and 
hence by the linearity of pricing, the price of d mllst be 

s 
p = "2:,d'V/, (910) 

\:1 

If lhe elemenlary slale securities do nol exisl, it may be possible lo conSlrucl 
lhem artificially by combining secutities lhal do exisl FOI example, in a lwo-slale 
world, if (I, I) and (I, -I) exist, then one-hall the sum of these two securities is 
equivalent [0 the Hrst elementary state security (I, 0) 
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Positive State Prices 

If a complete sel of elementary securities exists 01 can be consllUclcd as a combination 
of existing securities, it is imporlanllhallheir prices be positive Otherwise there would 
be an arbitrage opportunity To see this, suppose an elemenlaty slale security e~ had 
a zero or negative price That security would then present the possibility of obtaining 
something (a payott ot I it the state J occurs) for nonpositive cost This is type 
B arbitrage So if elementary slale securities actually exist Ol can be consllUcled as 
combinations ot olhel securities, their prices must be positive to avoid arbitrage 

Actually, the condition of no arbitrage possibilily is equivalenllo the existence 
ot positive state prices as established by the following U,eorem: 

Positive state prices theorem A Jet oj po~itive J(a(e plice~ e.ri~t.\ if ami Dill\' if thew 
me no mbitrage OPPOltllllities 

Proof' Suppose nlstthatthele ale positive state prices Then it is clear that no 
arbillage is possible, To see this, suppose a security d can be constructed wilh 
d:: 0 We have d (d l ,d2 , ,dS) with d' :: 0 for each, 1,2, ,5 

The plice of d is P L~=I1/r,d', which since VI, > 0 tor all " gives P:: 0 
Indeed P > 0 if d '" 0 and P 0 if d = 0 Hence there is no mbiu age 
possibility 

To plOve the converse, we assume that thew are no arbitrage oppor­
tunities, and we make use ot the lesull on the portfolio choice problem ot 
Section 97 This proof requires some addilional assumptions (A more gen­
eral proof is outlined in Exercise 12) We assume thele is a poafolio eO such 
lIHit L::1=1 epd, > 0 We assign positive probabilities PH ~ 1,2, ,5, to 

the states atbitlarily, with L:~=I p\ 1, and we select a strictly increasing 
ulilily function U Since there is no arbitrage, there is, by the portfolio choice 
theolem of Section 98, a solution to the optimal pOllfolio choice problem 
We assume that the optimal payoff has fA< > 0 The necessary conditions 
(95) show that tor any seculity d with price P, 

E[U'(r')dj AP (9 II) 

where r' is the (l.ndom) payoft of the optimal portfolio and A > 0 is the 
Lagzange multiplier 

If we expand this equation to show the details of the expected value 
opclation, we tind 

I " 
P = !: L p,U'(r')'d' 

\=1 

whele U'(x")\ is the value of U'(x') in state ~ 
Now we define 

(912) 
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We see tl1at V', > 0 because p, > 0, U'(x')' > 0, and A > 0 We also have 

5 

P LV/,d' 
\":::::! 

showing thal the V/\'s are slale prices They are all positive I 

Nole that the theorem says that such positive prices exist-it does not say that 
they are unique If there are more slales UHm securHies, lhcle may be many different 
ways to assign slale prices that m'e consistent with the ptices ot the existing securities 
The theorem only says thal tot one ot these ways the slale prices are posilive 

Example 9,8 (The plain film venture) Consider again the original Him ventute 
Thele are three slales, bUl only two secutities: the venture itself and the riskless 
security Hence slale prices are not unique 

We can Hnd a set of positive state prices by using (9 12) and the values of the 
8;'s and A I found in Example 95 (with W = I) We have 

V" 
.3 

38, + I 28, 
221 

4 
1ft, 118 

+ 

Vl 1 = 
3 

128, 
274 

These stale prices can be used only to price combinalions of the original lWo 
securities They could not be applied, for example, to the purchase of residual rights 
To check the price of the original venture we have P = 3 x .221 + .l18 = I, as it 
should be 

Example 9,9 (Expanded film venture) Now consider the film venture with three 
available securities, as discussed in Exnmple 96, which inllOduces lesidual righls 
Since lhere are lhree slales and lhree securilies, lhe slate prices are unique Indeed we 
may Hnd the state prices by setting the price of the three securities to I, obtaining 

lVlt + V" 
I 2V/t + I 21/1, + I 2V/, = 

6V/I 

This system has the solution 

vrl =!, 
Thetefore the price of a security with payoff (d t , d', d') is 

P = kd l + ~d2 + t{{" 
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You can compUie this with the formula lor P given at the end 01 Examplc 97 It is 
exactly the sume 

Note also that these slate prices, aHhough ditlerenl 1'10111 those 01 the preceding 
example, give the same values for prices 01 securities that are combinations ot just 
the two in the original film vcnlUie For example, the price of the basic venture ilselt 
is P = ~ +! = I 

9.10 RISK-NEUTRAL PRICING 

Suppose there lie positive stute prices VI" J = 1,1, , S Then the price of uny 
security d = (d', d', , d l ) cun be round from 

s 
P = Ld'VI, 

1=1 

We now normalize these slale prices $0 that they sum to I Hence we let V/O 
L~-=I V'\> and lel {h = v/lll//O We can then wrile the pricing formula as 

,\ 

p = V/o Lq~(t (9 13) 
\=1 

The quantities 'I" \ = 1,2, , .5, cun be thought 01 as (artineiul) probabilities, since 
lhey are positive and sum to I Using these as probabilities, we can write the pricing 
forlTIula as 

P = VIoE(d) (914) 

where E denotes expectntion with respect to the artificial probabililies {h 
The value V/o has a usetul interpretation Since Vlo = L:;=I V'I, we see that V/o 

is the price ot the security (I, I, , I) tilal pays I in every state-a risk-tree bond 
By definition, its price is IjR, where R is the risk-free return Thus we can write the 
pricing forlTIula as 

1-
P = RE(d) (9 15) 

This equation states that the price of a securily is equal to the discounted expected 
value 01 its payon~ under the artificial probabilities We term this risl{-neutral pricing 
since it is exactly the formula that we would use iI the q\'s were real probabilities 
and we used a risk-neutral utility function (that is, the linear utility function) We also 
refer to the q\'s as risl{-neutral probabilities. 

This artifice is deceptive in its simplicity; we shall find in the coming chaptels 
that il has proJound consequences In fact a major portion of Pmt 3 is elaboration of 
this simple idea Here are thlCc ways to find the risk-neutral probabilities {h: 

«(/) The risk-neutral probabilities c!ln be found i'rom positive state prices by multi­
plying those prices by the risk-free rate This is how we defined the risk-neutral 
probabilities at the beginning 01 this section 
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(b) If the positive state prices were found from a portfolio problem and there is a 
risk-hee asset, we can use (9 6) to define 

P.\U'(x*)S 

q, = I:;=, p,U'(l")' 

This formula will be useful in our later work 

(916) 

(c) If there are 11 slales and at leasllI independent seclllilies with known prices, and 
no arbitrage possibility, then the risk-neullal probabilities can be found directly 
by solving the system of equations 

i:::::: 1,2, ,11 

tor the n unknown q~ '$ 

Example 9,10 (The film venture) We found the state pI ices of the full Him ventule 
(with three securities) to be 

Vf! ::::: k, Vf? :::::: !, 0/) ::::: ~ 

Multiplying tl1ese by the risk-flee rate I 2, we obtain the lisk-neutral probabilities 

q, = 2, q, = 6, 

Hencc the price of a secmity with payoff (d', d', d3 ) is 

P = 2d' + 6d,+ .2d3 

12 

Here again, this pricing formula is valid only for the original secUlilies or linear 
combinalions of lhose securities The risk-neutral probabilities were delived explicitly 
to price the original securities 

The Iisk-neutral pricing resull can be extended to the general situation that does 
not assume that there are a Hnite number of states (See Exercise 15 ) 

9.11 PRICING ALTERNATlVES* 

Let us review some alternative pricing methods Suppose that there is an environment 
of n securities for which prices are known, and then a new securily is introduced, 
deHned by the (random) cash How d to be obtained at the end of the period What is 
the correct price of that new security? Listed here me five allernative ways we might 
assign it a price In each case R is the one-period risk-free return 

1. Diw.:01mted eypecred value" 
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2. CAPM pI icing 

P=--~'---
R -I- -R) 

whelc fJ is the bela of the asset with respecllo the markel, and RA/ is the return on 
the market portfolio We assume that the market portlolio is equal to the Markowitz 
fund of risky assets 

3. eel tailltv eqIli\!{IielIt lOl III oj eAPIV! 

4. Log-optima/I" king 

where W is the return 011 the log-optimal portfolio 

5, RiJk-llell!Hll/JI icing, 

E(d) 
P=­

R 

where the expectation E is taken with respect to the risk-neutral probabilities, 

Method I is the simplest extension ot what is true for the deter ministic case 
In general, however, the price delelmined this way is too Inrge (al least for assets 
that are positively correlated with all others) The price usually must be reduced 
Method 2 reduces the answer obtained in I by increasing the denominator This method 
essentially increases the discount rale Method 3 reduces the answer obtained in I by 
decreasing the numerator, replacing il with a certainty equivalent Method 4 reduces 
the answer obtained in I by putting the retUln R· inside the expectation Ailhough 
E(I/R') = I/R. the resulting price usually will be smaller than that of method I 
Method 5 reduces the answer obtained in I by changing the probabilities used to 
calculate the expected value 

Methods 2-5 represent four different ways to modify method t to get a more 
appropriate result What me the differences between these four modified methods? 
That is, how will the prices obtained by the ditferent formulas diller') Think about it 
for it moment The answer, ot course, is thnt it the new security is a linear combination 
ot the original 11 securilies, all four of the modified methods give identical prices Each 
method is a way ot expressing linear pricing 

If d is not a linear combination of these II securities, the prices assigned by 
the different formulas may ditfer, tor these formulas are then being applied outside 
the domain tor which they were derived Methods 2 U11d 3 will always yield identical 
values Methods 3 and 4 will yield identical values if the log-optimal formula is used 
to calculate the risk-neutral probabilities Otherwise they will differ as well 

If the cash flow d is completely independent 01 the 11 original securities, then 
,,/I /il'e methods, including the first, will produce the identical price (Check itr) 
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We can obtain addilional methods by specifying other lllilily funclions in the 
optimal portfolio problem For the II original securilies, the price so obtained is inde­
pendent 01 the ulilily function employed Howevel, the methods plescnled here seem 
to be the most usetul 

9.12 SUMMARY 

This chapler is devoted to general theory, and hence il is somewhat more abstract 
than other chapters, but the tools presented are quite powerful The chapter should be 
leviewed unel reading Parl 3 and again after leading Parl 4 

The first pan of the chapter presents the basics of expected utility theory Utility 
lunctions account fOl lisk avclsion in financial decision making. and plOyicie a mOle 
general and more useful approach than does the mean-variance tramew01k In this 
new applOuch, an unceltain final wealth level is evaluated by computing the expected 
value of the utility of the wealth One ranclom wealth level is preferred to another if the 
expected utility 01 the first is grealel than that of the second Often the utility function 
is expressed in analytic form Commonly used functions are: exponential, logarithmic. 
power, and qlladratic A utility function U(t) can be transformed to V(x) aU(t)+b 

with a > 0, and the new lunction V is equivalent to U fO! decision-making purposes 
It is genelally assumed that a utility function is increasing, since more wealth 

is preferred to less A uLilily function exhibits lisk aversion if it is concave If the 
utility function has derivatives nnd is both increasing and concave, then U'(x) > 0 
and U"(x) < O. 

Conesponding to a random wealth level, thele is a l111mbcl C, called the certainty 
equivalent of that random wealth The certainty equivalent is the minimum (nonran­
dom) amount that an investol with utility function U would accept in place 01 the 
random wealth undel consideration The value C is defined such that U (C) is equal 
to the expected utility due to the random wealth level 

In older to use the utility function approach, an appropliate utility function must 
be selected One way to make this selection is to assess the certain equivalents of 
various lotteries, und then work backward to find the undedying utility tunction that 
would assign those cel tain equivalent values 

F/equently the utility function is assumed to be either the exponential fOlm 
_e-ax with {I approximately equal to the I eciprocal of total wealth, the logarithmic 
form In x, or a power form )I r J' with )I < I but close to 0 The parameteu; of the 
function are either fit to lottery responses or deduced trom the answers to a selies of 
questions about an investOl'S financiul situation and attitudes toward I isk 

The second part of the chap tel pIesents the outline of a general theory 01 linear 
pricing In perfect markets (without transactions costs and with the possibility of buying 
or selling any amount 01 each secwity), 5ecurity prices must be linear-meaning that 
the price of a bundle 01 seculities must equal the sum ot the prices of the component 
securities in the bundle-otherwise there is an arbitrage opportunity 

Two types of m bitrage are distinguished in the chapter: type A, which rules 
out the possibility ot obtaining something 1m nothing-right now; and type B, which 
rules out the possibility of obtaining a chance for something later-at no cost now 
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Ruling out type A arbitruge leads to line .. pI icing Ruling out both types A an B 
implies that the plOblem of finding the portfolio that maximizes lhe expected utility 
has a well-defined solution 

The optimal pOlttolio problem can be used to solve lealistic investment problems 
(such as the film venture problem) FurthennOlc, the necessmy conditions of this 
genelal problem can be used in a backwmd fashion to express a secUTity price as an 
expected value Dincrent choices of utility functions lead to different pricing formulas, 
but all at them are equivalent when applied to securities that are linear combinations 
at those considered in the original optimal portfolio problem Utility functions that 
lead to especially convenient pI icing equations include quadratic runctions (which lead 
to the CAPM lormula) and the 10gUlithmic utility function 

Insight and practical advantage can be derived from the use of finite state models 
In these models it is useful to introduce the concept of state pi ices A set 01 positive 
state prices consistent with the securities under consideration exists if and only if there 
me no arbitrage opportunities One way to find a set of positive state prices is to solve 
the optimal portfolio problem The state plices are detelmined directly by the resulting 
optimal pOltlolio 

A concept of major significance is that of risk-neutral pricing By introducing 
mtificial probabilities, the pI icing fOlTIluia can be WIilten as P = E(d)/R, whele 
R, is the return of the riskless asset and E denotes expectation with respect to the 
mtificial (Iisk-l1eutlUl) probabilities A set of risk-neunal probabilities can be found by 
multiplying the state prices by the total retum R 01 the lisk-fIee asset 

The pI icing process can be visualized in a special space, Starting with a set of 
II securities defined by their (random) outcomes di, define the space S of all linear 
combinations of these securities A major consequence of the no-arbitrage condition 
is that there exists another random variable v, not necessarily in S, such that the 
plice at any security d in the space S is E(vd) In pmticular, fm each i, we have 
PI = E(vdi ), Since v is not required to be in S, there arc many choices fot it One 
choice is embodied in the CAPM; and in this case v is in the space S Another choice 
is v = l/R+, where R.t is the leturn on the log-optimal pOitiolio, and in this case 
v is otten not in S The optimal pOltfolio problem can be solved using othel utility 
functions to find othel v's If the formula P = E(vd) is applied to a secUlity d outside 
of S, the result will genelHlly be diffelent 10l diflerent choices 01 v 

II the securities are defined by a finite state model and it there ate as many 
(independent) securities as states, then the market is said to be complete In this case 
the space S contains all possible tandom vectors (in this model), and hence v must 
be in S as well Indeed, v is unique It may be found by solving HH optimal pOltfolio 
problem; all utility functioHs will plOduce the SHme v 

L (Certainty cquivnlent) An investor has utility function U(x) == xl/-I for sahuy He has a 
new job offcr which pays $80,000 with a bonus The bonus will be $0, $10,000, $20,000, 
$30,000, $40,000, $50,000, or $60,000, each Wilh eqll,,1 probability What is the cCIWinty 
equivalent 01 lills job oftcr? 



2S6 Chapter 9 GENERAL PRINCIPLES 

2. (Wealth independence) Suppose Un investor hus exponential utility function U(t) 

_e- U1 aad nn initinl wealth level of W The investor is faced with an opportunity to 

invest un I1mOllnl wSW and obtain a random payoff x Show that his evaluation of this 
incremental iuvestnlcm is independent of W 

3. (Risk I1version invnriance) Suppose Vex) is a utility function with Arrow-Prau risk aver­
sion coefficient a(x) Let V (x) = c + bU(x) Wllat is rhe risk I1version coefficient of V? 

4. (Relative risk aversion) The Arrow-Pran relative risk aversion coefficient is 

xV"( .. ) 
/L(,') = V'(x) 

Show lhut the utility functions U (x) == in y and U (x) == yx 1' hl1ve const.:ml relative risk 
aversion coefllcicnts 

5. (Equivalency) Ayoung woman uses the first procedure de5cribed in Section 9 4 to deduce 
her utility function Vex) over the range A.::; \''::; B She USes the normalization V(A) == 
A, V(B) == B To check her result, she repeats the whole procedure over the range 
A' .:s x .:s B', where A < A' < B' < B The lesult i5 a utility function Vex), with 
V(A') == A', V(B') = B' [f the result5 are consistent, V and V should be equivalent; that 
is. V(x) = aV(.\") + b for some a> 0 nnd b Find (/ and b 

6. (HARAo) The HARA (fOl hyperbolic nbsolute risk nversion) cinss of utility functions is 
defined by 

I l' 
V(x)=-­

l' 
ax )' +b 
-1' 

b> 0 

The functions are defined for those values of x where the term in parentheses is nonnegative 
Show how the pmameters y, (I, and b can be chosen to obtain the follOWing special cases 
(or nn eqUivalent form) 

(0) Lineal or risk neutral: Vex) = r 
(b) Qllndratic: Vex) = x - !CX 2 

(c) Exponential: V (x) == _e-u1 [Try y == -00 ] 

(d) Power: V (x) = ,-"y 

(e) Logarirhmic: V(x) = Inx [Try V(x) = (I 1')I-I'((,y - 1)/1') 1 
Show that the Arrow-Pratt ri5k aversion coefficient is of the form I/(cx + d) 

7. (The venture capitalist) A venture capitillist with a utility fUnction V (x) = .JX cnrriecl 
out the procedure of Example 9 3 Find an nnalyticnl expression for C as a tunction of e, 
and for e as a function of C Do the vnlues in Table 9 I of the example agree with these 
expressions? 

8, (Celtnintyapproximationo) There is a Il .. '>eful approximation to the certainty equivalent 
fhat is easy to delive A second-order expansion near x = E(x) gives 

V(x) '" V (X) + V'(X)(x - Xl + !V"(X)(x - xl 

Hence, 

ElV(x)l '" II (x) + !V"(x)vnr(x) 
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On the other hand, it we let (. denote the certainty equivalent and assume it is close to x, 
\Ve can use the ftrst~order expansion 

VIc) '" V (x) + V'Ct* - Xl 

Using tilese apPloximations, show that 

l. ~ \: + UII(~) var(x) 
V/(,) 

9. (Quadwtic mean-v;:u-iance) An investol with unit wealth maximizes the expected value 
of the utility tUllction U(x) = en - b r'~)2 and obtains a lUcan-variance ctlicient pOlttolio 
A friend of his with wealth HI and the same utility function does fhe smne calculntion, 
but gets it dilfcrcnt pOI1t'oHo retuln Howevel, changing b to b' does yield the s<Une result 
What is the value of h'? 

10. (Portlalio optimization) Suppose an investor has utility function U There are II risky 
assets with rates at return 1'/1 i == 1,2, ,1/, nnd oUe risk~flcc asset with rate of return If 
fhe investOl has initial wealth ~~) SUppose that the optimal portfolio tm this investor has 
(landom) payon x~ Show that 

for I = I, 2, ,11 

11. (Money~back gualantee) The promotel of the film venture Onel!'> a new investment de~ 
signed to attlact reluctant investors One unit of this ncw investment Iw!') a payo!t ot $3,000 
it the venture is highly successful, and it relunds the Oliginal investment otherwise Assum­
ing that the other three investment altelU<J.tives described in Example 9 6 are also available, 
\vhat is the price 01 this money-back gumanteed investment') 

12. (General positive state prices result 0) fhe following is a gencIaI result trom matrix 
tlleolY: Let A be an 1/1 x II lnauix Suppose that the equation Ax = p can achieve no p 2: 0 
except p = 0 Then tllere is a vector y >- 0 with AT y == 0 Use this result to show that it 
there is no arbitrage, thele are positive state prices; that is, prove the positive state price 
theorem in Section 9 9 [Hillt [f there are S states and N securities, let A be an approplime 
(5 + I) x N matrix I 

13. (Quudrntic plicingo) Suppose an investor uscs the quadlatic utility lunction U(r) = 
~LX~ Suppose there are II lisky assets and one risk~lree asset with toWI return R Let 

R,II be the total retllln on the optinwl portfolio ot lisky assets Show that the expected 
return 01 nny asset i is given by the formula 

R, /I = ~,(RM /I) 

where f3, = cov(R.I1, R,)/a~, [Hillf Use Exercise 10 Apply the result to R,II itscll J 

14. (At the nack) At the hmse races one Saturday atteInoon Gavin Jones studies the racing 
torm and concludes that the hOlse No Arbiuage has a 259'0 chance to win and is pmaed at 
4 to I odds (FOl evelY dolla! Gavin bets, he receives $5 if the hOlse wins and nothing if 
it loses) He can either bet on this horse 01 keep his money in his pocket Gavin decides 
that he has a squure~lOot utility lor money 
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FORWARDS, FUTURES, 
AND SWAPS 

10.1 INTRODUCTION 

A derivative security is a security whose payoff is explicitly tied to the value of 
some other variable In practice, however, this broad definition is often restricted 
to securities whose payoffs are explicitly tied to the price of some other financial 
security A hypothetical exnmpie of such a derivative security is a certificate that 
can be redeemed in 6 months for an amount equal to the price, then, of [J share of 
IBM stock fhe certificate is a delivativc security since its payoft depends on the 
rutute price at IBM Most real derivatives are fashioned to have important risk contlol 
features, and the payoII rclation is more subtle than that of the hypothetical certificate 
example A more realistic example is a forward contract to purchase 2,000 pounds 
oj sugm at 12 cents pel pound in 6 weeks, There is no reference to a payoff-the 
contract just guarantees the purchase 01 sugar-but in fact a payoff is implied The 
payoff is determined by the plice 01 sugar in 6 weeks II the price 01 sugar then were, 
say, 13 cents pel pound, the contJact would have a vallie of I cent per pound, or 
$20, since the owner of the conti act could buy sugar at 12 ~ents according to the 
contract and then turn around and sell that sugm in the sugar mmket at 13 cents The 
contract is a derivative security because its value is derived nom the price ot sugar 
Anothel realistic example is 11 conti act that gives one the right, but not the obligation, 
to plilchase 100 shares of OM stock tal $60 per share in exactly 3 months This is 
an option to buy OM The payoff of this option will be determined in 3 months by 
the price of OM stock at that time If OM is selling then for $70, the option will be 
worth $1,000 because the owner of the option could at that time purchase 100 shares 
of OM fO! $60 per share according to the option contract, and immediately sell those 
shales fOI $70 each As a final example of a derivative security, suppose you take 
out a mortgage whose intclest rate is adjusted periodically according to 11 weighted 
nvetage of the I ates on new mortgages offered by major banks Your mortgage is 11 

derivative security since its value at later times is detelmined by othel financial prices, 
namely, prevailing interest rates 

263 
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As mentioned earlier, the payoff of a derivative security is usually based on 
the price of some other financial security In the fOiegoing examples these were the 
price of IBM shures, the price of sugar, the price 01 OM shares, and the prevailing 
interest rates The security that determines the value of a derivative security is called 
the underlying security. Howevel, according to the blOad definition, derivatives may 
have payolls that are functions of nonfinancial variables, such as the weather or the 
outcome of un election The main point is that the payments derived from a derivative 
.security are detellninistic functions 01 some other variable whose vnlue will be revealed 
belDl e or at the time 01 the payoff 

The main types of derivative seculitles me torward contracts, futures contracts, 
options, options on futures, and swaps I Such secutities play an important role in 
everyday commerce, fdnce they provide effective tools tor hedging risks involving 
the underlying variables For example, a business that deals with a lot of sugru­
perhaps a sugar producer, a processor, a marketeel, OJ a commercial user-typically 
faces substantial risks associated with possible sugar plice fluctuations Stich users can 
control that risk through the use of derivative securities (in this case mainly through 
the use of sugar futures contracts) Indeed, the primary function of derivative securities 
in a portfolio-lor businesses, institutions, or individuals-is to control ri.'ik 

This third Palt of the text addresses several aspects of derivative securities 
First, these chapters explain what these different types of securities are; that is, how 
forwards, I'utures, swaps, and options are structured Second, these chapters show, 
through theory and example, how derivative securities are used to control risk; that 
is, how derivatives can enhance the overall structure of a portfolio that contains risky 
components. Third, these chapters present the special pricing theory that applies to 
derivative securities This is the aspect that receives the most attention in the text. 
Finally, an important technical subject presented in this part of the text is concerned 
with how to model security price fluctuations. This is the primary topic of the next 
chaptel This current chapter is devoted to fotward and futures contracts, which are 
among the simplest and most useful derivative securities 

Belore starting this topic, we offel a small warning and a suggestion This chapter 
is not difficult page by page, but it contains many new concepts. You may find that 
your progress through the chapter is slower than in other chapters Since the next 
three chapters do not depend on this one, one reading slrategy is to scan the chapter 
briefly and then skip to Chapter II, returning to this one later However, the study 01 
forwards, tutures, and swaps is both practical and fascinating, so this chapter should 
be studied in depth at some point 

10.2 FORWARD CONTRACTS 

Forward and futllte!,' contracts are closely related structures, but forward contracts ate 
the simpler ot the two A forward contract on a commodity is a contract to purchase or 

lin al.klition to the primary types Ibted ilere. there arc IIWIIY other derivative securities, such as variable­
rate preferred stock. variable-rate mortgages. prime-mte loans, ilnd UBOR-based notes New derlvlltive 
securi\ie:-, arc crellted ,lOd marketed evel)' year by flnandal institution,~ Fortul1<ltely most or these ... nrlous 
linandul producl.~ clIn be analyzed by using just ;1 lew common principles 
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sell a specific amount ot the commodity at a specific pJice and at a specific time in the 
luture For example, a typical 100ward contract might be to pUichase IOO,OOO pounds 
of sugar <It 12 cents per pound on the 15th 01 March next year The contlacl is between 
two parties, the buyer and the seller The buyer is said to be long 100,000 pounds of 
sugar, and the seller is said to be short. Being long 01 short a given amount is the 
position of the party FOIward conti acts for commodities have existed for thousands 01 
years, 1'01 they are indeed a natural adjunct to commerce Both suppliers and consumers 
ot large quantities 01 a commodity frequently find it advantageous to lock in the price 
associated with .a future commodity dclivelY 

A lorward contract is specified by 11 legal document, the telillS 01 which bind 
the two parties involved to a .specific tlansaction in the future Howevel, a forwmd 
contract on a priced asset, such as sugar, is also a financial instrumelll, since it has an 
intrinsic value determined by the market 101 the underlying asset Forwmd conti acts 
havc been extended in modcm times to include undeJlying assets othel than physi­
cal commodities For example, many cOlporations use IOl\vard contracts on foreign 
cUn ency or all interest IHte instlLllnents 

Most 100ward contracts specily that all claims are settled at thc defined tuture 
date (or dates); both pm tics must carry out theil side of the agreement at that timc 
Almost always, the initial payment associated with a forwmd contHlct i.s zew Neither 
par ty pays any money to obtain the contract (although a security deposit is sometimes 
requiled of both plllties) fhe forward price is the price that applies at delivery This 
price is negotiated so that the initial payment is zew; that is, the value 01 the contract 
is zcw when it is initiated 

The opell market 1'01 immediate delivery at the underlying asset is called the 
spot market This is distinguished hom the forward market, which trades contracts 
tor luture delivery Duling the cOUise 01 a 100wmd contract, the spot market price 
may fluctuate Hence, although the initial value at a forward Conti act is zero, its later 
values will vary as u function at the spot price 01 the underlying asset (or assets) 
Later we shall explore the relation between the CUI rent value and the lorward price 

Forward Interest Rates 

We discussed a rather advanced torn1 01 lorward contract in Chapter 4 when studying 
the term structUie 01 interest rates The 100wnrd rate was defined as the rate of interest 
associated with an agreement to loan money over a specified intel val 01 time in the 
future It may not be apparent how to aflange 101 such a loan using standUid financial 
securities; but actually it is quite simple, as the following example illustrates 

Example 10.1 (A I-bill forward) Suppose that you wish to arrange to loan money 
lor 6 months beginning 3 months from noW Suppose that the lorward rate lor that 
period is 10% A suitable contract that implements this loan would be an ugreement 
lor a bank to deliver to you, 3 months from now, a 6-month Tleasury bill (thut is, 
a T-bill with 6 months to lun Irom the delivery date) The price would be agreed 
upon today lor this delivery, and the Tleasury bill would pay its ["ce value of, say, 
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$1,000 at maturity The correct price for a Treasury bill of face value $1,000 would 
be determined by the fOlward late, which is 10% in annual terms, or 5% for 6 months 
Hence the value of the T-bill would be $1,000/1,05 = $95238, so this is the price 
that today you would agree to pay in 3 months when the T-bill is delivered to you 
Six months later you receive the $1,000 l<lce value I-Ience, overall, you have loaned 
$952 38 tor 6 months, with repaymcnt 01 $ 1,000 This agreement exactly parailels 
that of other forward contracts, the special Jeature being that the underlying asset to 
be delivered is a T-bill The price associated with this contract directly reflects the 
forward interest rate 

The torwmd rates can be determined !'rom the term structure of interest rates, 
which in tum can be determined from cunent bond prices These forward rates are 
basic to the pricing of forward conti acts on all commodities and assets because they 
provide a point of comparison The payolT associated with a given forward contract 
on, say, sugar can be compared with one associated with pure lending llnd borrowing, 
Consistency (or lack of arbitlage opportunities) dictates the (theoretical) forward pJice, 
as we show next 

10.3 FORWARD PRICES 

As discussed earlier, there are two prices 01 values associated with a forward contract 
The first is the forward price F This is the delivery price ot a unit of the underlying 
asset to be delivered at a specilic future date It is the delivery price that would be 
specified in a forwmd contrllct wlitten today The second plice or value of a forward 
contract is its CUlIent value, which is denoted by f The forward price F is determined 
such that / = 0 initially, so that no money need be exchanged when completing 
the contract agreement Aflel the initial time, the vlllue f may vary, depending on 
vmiations of the spot plice of the underlying asset, the plcvailing interest rates, and 
other factors Likewise the forward price F of new Contillcts with delivel y terms 
identical to that of the originlll contract will also vmy 

In this section we detelminc the theoretical lorwurd price F associated with a 
forward contract written ut time 1 = 0 to deliver an aSSet at time T Our analysis 
depends on the stundurd assumptions thut thele ure no tJansactions costs, und that 
llssets can be divided mbitrmily Also we assume initiully thut it is possible to store 
the underlying usset without cost and thut it is possible to sell the llsset short Later we 
will allow for storllge costs, but stilI require that it be pOSSible to stOle the underlying 
usset for the duration of the conliact This is a good ussumption for many assets, such 
<IS gold 01 sugar or T-biJIs, but pedmps not good lor perishuble cOl1uTIodities such as 
oranges 

Suppose that at time 1 = 0 the underlying llsset has spot price Sand u forward 
conti act is being designed todllY 101 delivery at time T How can we detelmine the 
value 01 the forwuld contract? The key is to lecognize thut a forward contruct on a 
commodity can be used in conjunction with the spot millket 101 that commodity to 
borrow or lend money indilectly The interest rute implied by this operation must be 
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egllnl to the nOll11aI interest 1<Ite; othel\visc mbitrage can be set up between the direct 
and indirect methods ot lending 

Specilicnlly, suppose we buy one unit at the commodity at pricc S on the spot 
mmket und simultaneously enter <J tOlwmd contract to delivel at time 'J one unit at 
price F (thut is, we shOit one unit) We store the commodity until J and then deliver 
it to meet ollr obligution and obtain F The cnsh flow sequence associated with these 
two mmket opewtions is (-S, F), which is lully dctelmined at 1= 0 This must be 
consistent with the intelest rate between 1 = 0 and 1 = 1 Hence, 

S = d(O, T)F 

where d(O, T) is the discount factor between O,md J In other words, because storage 
is cost less, buying the commodity at price oS is exactly the same as lending an amount 
S 01 cash tor which we will receive an amount F at time T 

We cun assert the relution S = d(O, J)F using elementary plesent value analysis: 
the present value of the stre"m (-S, F) must be zelo Howevel, this type at present 
value analysis is bused on an assumption at pel tect mm kets, no transactions costS, and 
the 1Ibsence at m bitJage possibilities Next we fOllnalize the urbitrnge argument, not 
becuuse it is reulJy necessmy hele, but to set the stage for latel situations where the 
plesent vulue tormula bleaks down because of a market impertection 

Forward price formula Sllppme all aHet [all be .Holed at ::.elO £.'0.\1 and also sold 
)/UJlt 511ppo.~e tlw cmlell1.~pot plu.e (at t = 0) oj tile asset is S T1w tlleOleticalfont'wd 
plice F ((OJ delivelv at t = J) i_~ 

F = S/d(O, T) (10 I) 

H'llele d(O, J) ;1 tile di.~[oml1 faaO! between 0 and J 

Proof: FilSt suppose to the conumy th"t F > S/d(O, T) Then we construct 
11 porttolio uS lollows: At the present time bonow S amount of cash, buy 
one unit of the underlying asset on the spot market at price S, and take a 
one-unit shalt position in the forward market The total cost at this portfolio 
is zew At time J we deliver the asset (which we have stOied), I eceivrng <J 

cosh amount F, and we repay our lo"n ;n thc amount S/d(O, T) As a lesult 
we obtain" positive profit of F - 5/d(0, T) for zelo net investment This is 
un arbitrage, which we 1Issurne is impossible The details of these uansactions 
"Ie shown in Table 10 I 

TABLE HU 

At t = (I Inilial cosl 

Borrow $S ~S 

Buy ! unh and SlOre 5 
Shon ! fOlward 0 

lOla! 

Final receipt 

-51<1(0, T) 
o 
F 

F Sld(O, T) 
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TABLE 10 2 

AI t = 0 Inilial cosl 

L~d$S S 
Short 1 unit - ) 
Go long 1 rOlward 

TOJaI 

Final receipt 

S/d(O, T) 

° -I' 

,/d(O, T) - I' 

" F < S/d(O, T), we can construct the reverse portfolio However, 
this requires that we short one unit of the asset The shorting is executed by 
bon owing the asset from someone who plans to store it during this period, 
then selling the borrowed asset <It the spot price, and replacing the borrowed 
asset at time T The arbitrage portfolio is constlUcted by shorting one unit, 
lending the proceeds S from time 0 to T, and taking a one-unit long position 
in the forward market The net c<Jsh flow at time zero of this portfolio is zelO 

At time T we receive S/d(O, T) from aUI loan, pay F to obtain one unit of 
the asset, nnd we return this unit to the lender who made the short possible 
The details are shown in Table 10 2 

OUf profit is S/d(O, T)- F (which we might share with the asset lender 
101 making the short possible) 

Since either inequality leads to an urbitrage opportunity, equality must 
hold ~ 

The relationship between the spot price 5 and the forwmd plice F is illustrated 
in Figure 10 I The spot price starts at S(O) and varies randomly, arriving at SIT) 
Howevel, the forward price at time zero is based on extlapolating the cUlIent spot 
pJicc forward at the plcvailing rute of interest 

Example 10.2 (Copper forward) A manufactul er at heavy electrical equipment 
wishes to take the long side of a forwmd contract for delivery of copper in 9 months 
The cUlTent price at copper is 8485 cents pel pound, and 9-manth T-bills me selling 
at 97087 What is the applapliate lorwmd price 01 tile copper contract? 

T 

FIGURE 10,1 Forward price. The for.vard 
price at time zero is equal to Ihe projected future 
value of cilsh of amount 'l(OJ 
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II we ignme storage costs and use the T -bill Illte, the <IpPlOpJiate price is 
84 85/ 97087 = 87 40 cents per pound 

Example 10.3 (Continuous~time compounding) If there is a constant interest late 
I compounded continuously, the [oJ\vm'd late IOl1nuia becomes 

r: = Sed 

The discount late d(O, l) used in the 100ward plice tOlmula should be the one 
consistent with onc's access to the intclcst rate market Professional tradels 01 fOlwards 
tlnd lutures commonly use the repo rate associated with lepurchase agreements (These 
are agreements to sell a seclility and repUichase it a shOit time latel 101 a slightly higher 
plice) This repo rate is only slightly higher than the Treasury bill rate 

Costs of Carry 

The preceding analysis Ilssumed thut lhcle are no storage costs associated with holding 
the underlying asset This is not always the case Holding a physical asset such as 
gold entails storage costs, such as vault lental and insUiance iees Holding a security 
may, alternatively, entail negntive costs, replcsenting dividend 01 coupon payments 
These costs (OI incomes) atfect the theoretical torward price 

We shall use a disclete-time (multiperiod) model to describe this situation The 
delivery date T is !v! peliods (say, months) in the iutUie We assume that storag~ 
is paid peJiodicaIIy, and we measure time accOiding to these periods The carrying 
cost is «k) per unit tor holding the asset in the period from k to k + I (payable at 
the beginning 01 the period) The fOlWUid pJice at the asset is then detellnined by 
the sUlictUie at the lorwmd intelCst latefl applied to the holding costs and the asset 
itself 

Forward price forlllllia witll carryillg co!.'s 5uppo.~e all aHet Iw~ a holding Lo.H oj 
c(k) pel Illiit ill peliod k, alld the W)et UU/ be wId _~/wll 5upfJow! the initial ~pot p'lLe 
i.s 5 T1wlI the theOietica/ fOlIl'wd fJlic{! i!l 

5 '\/-1 elk) 
F=--+L--

d(O, M) k=O d(k, M) 
(102) 

whew d(k, !v!) i) the disumm ((ILlOl jiom k 10 !v! Equil'a/em/\', 

M-l 

5 = - L d(O, k)c(k) + d(O, M)F (103) 
{,,=o 

Proof: The simple vel sian 01 the plOol is this: Buy one unit oj the commod­
ity on the spot mmket and entel a fOlwmd conlillct to dclivel one unit attil11~ 
T The cosh flow stream associated with this is (-S-c(O), -e(I), -«2), 
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-c(M - I), F) The present value of thrs stream must be zero, and this gives 
the stated formula for F We shall also give" detailed proof based on the 
no-arbitrage condition 

Suppose that F is greater than tilat given by (10 2) We can set up an 
arbitrage as tollows At the initial lime, ShOlt one unit of a forwmd contract 
with forward price F and buy one unit of the asset for price S Simulta­
neously, borrow an amount of cash Sand anange to bonow amounts c(k) 
each time k = 0, I, , M I All of these loans are to be repaid at the 
final lime M, so each is governed by the conesponding forward interest rate 
between k and !v! The initial cash flow assodated with this plan is zero, 
since we immediately borrow enough to pay for the asset Furthel more, the 
cash flow during each period is also zero, because we bonow enough to 
cover the canying charge Hence thele is no net cash flow until the final 
period 

At the final period we deliver the asset as lequired, receive F, and 
repay all loans, which now total Sjd(O, MH I:;~ol c(k)jd(k, M) Under our 
inequality assumption this will represent an arbitrage profit, so our original 
assumption of inequality must be false The details are shown in Table 103 
Assuming short .selling is possible, we may reverse this argument to prove 
that the opposite inequality is likewise not possible (See Exercise 5) & 

The alternative formula (!O 3) is obtained from (102) by multiplying thf'Dugh by 
d(O, M) and using the fact that d(O, M) = d(O, k)d(k, M) for any k This alternative 
fonnula is probably the Simplest to understand, since it rs a standard present value 
equation We recognize that we can buy the commodity at plice S and deliver it 
according to a torward contJact at time M in a completely deterministic fashion The 
cash flow incurred while holding the commodity will be the carrying chmges and the 
delivery price The present value of this stream must equal the price S 

TABLE 10.3 
Details of Arbitrage 

Time 0 action Time 0 cost Time" cost Receipl al lime M 

Short 1 rorward 0 0 F 

Borrow $) -5 0 
-S(O,M) 
---
d(O,M) 

Buy I unit SpOl ) 0 0 
,II-I 

BOlTow c(k)'s forward -((0) -dk) L dk) 

- '"" d(k, M) 
Pay slorage dO) dk) 0 

--
.Ii-I 

Tola! 0 0 F 5 L dk) 
d(O, M) ,~" d(k. M) 
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Example 10.4 (Sugar' with storage cost) The current price of sugar is 12 cents per 
pound We wish to find the forward price of sugar to be delivered in 5 months The 
carrying cost at sugar is I cent per pound per month, to be paid at the beginning of 
the month, and the interest rate is constant at 9% per annum 

The interest rate is 09/12 = 0075 per month The reciprocal of the I-month 
discount rate (for any month) is 1.0075. Therefore we find 

F = (I 0075)5( 12) + [(10075)5 + (10075)' + (10075)3 

+ (I 0075)' + I 0075]( 001) 

= 1295 = 12.95 centS 

Example 10.5 (A hond forward) Consider a Treasury bond with a face value of 
$10.000. a coupon of 8%. and several years to maturity Cun'ently this bond is selling 
for $9.260. and the previous coupon has just been paid What is the forwmd price 
for deHvery of this bond in 1 year? Assume that interest rates for 1 year out are flat 
at 9% 

We recognize that there will be two coupons before deHvery: one in 6 months 
and one juSt prior to delivery Hence using the present value form (10 3) and a 6-month 
compounding convention, we have immediately 

$9 260 = F + .$400 $400 
• (I 045)' + 1.045 

This can be solved lor turned around to the form (10.2)] to give 

F =$9,260(1045)'-$400 $400(1045) =$9,294.15 

(in decimal form, not 32nd's). 

Tight Markets 

At anyone time it is possible to define several different forward contracts on a given 
commodity, each contract having a different delivery date If the commodity is a phys­
ical commodity such as soybean meal, the preceding theory implies that the forward 
pI ices of these various contracts will increase smoothly as the delivery date is rn w 

creased because the value of F rn (102) increases with M In fact, howeveI, this is 
frequently nol the case, 

Consider, for example, the pIices for soybean contracts shown in Table 10 4 
This table2 shows that the prices actually decrease with time over a certain range How 
do we explain this? Certainly the holding cost for soybean meal is not negative, In 
fact, holders of soybean meal are giving up an opportunity to make arbitrage profit 

To verify this opportunity, note that someone, say, a tarmer with soybean meal 
could sell it now (in December) at $188 20 and anange now to buy it buck in March 

2These are actually futures market prices, but they cun be assumed to be forward prices 
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TABLE 10.4 
Soybean Meal Forward Prices 

Dec 18820 
Jan 18560 
Mar 18400 
May 18370 
July 18480 

Aug 18550 
Sept 18620 
Oct 18800 
Dec 18900 

Tile delivery price5 do not illcrease 
COlltiIIllOI/,\/y Q\' tlte delivery dall! h 
jTlc/'e(/Hxl 

at $18400, thereby making ~ sure profit and avoiding any holding costs that would 
otherwise be incurred Why does the fanner not do this? The rcason is that soybean 
meal is frequently in short supply; those that hold it do so because they need it to 

supply other contracts or for their own use It is true that they could make a small profit 
by selling their holdings and purchasing a forward contract, but this small potential 
profit is less than the costs incuned by not having soybean meal on hand 

Likewise, arbitrageurs are unable to short a forward contract because no one 
will !cnd them soybean meal Hence the theoretical price relationship that assumes 
that shotting is possible does not apply 

The theoretical relation does hoJd in one direction as long as storage is possible 
This is the case for most assets (including soybean meal) When storage is possible, 
the fir st direction of tlle proofs of (10 I) and (10 2) applies In other words. 

S A/-t elk) 
F:'O--+L.:--

d(O. M) 1'=0 d(k, M) 
(104) 

muSt hoJd if there are no arbitrage opportunities 
Shorting, on the other hand, relies on theIe being a positive amount of storage 

available for bOIl owing over the period from 0 to T Someone, OJ some group, must 
plan on having excess stocks over this entire period, no matter how the market changes 
It stocks are low, or potentially low, short selling at the spot price is essentially 
infeasible That means that the second direction of the proofs of (10 I) and (10 2) 
does not apply Hence only the inequality (104) can be infened As shown by the 
example of soybean meal, this is, in fact, a fairly common situation 

The inequality can be converted to an equality by the artifice of defining a 
convenience yield, which meastlIes the benefit of hoJding the commodity In the case 
of soybean meaJ, tor example, the convenience yield may represent the value of having 
meal on hand to keep a tarm operating The convenience yield can be thought of as a 
negative holding cost, so if incOlporated into (104), it reduces the right-hand side to 
the point of equality One way to incorporate it is to modify (10 4) as 

S A/-t elk) M-t y 
F=--+ L.:--- L.:--

d(O. M) 1'=0 d(k. M) 1'=0 d(k. M) 

where V is the convenience yield per period 
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10.4 THE VALUE OF A FORWARD CONTRACT 

Suppose a forwmd contract was written in the past with a delivery pIice of p() At 
the present time I the forward price fOl the same delivery date is F; We would like 
to determine the cunent value I, of the initial contract This value is given by Ule 
tollowing statement 

Tlze value ala forward Suppml! afOlwClId ['O/tlIOC! f(n delivelY at time Til/the (Ulllll! 

11m (l delivelV Juice Fa (md a Cttl/CIt! (OI\1'ard plice F; The valtte oj lite ['ommo is 

I, = (Fi - FoJd{l, l) 

w/tele d{1, T) i.s tbe Ii~<k-flee cli.H .. oum faclOl O\lel the peliodjiom 110 T 

Proof: Consider forming the following portfolio at time 1: one unit long of a 
forward contract with deJiveIY price F, maturing nt time T, and one unit short 
of the contract with delivery price Fo The initial cash flow at this portfolio is 
f, The final cash fiow at time T is Fo - Fi This is a completely detellninistic 
stream. because the short and long delivery requirements cancel The present 
value of this portfolio is f, + (Fo F,Jd(r, n, and this must be zeIO The 
stated result follows immediately & 

10.5 SWAPS* 

Motivating most investment problems is a desire to transform one cash flow stream 
into another by appropriate market or technological activity A swap accomplishes this 
directly-for a swap is an agreement to exchange one cash flow stleam tor Hnothel 
The attraction ot this direct approach is evidenced by the tact that the swap market 
amounts to hundreds of billions of dollars Swaps are often tailored tor a specific 
situation, but the most common is the plain vanilla swap, in which one pm ty swaps 
a series of fixed-level payments tor a series of variable-level payments It is this tOim 
that we consider in this section As we shall see, such swaps can be regarded as a series 
of forward contracts, and hence they can be priced using the concepts of forwards 

As an example, considel a plain vanilla interest rate SWl1p Party A agrees to 
make a series of semiannual payments to party B equal to a fixed rate ot interest on 11 

notional principal (The term notional principal is used because there is no loan This 
principal simply sets the level at the payments J In return, party B makes a series of 
semiannual payments to party A based on a floating rate of interest (such H:-; the cunent 
6-month LiBOR rateJ and the same notional principal Usually, swaps are netted in 
the sense that only the difference at required payments is made by the party that owes 
the difference 

This swap might be motivated by the tact that party B has loaned money to a 
third party C under fioating rate terms; but party B would rather have fixed payments 
The swap with party A effectively transforms the floating rate stream to one with fixed 
payments 
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Fixed payments 

. I Swap counterparty I 
Spot payment 
equivalents 

FIGURE 10.2 Commodity swap, The power 
company buys oil on the spot market every 
month The company arranges a swap with a 
counlerparty (or a swap dealer) to exchange fixed 
payments for spot price payments The net effect 
is thaI the power company has eliminated the 
variability of its payments 

As an example of a commodity :'iwnp, consider an electric power company that 
must purchase oil every month fO! its powel' generation facility, If it purchases oil on 
the !'ipot market, the company will experience randomly fluctuating cash flows caused 
by fluctuating spot prices The company may wish to swnp this payment stream for 
one that is constant It cun do this if it can find a counterparty willing to swap This 
is shown in Figure IO 2 The swap counterparty agrees to pay the power company the 
spot price of oil times a fixed number of barrels, and in retum the power company 
pay, a fixed plice per barrel for the same number of banels over the life of the swap, 
The variable cash flow stream is thereby transfOimed to a fixed stl'eam 

Value of a Commodity Swap 

Consider an agreement where party A receives spot price for N units of a commodity 
each period while paying a fixed amount X per unit for N units If the agreement 
is made [01 M peJiods, the net cash fiow stream received by A is (SI - X, S, - X, 
S3 - X, , SA! X) multiplied by the number of units N, where Sj denotes the spot 
price of the commodity at time L 

We can value this stream using the concepts of forward markets At time zero 
the forward price of one unit of the commodity to be received at time i is F; This 
means that we are indifferent between receiving S, (which is cUirently uncertain) at i 
and receiving F, at i By discounting back to time zero we conclude that the current 
value of receiving S, at time i is d(O, nF" where d{O, i) is the discount factor at time 
zero for cash received at i 

If we apply this argument each period, we find that the total value of the stream is 

AI 

V = L d(O, O(F, X)N, (105) 
;=1 

Hence the value of the swap can be determined from the series of forward prices 
Usually X is chosen to make the value zero, so that the swap lepl'esents an equal 
exchange 

Example 10.6 (A gold swap) Consider an agreement by an electronics firm to receive 
spot value for gold in return for fixed payments, We assume that gold is in ample 
supply and can be stmed without cost-which implies that the swap formula takes an 
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almost trivial forlll In that case we know that the forward price is F, = S,,/d(O, i) 
Therefore (105) becomes 

v = [MStI- t,d(O,i)X] N 

The summation is identical to the value of the coupou payment stream ot a bond 
Using this fuct, it is easy to couvert the value tOIrnula to 

v = 1M S" - ~[8(M, C) + IOOd(O, M)]) N (106) 

where 8(M, C) denotes the price (relative to 100) of a baud at maturity M and coupon 
C per period Any value at C can be used (See Exercise 8,) 

Value of an Interest Rate Swap 

Considel a plain vanilla interest Jute swap in which putty A agrees to make payments 
or a fixed late 1 ot intetest on a notional ptincipal N while receiving floating rate 
payments on the same notional principal fOI Ivl periods The cllsh flow stream received 
by A is (q) - 1, ['I - 1, [2 - I, , [M - 1) times the ptincipal N The (,'S are the 
floating rates 

We can value the floating pOItion of this swap with a special ttick de lived 
from our knowledge at tloating late bonds (For a direct proof using forward pricing 
concepts, see Exercise 10) The floating rate cash flow stream is exactly the same as 
that generated by a floating rate bond of principal N and maturity M, except that 
no final principal payment is made We know that the initial value at a floating rate 
bond (including the final principal payment) is par; hence the value of the floating rate 
portion of the swap is par minus the present value at the principal received at M In 
other words, the value of the floating rate portion of the swap stream is N -d(O, M)N 

The vallie of the fixed rate portion at the stream is the slim of the discounted 
fixed payments, discounted according to the current term structure discount tates 
Hence overall, the value at the swap is) 

v [I-d(O,M) -I t,d(O,iJ] N 

The summation can be reduced using the method in the gold swap example 

10.6 BASICS OF FUTURES CONTRACTS 

Because to! ward trading is so useful, it became desitable long ago to standatdize the 
contracts and trade them on an Olganized exchange An exchange helps define universal 

J Typically account mus\ be nJodl:! for other dctuils For eXilnJple, interest rutes lor fixed paymwis arc 
usuully quoted 011 the busis of 365 duys per year wilerclls for flocllillg rutes Ihey arc quoted on tile busis 01 
160 days per yeur 
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prices and provides convenience and security because individuals do 110t themselves 
need to find an apprapIiate counterpmty anel need not lace the Iisk 01 countelparty 
default Individual COl1uacts are made with the exchange, the exchange itself being the 
countetpatty fot both long and short uadeIs But stundmclization presents Un interesting 
challenge Considel the likely mechanics of iorwald contI act trading on an exchange 
It is a relatively simple mattel to standmdize a set 01 delivery dates, guantities to be 
delivered, guality ot delivered goods, and delivery locations (although there are some 
subtleties even in these items) But standardization oj tOlward prices is impossible To 
appreciate the issue, suppose that contracts \Yew issued today at a delivery price ot 
Fo The exchange would keep twck at all such contracts Then tomonow the forward 
price might change und contracts initiated that day would have a dillerent delivery 
price FI In fact, the applopliate delivery price might change continuously throughout 
the day The thousand, of outstanding fOi ward eonuact, could each have a dilTerent 
delivery price, even though all othel terms were identical This would be a bookkeeping 
niglumare 

The way that this ha, been ,olved is through the bl illiant invention of a futures 
market as an alternative to a rorward mar ket Multiple delivery prices are eliminated 
by revising contracts as the plice environment changes Consider again the situation 
where contracts are initially wlitten at Fo and then the next day the price for new 
conuacts is FI At the second day, the clearinghouse associated with the exchange 
revises tlll the earlier contracts to the new delivery price FI To do this, the contract 
holders either payor receive the difJerel1ce in the two prices, depending on whether 
the change in price reflects a loss or a gain Specifically, suppose FI > Fa and I hold 
a one-unit long position with price Fo My contract price is then changed to FI and 
I receive FI - Fo 1'10111 the clearinghouse because I will later have to pay FI rather 
than Fo when I receive delivery of the commodity 

The process at adjusting the contract is called marking to market. In more 
detail it works like this: An individual is required to open a margin account with 
H btoker This account must contain a specified amount oj cash for each futures 
contract (usually on the ordel of 5-10% 01 the value of the coniracl) All contract 
holders, whether sllOlt OJ long, must have such an account These accounts ate marked 
to market at the end of each uuding day II the price of the futures contract (the 
price determined on the exchange) incleased that day, then the long pmties leceive a 
pralll equal to the pi ice chunge times the conuact guantity This prolll is deposited 
in theil mmgin accounts The shol t parties lose the same amount, and this amount 
is deducted from their margin accounts I-Ience each margin account value fluctuates 
hom day to day according to the change in the futures plice With this procedure, 
every long tutures conti act holder hns the same contract, as does every short contract 
holdel· At the delivelY elate, delivery is made at the lutures conuact price at that time, 
which mny be quite diHelent hom the tutures price at the time the contract was first 
purchased 

Actually, delivery of commodities under the terms ot a futures contract is quite 
rilre; ovel 90% of all pal ties close out their positions bef01e the delivery date Even 
commelc1al organizations that need the commodity J01 production fIequently close out 
theiI long positions and purchase the cOlTImodity from theiI conventional suppliets on 
the spot ma! ket 
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GRAINS AND OllSEEDS FIGURE 10.3 Corn futures quotations. Con-

lifetime Open 
tracts for various delivery dLltes are shown 
Source: ThE ll\/al1 Street Journal, November 10, 

Open High Low Sellie Change High Low Interest 1995 
CORN (CST) 5,000 bu ; cenls per bu 

Dec 336 337 326~ 327X - 3" 339 235~ 162,928 
Mr96 344 344 333~ 334~ 3% 344Y, 249~ 215,702 
May 344~ 345 333X 334 4~ 345 259~ 36,974 
July 342 342 331 331Y. 4X 342 254 47,422 
Sept 299 299 294~ 295 - 1X 300 260 8,173 
Dec 284 284U 280X 281 'X 284X 239 23,244 
Mr97 289;'<; 289)\ 286;'<; 286Y. 1Y, 289" 279Y, 796 
Jly 292 293Y, 290 290 1% 293Y. 284 176 
Dec 272 273 271 271X 273 249Y. 325 

Est vol 100,000; vol Wd 85,650; open int495,740, + 145 

Futures pI ices are listed in financial newspapels stich as J11e Wall SrI eel low 1lC1I 
An example listing tOI com JuttlJes is shown in FigUJe I () J The heading explains 
that a standard contHict fOJ COin is tOJ 5,000 bushels. and that PI ices ,lIe quoted in 
cents pel bushel The filst column 01 the table lists the delivCly dates 101 the vmious 
contI acts, with the emliest date being tiJ,st The next columns indicate various pI ices 101 
the previous lIading day: Open, High, low, Sellie, and Change, followed by litetime 
High and Low The last column is Open Interest. which is the total numbeJ oj contracts 
outstanding (Both the long and shalt positions ale counted, so open intelest leally 
Jeflects twice the number of contIllcts committed) Delivery ot the commodity may be 
made anytime within the specified month 

Mmgin accounts not only serve as accounts to collect 01 payout daily profits. 
they also gualantee that contJuct hoidels will not default on theh obligations MUIgin 
accounts llSUlll1y do not pl.ly interest. so the cash in these accounts is, in ettect. losing 
money Howevel, many bJOkeIs allow IleustlIy bills OJ othet secuIities, as well as 
cash, to serve as mmgin, so interest can be eamed indiJectly If the value ot u mnrgin 
account should drop below a defined maintenance mHigin level (usually about 75% 
ot the initial lTInrgin requirement). a margin call is issued to the contJact haidet, 
demanding additional mmgin Othelwise the l'uttlJes position will be closed out by 
taking al1 equal ;:tnd oppo.site position 

Example 10,7 (Margin) Suppose that MI Smith takes a long position or aile conti act 
in com (5,000 bushels) 1m MUlch delivelY at a price 01 $210 (pel bushel) And suppose 
the brokel requires margin ot $800 with a maintenance mmgin oj $600 

fhe next day the plice 01 this conliact diOps to $207 This represents a loss at 
03 x 5,000 = $150 The broker will take this amount flom the margin account, lenving 
a balance 01 $650 The lollowing day the plice chops again to $2 OS This represents 
an additional loss ot $100, which is again deducted trom the margin nccoum At this 
point the mar gin account is $550, which is below the maintentlnce level The brokel 
calls MI Smith and tells him that he must deposit at least $50 in his margin account, 
01 his position wili be closed out, meaning that MI Smith will be iOlced to give up 
his contHlct, leaving him with $550 in his account 
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10.7 FUTURES PRICES 

There is, at anyone time, only one price associated with u futures contract-the 
delivery price The value ot existing contracts is always zero because they are marked 
to market The delivery price will in general be different from the spot price of the 
underlying asset, but the two must bear some relation to each other In fact, as the 
maturity date appIOuches, the futu! es price and the spot price must approach each other, 
actually converging to the same value Thi!" effect, termed convergence, is illustrated 
in Figure 10.4. 

As a general rule we expect UM the (theoretical) futures price should have 
u close relation to the forward price, the delivery price at which forward contracts 
would be written Both me prices tor future delivery However, eVen if we idealize 
the mechanics of forwaJd and futures trading by assuming no transae-tions costs and 
by assuming that no margin is required (or that margin earns competitive interest), 
there remains a fundamental diHerence between the cash flow processes associated 
with forwards and futures With forwards, there is no cash flow until the final pe­
riod, where either delivery is made or the contract is settled in cush according to 
the difference between the spot price and the previously established delivery price 
With futures, there is cash flow every period after the first, the cash flow being de­
rived from the most recent change in futures plice It seems likely that this difference 
in cash flow pattern will Cause torward and futures prices to differ In fact, how­
ever, under the assumption that interest Jates are deterministic and follow expecla­
tions dynamics, as described in Chapter 4, the torward and futures prio"s must be 
identical if arbitrage opportunities are precluded This important result is esltlblished 
here: 

Futwes-fonvard equivale1lce Suppo')e that intele'Jt zater ale known to follow ex­
pectations d),l1C1mics Then the theoretical flllll1e') and fOlll'ard price~ of c011espollding 
conl1acH we ide11lical 

Proof: Let Fo be the initial futures price (but remember that no payment 
is mude initially) let Go be the corresponding fOJ ward price (to be paid at 

Price 

Futures 

Spot 

T 

FIGURE 10A Convergence of spot and 
futures prices. The futures price can" 
verges 10 the spot price as tIme ap" 
proaches the delivery date 
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delivelY time) Assume that thele me I + 1 time points and conesponding 
lutures pi ices, as indicated: 

o 1 

lel dU, k) denole the discounlr"le at lime j for a bond 01 unil face 
value maluring allime k (wilh j "k) 

We now consider two stl utegies for participation in the futures and 
JOlwurd mmkets, respectively 

Str'ategy A 

• Allil11e 0: Go long d(l,1) tUlures 

G At time i: Increase position to d (2, I) 

• Al lime k: Increase position lo d(k + I, T) 

G At time I 1: Inci ease position to i 

The profil al lime k + I from the previous period is 

(F'+I - F,)d(k + 1,1) 

As pUll 01 Slldlegy A we invesl lhis profil al lime k + I in the inlereslltile 
mUl keluntil lime J It is lhereby llanslormed to the final amounl 

d(k + 1.1) , 
-:-'c-----"c"-(Fk+1 - FA) = Fk+1 - Fk 
d(k+I,TJ 

The lolul profil tram sllalegy A is lherefore 

I-J 

pro filA I: Fk+1 - Fk F., Frl = 5, - Fo 
1.:=0 

Note that at each step befOle the end, thele is zelO net cash now because 
ali profit!' (or losses) are absorbed in the interest rate mmket Hence a zelO 

investment produces profitA 

Strategy B Take a long position in one tOlw31d contJact This Jequires no 
initial investment and produces a plOfit of 

profit" = S" Go 

We can now fOlln a new stlutegy, which is A - B This combined 
strategy also requires no cash flow until the final peliod, at which point it 
produces profit 01 Go Fa This is a detellninistic amount, and hence must 
be zero illhere is no opportunily for arbilrage Hence Go = Fo I 
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When intel est rates are not detel ministic-, the equivalence may not hold, but the 
equivalence is consideled quite accurate 1'01 purposes of loutine analysis The result 
is impOitant because it at leust partially justifies simplifying an analysis of futures 
hedging by consideling the corresponding hedge with forward contracts, where the 
cash !low OCCUIS only at the delivel y or settlement date 

Example 10.8 (Wheat contracts) In JanualY a large producel of commelcial nour 
and bread wishes to lock in the pI ice fOi tl large ordel of wheat The plOducer would 
like to buy 500,000 bushels of wheat forward 101 May delivery, AltilO11gh this plOducer 
couid probably anange a special forward contJact, he decides instead to use the tutUles 

market, since it is Olganized and more convenient The producel lecognizes (,md 
velifies) that the tutUles pike is equal to the tOlwmd plice he could negotiate 

11le current futules (or fOlward) price fOI May delivery is $3 30 per bushel. 11le 
size of a standard wheat futules contlact is 5,000 bushels Hence the producel decides 
that he needs 100 contracts, 

Detoils of the lutures market transaction are shown in Table 105 FOl simplicity 
this table shows accounting on a monthly basis, rather than on a daily basis 

The left part of the table shows the dates and the corresponding hypothetical 
prices (in cents) for 0 future, contract for May delivery The next section, headed 
"Folwald," shows the result of entering 0 lorward contract for the delivery of 500,000 
bushels of wheat in MHY, followed by the subsequent closing out of that contract so 
that delivery is not actually taken< There is no cash flow associated with this contract 
until Moy Then tilele is the plOfit in Moy of 22 cents pel bushel, or a total of 
$110,000 

Tile next section 01 the table, headed "FuttlIes contracts I," shows the accounting 
details oj entering n 100 conti nct long futtlIes position in JanuUl y and closing out this 
position in May It is assumed thot an account is established to hold all profits and 
losses It is also nssumed that the plevaiiing interest rate is 12%, or 1 % per month, 
nnd that thele are no margin lequiIements Note that no money is lequired when the 

TABLE 10,; 
Futures and Forward Transactions 

Forward Futures contracts 1 Futures contracts 2 

Date Price Profit Pos" Profit Interest Balance Pos" Profit Interest Balance 

Jan I 330 $0 100 $0 $0 $0 97 $0 $0 $0 
Feb I 340 a 100 50,000 a 50,000 98 48,500 0 48,500 
Mat I 355 a 100 75,000 500 125,500 99 73,500 485 122,485 
Apr I 345 a 100 -50,000 1,255 76,755 100 -49,500 1,225 74,210 
May I 352 110,000 a 35,000 768 112,523 a 35,000 742 109,952 

--- --- ---
Total $110.000 $110,000 5107,500 

T/le de/mil 0/ (I forw(lrd c murau. (/ fixed fmlll CI WII/I(/U. (11/(1 (I flltlllc'l umt{(){ / Itm/egv deliwwd /0 1II11l11( (/ /0/11'(1/"{1 (Iff! 

I/}()\I'll 
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order is placed A plOlit 01 $50,000 is obtained in the second month because the 
futures price inclcased by 10 cents This profit enters the account The next month's 
balance leflects the additional plOfit and interest ot the account The total cash flow is 
$110,000, exactly as in the case 01 the lorward contract Howevel, because the cash 
flow QCCU1S at vUlious times, the nctuai final balance is $ i 12,523 (The Jesuit is mOle 
favorable in this case because prices lose eorly, but that is not the point) 

The third section or the tuble, headed "Futures contHicts 2," shows how lutures 
can be used to duplicate a tOiw31d contJact more plecisely, by using the constlUction 
in the plOoi ot the futures-fOlwmd equivalence Jesuit Since interest is I % a month, 
the discount lute incleases by about i% pel month as well Hence in this approach the 
plOducel initially goes long 97 contracts and incleases this by I contract pel month, 
finally leaching 100 contracts Exactly the same accounting system is used as in the 
previous method In tllis case the lesulting final balance is $109,952, which is velY 
close to the $110,000 figure obtained by a pUle fOlward contract-the slight difference 
being due to rounding of the discount rate to even percentages so that integlal nUll1bCIS 
of conti acts could be used 

Ihis example illustJutcs that there is indeed a slight ditrelence between 10rw31d 
and tutUles contJact implementation if 11 constant contract level is used In practice, 
however, the difference between using forward and futules contracts is small over short 
intervals of time, such as a lew lllomhs FunhenTIOle, if intelest rates nre deterministic 
and follow expectations dynamics, then the difference between using futures and using 
torwards can be reduced to zero within rounding errOrs caused by the restriction to 
integlal numbers of contracts 

10.8 RElATION TO EXPECTED SPOT PRICE* 

At time zero it is logical to lorm an opinion, Oi expectation, about the spot price 01 
a commodity at time I Is the current futures plice lor delivery at time J u good 
estimate 01 the [utule spot plice; that is, is F E(ST)" 

If tllele we,e inequality, say, F < E(SI), a speculatOl might take a long position 
in futures and then <..It time T purchase thc commodity at F according to the contract 
and sell the cOlllnJodity at S,{ 101 all expected profit 01 E(S,{) F lithe inequality 
wele in the other dilection, the investol could cany out the leverse plan by taking a 
short position in futures Hence speculators are likely to respond to any inequality 

Hedgers, on the other hand, participate in futures mainly to reduce the lisks 
ot commercial opeultions, not to speculate on commodity plices Hence hedgels are 
unlikely to be influenced by small discrepancies between tutures pi ices and expected 
spot prices 

Now suppose that there happen to be many mOle hedgers that ate short in lutUles 
than those that are long Fm the malketto balance, speculatOls must entel the nlUlket 
and take long positions They will do so only ilthey believe F < E(SI) Convelsely, 
if there nre more hedgels that are long in futUles than tho~e that me short, specuJatOls 
will take the COl responding shOlt position only if they believe F > E(Sj) 
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The two sittlation~ have been given special names II the futures price is below 
the expected futu! e spot pi ice, that is normal backwardation. If the futures price it-> 

above the expected future spot plice, that is contango. 

10.9 THE PERFECT HEDGE 

The plimary use ot lutures c-ontlucts is to hedge against lisk Hedging stJategies can 
be simple OJ complex; we shall illustrate some of the main approaches to their design 
in the remainder of this chapter 

The simplest hedging stJategy is the perfect hedge, where the Iisk associated 
with a future commitment to deliver OJ lcceive an asset is completely eliminated 
by taking an equal and opposite position in the futures market Eguivalently, the 
hedge is constructed to effectively make anticipated future market purchases Ol sales 
immediately This locks in the price of the futures transaction; there is absolutely no 
price lisk Such a strategy is possible only if there is a futures contmct that exactly 
matches, with respect to the nattlle of the asset and the terms ot delivery, the obligation 
that is being hedged 

Example 10,9 (A wheat hedge) Consider again the producer of flour and bread 01 
Example 108 The producer has received a large order for delivery on May 20 at a 
specified price To satisfy this order, the producer will purchase 500,000 bushels of 
wheat on the spot mar ket shortly before the order is due The producer has calculated 
its profit on the basis of CUlIent pi ices for wheat, but iJ the wheat price should measur­
ably increase, the order may become unprofitable The producer can hedge by taking 
an egual and opposite position in wheat futures (That is, the producer is obligated 
to supply plOcessed wheat, SO it goes opposite the obligation and purchases wheat 
Altelnatively, the producer may think of it as pun/w'Iillg emil' wheat that it must 
ultimately purchase) 

If we ignOlc the slight disclepancy between futures and fOlwards due to differ­
ences in cash now timing, we can treat the futures conti act just like a tOlward The 
pl'Oducel wiii close out the position in the futUles mUlket and then pUlchase wheat in the 
spotlllUlket Since the plice in the spot market will be the same as the closing futures 
priee, the net eftect is that the plOducer pays the original price of $3 30 per bushel 

Example 10.10 (A foreign currency hedge) A US electronics !irm has received 
an Older to sell equipment to a GeJ man customel in 90 days, The pJice of the Older is 
specified as 500,000 Deutsche murk, which will be paid upon delivery The U.S finn 
faces risk associated with the exchange late between Deutsche mark and US dolims 

The firm call hedge this foreign exc-hange risk with four Deutsche mark contracts 
(125,000 DM per contract) with a 90-day maturity date Since the firm will be receiving 
Deutsche mark in 90 days, it hedges by taking an egual and opposite position now­
that is, it goes \/zOfr lour c-ontJacts (Viewed alternatively, after receiving Deutsche 
murk the firm will want to sell them, so it sells them early by going short) 



10,10 THE MINIMUM-VARIANCE HEDGE 283 

10.10 THE MINIMUM-VARIANCE HEDGE 

It is not always possible to 101m a per/eet hedge with lutures contJact~ There may be 
no contJact involving the exact asset whose value must be hedged, the delivery dates 
01 the available contract, may lIot lIlatch the asset obligation date. the amount of the 
asset obliguted lllay not be an integlal lllultiple 01 the eontJact size, there may be a 
lack 01 Jiquidity in the iuttllcs mmkel, OJ the delivery tellllS muy not coincide with 
the those of the obligation In these situations, the original lisk cannot be eliminated 
completely with a futures contract, but usually tile risk can be leduced 

One measure oj the lack of hedging pel feclion is the basis, defined Us the 
mismatch between the !:iPOl and tuttlJCS plices Specifically, 

basis spot price 01 asset to be hedged - futures price of contract used 

II the asset to be hedged i, identical to that 01 the Iutule, contI act, then the basis will 
be zero at the delivery date However, in generlll, tor the leasons mentioned, the final 
basis may not be zero as anticipated Usually the final basis is 1.1 random quantity, Hnd 
this precludes the possibility 01 a pelfect hedge The b.,is risk calls lor alternHlive 
hedging techniques 

One common method 01 hedging in the presence ot basis rhik is the minimum­
variance hedge The genewl 101l1luin 1'0l this hedge can be deduced quite readiJy 
Suppose that m time zero the situntion to be hedged is described by a cash now r to 
OCCUI at time [ FOl example, iI the obligation is to plilchase HI units oj an asset at 
time J, we have x WS. where S is the spot plice of the asset at J let F denote 
the futures price 01 the conlractthat is lIsed a, a hedge, and let h denote the haUies 
position taken We neglect interest payments on mal gin accounts by assuming that all 
profits (or losses) in the lutures account me seuled at [ The cash now at time I is 
theretore equal to the Oliginal obligation plus the profit in the lutUles account Hence, 

cash How v = I' + (F, I'll)h 

We find the variance 01 the cash !low as 

var(v) = Err \' + (FI Filhl' = Va! (v) + 2cov(x. PI)h + var(h )h' 

This is minimized by setting the derivative with lespect to h equ:.~ to zelO This lel1ds 
to the loll owing result: 

Milli1llUIIl-l1aliallce Izedgillg /01 milia 
v{fJimue me 

[he miniIml111-vmitu1£e hedge and rhe le,wlring 

cover. F [) 
h = -----

var(Fil 

val (v) = vm(t) 
cov(x, F il' 

vm(FTl 

(107) 

(108) 
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When the obligation has tile JOllTI 01 a fixed amount W of an asset whose spot 
price is 5'[, (107) becomes 

" =-/lW (10 9) 

where 

TIlis, of COlllse, reminds us of the general mean-variance 101 mulus 01 Chapler 7; and 
indeed it is closely related to them 

Example IO.ll (The perfect hedge) As a special case, suppose thut the futures 
commodity is identical to the spot commodity being hedged In that case F1 = 51 
Suppose that the obligation is W units of the commodity, so tllat x = W 5, In 
that case cov(.<, Fil = cov(S'[, FrJW = var(Fr)W Therefore, according to (10 7) 
we have" = -W, and according to (10 8) we lind VUl(V) = 0 In other words, 
the minimum-variance hedge reduces to the perfect hedge when the futU1CS plice is 
perfectly correlated with the spot price 01 the commodity being hedged 

Example 10,12 (Hedging foreign currency with alternative futures) The BIG 
H Corporation (a US cOlporation) has obtained a large order from a Danish firm 
Payment will be in 60 days in the amount 01 I million Danish kroner. BIG H would 
like to hedge the exchange risk, but theIe is no fUlUIes conlIact fOI Danish kIOner The 
vice president for finance 01 BIG H decides that the company can hedge with German 
marks, although OM and kroner do not follow each other exactly 

He notes that Ule CUllent exchange rates ure K 164 dollm/klOner and M 
625 dolIarlDM Hence the exchunge rate between marks and kroner is KjM = 
164j 625 262 OM/kroner Therefore receipt of I million Danish kroner is eguiv­

alent to the receipt 01 262,000 OM at the cllfrent exchange rute He deduces that an 
egual and opposite hedge would be to shalt 262,000 OM 

An intern working at BIG H suggests that a minimum-variance hedge be con­
sidered as an alternative The inteln is given H lew days to work out the details He 
does some quick histOIicai studies and estimates that the monthly Ouctuations in the 
US exchange Iates K and Marc cOIrelated with a conelation coefficient of about 8 
The standurd deviation ot these fluctuations is tound to be about 3% of its value per 
month [01 mmks and slightly less, 25%, for kroner In this problem the r of (107) 
denotes the dollar value 01 I million Danish kroner in 60 days, and Fr is the dollar 
vulue of a German mark at that time We may put x K x I million The intern 
thelefore estimates beta as 

cov(K, M) 

Val (M) 

UIO,f UK U/\." 
--x- p-
Uf.:UM UM UM 

02SK 
8x--

03M 
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Hence the minimum-variance hedge is 

cov(.>, F) 

- var(F) = 

[ - 8 x 25 x 262 x 1,000,000J = -175,000 DM 
30 

The minimuITI-vmiance hedge is smallel than that implied by a lull hedge based on 
the exchange ratios; it is reduced by the cOIleintion coefficient and by the ratio of 
standmd deviations 

We can go a bit further and find out how effective this hedge really is, compared 
to doing nothing We have t K x I million Hence cov(x, M) = I million x a,.: M 

and a.1 I million x Of.; Combining these two, we have cov(x, M) = aliMa.l/o,..: 

Using the minimum-variance hedging formula, we find 

var(v) = var(.» 
cov(.l', 1v/)2 

[ (
a"", )-] 1- -- var(l') 

af.. GM 

Hence, 

stdev( v) stdev(l') 6 x stdev(r) 

Hence the minimum-variance hedge reduces tisk by a facto! 01 6 A hedge with lower 
risk would be obtained if a hedging instrument could be tound that was mOle highly 
COl related with Danish kroner 

Example 10.13 (Changing portfolio beta with stock index futures) Mrs Smith 
owns a Illige portfolio that is heavily weighted toward high technology stocks She 
believes that these secllIities will perform exceedingly well compllled to the market as 
a whole over the next several months However, Mrs Smith realizes that hel pOitfolio, 
which has a beta (with respect to the Im:uket) of I 4, is exposed to a significant deglee 
of market risk If the general market declines, hel pOi tfolio will also decline, even if 
her secuJities do achieve significant excess return above that predicted by, say, CAPM, 
as she believes they will 

MIS Smith decides to hedge against this market Jisk She can change the beta 
of her pOitfolio by selling some stock index futllIes She might decide to construct a 
minimum-variance hedge of her $2 million pOitfolio by sholting $2 million x I 4 == 
$2 8 million 01 S&P 500 stock index futures with maturity in 120 days Since the 
normal beta of her pOitfolio is based on the S&P 500, this beta is the same beta as 
that in the general equation, (109) The overall new beta of her hedged portfolio, after 
taking the shOi t position in the stock index futlll es, is zero 

10.11 OPTIMAL HEDGING* 

Although the minimum-variance hedge is useful and laiJly simple, it can be imploved 
by viewing the hedging problem from U pOitfolio pelspective Suppose again that there 



286 Chapter 10 FORWARDS, FUTURES, AND SWAPS 

is an existing cash Dow commitment x at time T And suppose that this will be hedged 
by futUies contracts in the amount Ii, leading to a final cash flow of x It( F1 Fo) 
If a utility function is assigned, it is applopriate to solve the problem4 

maximizeE{U[, +1r(Fr Fo)]j 
I, 

(10 10) 

This approach tully accounts tOi the basis risk and is perfectly tailored to the risk 
aversion characteristics of the person or institution facing the risk 

Example 10.14 (lYlean-variance hedging) One obvious choice for the utility func­
tion is the quadratic function 

U(x) 
b , 
-x-
2 

with b > 0 Then (1010) leads to a maximization problem involving the means, 
variances, and co variances ot the variables Smoother derivations and neater formulas 
are obtained, however, by recognizing that this is essentially equivalent to maximizing 
the expression 

VCr) E(r) - 1 var(x) 

for some positive con:-;tant 1 The function V can be thought of as an altered mean­
var iance utility 

For meaningful lesults, the magnitude of 1 must be determined by the problem 
itself One reasonable choice is 1 1/(2.r), where .r is a rough estimate of the final 
value orE(r) This then weights variance and one-half of fE(x)!, about equally 

Using Vex) as the objective, the optimal hedging plOblem becomes 

maximize{Elx+h(F, Fo)] 1 var(r+hF,)} (10 II) 

This leads directly, after some algebla, to the solution 

F\ - Fo cov(x, F,) 

21 var(F,) var( F, ) 
h (10 12) 

Note that the second term is exactly the minimum-variance solution The first term 
augments this by accounting lor the expected gain due to futures participation In other 
words, the second term is a pure hedging term, whereas the first term accounts for the 
fact that hedging is a fO! m of investment, and the expected return of that investment 
should be incorporated into the portfolio 

This simple formula illustrates, however, the practical difficulty associated with 
optimal hedging It is quite difficult to obtain meaningful estimates of P7 - Fo In 
fact, in many cases a leasonable estimate is that this difference is zelO, so it is under­
standable why many hedgers pretel to use only the minimum-variance portion of the 
solution 

-tldeally, we should express tHility in lerms 01 total wealth; but we may assume here Ih.1I the additional 
weahh ~imply changes the definition of U 
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Example IO.IS (The wheat hedge) Consider the producer of Hour and bread of 
Example 108 It is likely that this producer, being a large player in the malket, has a 
good knowledge of wheat market conditions Suppose that this producer expects the 
price of wheat to increase by 5% in ., months Howevel, the plOducel recognizes that 
the wheat market has apploximately 30% volatility (pel year), so the producer assigns 

a 15% variation to the 3-month forecast (15% 30%/vA) 
Using t sOO,OOOF, and applying (10 12), we find 

I _ 
" -500,000 + ---(F, Fo) 

21 var(F,) 

-500,000 + I 
2r Fo var (F, / Fo) (

I', 
Fo 

I 
-500,000 + 660( 15)'1 x 05 

-500,000 + ,336 
1 

Note that the term -500,000 represents the equal and opposite position of perfect 
hedging This is augmented by a speculative telm, determined by the estimate of 
return on the futules price, and by the value ot I 

Using the method ot selecting 1 suggested earliel, we have I 1/1,000,000 
Hence the final hedge is " -500,000 + 336,000 - I 64,000 

10.12 HEDGING NONLINEAR RISK* 

In Olll examples so far the risk being hedged was linear, in the sense that final wealth r 
was a linear function ot an underlying market variable, such as a commodity price, The 
general theOlY of hedging does not depend on this al-isumption, and indeed nonlinear 
I isks frequently OCClll For example, immunization of a bond pOittolio with T -bills 
(see Exercise IS) is a nonlinear hedging ploblem-because the change in the value of 
a bond pOittolio is a nonlinear function 01 the futule T-bill price 

Nonlinear risk can arise in complex conti acts For example, suppose a US 
firm IS negotiating to sell a commodity to a Japanese company at a futule date tOi a 
price specified in Japanese yen Both paJ ties recognize that the US firm would face 
exchange rate risk Hence an agreement might be made where the US firm absorbs 
adverse rate changes up to 10%, while beyond that the two companies share the impact 
equally 

Nonlinear Iisks also mise when the pJice ot a good is influenced by the quantity 
being bought 01 sold This situation occms in farming when the magnitudes of all 
tarmers' crops are mutually conelated, and hence any particular farmer finds that his 
harvest size is correlated to the market price We give a detailed example of this type 

Example 10.16 (A corn farmer) A celtain commodity, which we call corn, is grown 
by many farmers, but the amount ot corn harvested by every farmer depends on the 
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Price FIGURE 10.5 Demand for corn. The price of corn varies 
10 from $10 10 $0 per bushel, depending on Ihe IOlal quanWy 

produced 

300,000 

Quanlity 

1 million 

weathel: sunny weather yields more corn than cloudy weather during the growing 
season All corn is harvested simultaneously, and the price per bushel is determined 
by a market demand function, which is shown in Figure 105 This demand function is 

P 10 - D/IOO,OOO 

where D is the demand (which is also equal, through supply and demand equalily, to 
the total crop size) Each farmer's crop will produce an amount of com C which is 
random We Hssumc that the amount of corn grown on each farm can vary between 
o and 6,000 bushels, with expecled value C 3,000 The amounts produced on 
differenl hums are all perfectly conelated There are a total of 100 farms, and Ihus 
I5 .100,000 The revellue to a farmer will be 

R PC 10--- C ( f)) 
100,000 

IOC 
C' 

1,000 
(10 Il) 

This shows thai Ihe revenue is a nonlinear funclion of the underlying uncerlain variable 
C Since C is random, each far mer faces nonlinear 1 isk 

Can a farmer hedge this risk in advance by participating in the futures markel 
for corn? Try 10 Ihink this Ihrough before we present Ihe analysis Since the farmer is 
ultimtltely going to sell his cOIn hIlI vest at the (risky) spot price, it might be prudent to 
sell some corn now at a known price in the futures mUlket Indeed, if the farmel knew 
exactly how much corn he would produce, and only the price were uncertain, he could 
implemenl an equal and opposite policy by shorting this amount in the corn futures 
market Pelhapt; in this actual situation where both amounl and price me uncertain, he 
should ,hart some lessel amount What do you Ihink? 

The way to find the besl hedge is to work out the relationships bel ween revenue, 
Ploduclion, and the futlllet; position We at;sume for simplicity that inlelesl rales are 
zero If ench farm plOduces Ihe expected value 01 C 3,000, then D 100,000 and 
we find P $7 pel bushel Hence $7 represenls a nominal anticipated pi ice Let us 
assume that $7 is also the cUllent !ulures price Po We want 10 determine the beSI 
fUlures participation 
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Let h be Ihe iuttlles mmket position With this position Ihe I;:umer's levcnue 

will be 

R PC+II(P-Po) 

Substiluling 101 P in telll1S 01 C, we find 

C' C C 
lac - 1,000 + 1,000 II R 

This is the equation Ihat Ihe Immer should consider One simple way to study this 
equalion is to display it in a ~pleadsheet array, as shown in Table 106 This lable has 
Ihe talm's production 01 corn across Ihe columlls, and Ihe futures position (in hundreds 
of bushels) IUnning along the lOWS The entries are Ihe cOtlesponding revenues For 
example, nole that il Ihe final production is 3,000 bushels (the expecled value), then 
the !cvenue is $21,000, independent ot the fulurcs position This is because the final 
price will be $7, which is equal to the current iutUies pJicc; hence the futllles contract 
n1l:lkes no plOfit 01 loss 

TABLE 10.6 
Revenue from ProductIon and Hedging 

Futures 
Corn production (in 1 ~O's of bushels) 

position 10 15 20 25 30 35 40 45 50 

50 19000 20250 21000 21250 21000 20250 19000 17250 15000 
45 I ROOD 19500 20500 21000 21000 20500 19500 18000 16000 
40 17000 18750 20000 20750 21000 20750 20000 18750 17000 

35 16000 18000 19500 20500 21000 21000 20500 19500 18000 
30 15000 17250 19000 20250 21000 21250 21000 20250 19000 
25 14000 16500 18500 20000 21000 21500 21500 21000 20000 

20 13000 15750 18000 19750 21000 21750 22000 21750 21000 
15 12000 15000 17500 19500 21000 22000 22500 22500 22000 
10 11000 14250 17000 19250 21000 22250 23000 23250 23000 

5 10000 13500 16500 19000 21000 22500 23500 24000 24000 
0 9000 12750 16000 18750 21000 22750 24000 24750 25000 

-5 8000 12000 15500 18500 21000 23000 24500 25500 26000 

-10 7000 11250 15000 18250 21000 2J250 25(XlO 26250 27000 
-15 6000 10500 14500 18000 21000 23500 25500 27000 28000 
-20 5000 9750 14000 17750 21000 23750 26000 27750 29000 

-25 -1000 9000 13500 17500 21000 24000 26500 28500 30000 
-30 3000 8250 13000 17250 21000 24250 27000 29250 31000 
-35 2000 7500 12500 17000 21000 24500 27500 30000 32000 

-40 100<1 6750 12000 16750 21000 24750 28000 30750 33000 
-45 0 6000 11500 16500 21000 25000 28500 31500 34000 
-50 -1000 5250 11000 16250 21000 25250 29000 32250 35000 

Nt l't'lI/lt! (all bt ((I!tlliatul/o/" I'{//Wl/ljillllnl pOIil/O/II (lwlpnlchl(lioll Oll/tOll/t I lIIillg {/ 1/lluull!lt'c/ 
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21,000 --------------

FIGURE 10,6 Farm revenue and hedging:" The best fu~ 
lures position is obtained when the slope of its payoff is 
equal to .1nd opposite the slope of the revenue 

12,000 

Farm revenue 

Profit from 4,000 fulures 

3,000 c 

The equal and opposite hedge would correspond to a futures position of -3,000 
(or -30 in the table) Note that this is actually a very risky position-much mOle so 
than the zem position-fOl the revenue valies widely flam $3,000 to $31,000 What 
is the least risky position? We find that position by scanning the rows, looking for the 
row with the least variation It is the row mmked 40, corresponding to a position of 
+4,000 Wow! The optimal position has a sign opposite to that which we might have 
expected, and a magnitude much greatcl than the expected value of the crop 5 

How can we understand the nature of this solution? The originailevenue function 
(1013), is shown in Figure 106 Also shown in the figure is the profit from a +4,000 
futures position as a function of the amount of COIn grown Note that the profit from 
the futures contract declear;es as more cOIn is grown This is because as more corn 
is grown, the final spot price of corn decreases The revenue increases as more corn 
is produced (although eventually the revenue cUlve bends downwmd) At the nominal 
value of C 3,000, the slopes 01 the two functions me exactly opposite-the slope 
of the revenue CUI ve is 4 and the slope of the futures profit line is -4 The two slopes 
cancel, meaning that the net revenue curve is flat at the nominal point This is the best 
linear approximation to the nonlinear hedging plOblem 

Here is one way to think about the situation, to resolve the appUlent conundlUm 
The farmer has a natural hedge against price movements It the price ot COl n should 
go down, the farmel's revenue from corn will go lip because of his increased harvest, 
instead of down as it would if the harvest were unaffected This natural hedge is, in 
tact, ot greater magnitude than an equal and opposite hedge, which would keep net 
levenue constant Hence the farmer must counteract the natulal hedge by taking a 
positive position in the futures market 

5 It can be shown that this position is indeed optimal for any concave increasing utility function if the 
probubilitie'> at different-size harvests are symmetric (See Exercise 16) 
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10.13 SUMMARY 

EXERCISES 

A forward contlact is a contillct to buy 01 sell an IJsset at a fixed date in the futule 
The intrinsic value of a fOlward contract may vary from day to day, but thele are 
no cash flows until the delivery date A futures contHlct is similnl, except that it is 
marked to market daily, with profits or losses flowing to a mmgin account so that the 
contract continues to have zelo value The pdce of u fOlward conti act, in the absence 
of carrying costs and assuming that the commodity can be shOlted, is just F Sid. 
where S is the cunent value of the asset and d is the discount late that applies to! the 
interval of time until delivelY In othel words, F is the future value of the CUlrent spot 
price S It there are cflnying costs, F is the 1utule value of these costs plus the future 
value of 5 If shorting is not possible, as is frequently the case, the fOlward price is 
restricted only to be less than SIt! 

If interest rates follow expectation dynamics, the prices of a fOlward contlact 
and a cmresponding futures contract are identicnl, even though their cash now pat­
teJns are slightly different FOI analysis pUlposes, a futures contHlct can thclefmc be 
approximated by the conesponding fOlward conti act 

Forwards and futures are used to hedge risk in commercial tl;:msactions Thc 
simplest type of hedge is the perfect, or equal and opposite, hedge, where an obligation 
to buy 01 sell a commodity in a future spot market is essentially executed eally at 
a known plice by enteling a futures contract fOi the same quantity If thele is no 
hedging instrumcnt available that matches the commodity of the obligation exactly, 
a minimum-variance hedge can be constl ucted using instlUments that are cOlIdated 
with the obligation A relatively high con"elation is required, however, to plOduce a 
significant hedging eftect 

More sophisticated hedging is obtained by taking an optimal portfolio view­
point, maximizing expected utility subject to the constraints implied by obligations 
and market conditions This approach has the advantage that it can handle essentially 
any situation, even those where the decisions affect portfolio value nonlineady, but it 
has the disadvantage that detailed intOimation is required In any case, hltules market 
participation is an important aspect of many hedging opclations 

1. (Gold futures) The current price of gold is $412 per ounce The storage COSl is $2 per 
ounce per year, payable quarterlY in udvance Assuming I.l constant interest rate of 9% com­
pounded q!mrterly, what is the theoretical forward price ot gold tor delivery in 9 months? 

2. (proportional carrying charges 0) Suppose that 11 forward contulCl on ilO asset is written 
al time zero and there nre M periods until delivery Suppose that the carrying charge in 
period k is qS(k), where S(k) is the spot price of the asset in period k Show thut the 
forward price is 

F ~ 
d(O,M) 
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[Hilll Consider a portfolio that pays all carrying costs by selling a fraction of the asset 
as required Let the number of units of the asset held at time k be x(k) and lind x(M) in 
lerms of x(O) j 

3. (Silver connact) At the beginning of April one year, the silver forward prices (in cents 
pei troy ounce) were as follows; 

Apr 40650 
July 41664 

Sept 42348 
Dec 433 84 

(Assume that contracts seWe at Ihe end of the given month) The carrying: cost of silver 
is about 20 cents per ounee per year, paid <it the beginning of each month Estimnte the 
interest rate tit thllt time 

4" (Continuous~time c.lITying charges) Suppose that <t continuous~time compounding frame­
work is used with 11 fixed interest late, Suppose that the c.urying dunge pel unit of time 
is proportional to the spot price; that is, the chmge is qS(I) Show that the thcoretical 
forward price ot a contract with delivery date T is 

IHilll Use Exercise 2] 

5. (Carrying cost proof) Complete the sccond half of the proof of the "forwmd price rormul(l 
with cllrrying cost" in Section JO,1 To construct the arbitragc, go long one unit ot a 
forward and short one unit spot To execute the short, it is necessary to borrow the asset 
from someone, say, Mr X As part of our arrangcment with Mr X we ask that he give us 
the cmrying costs (IS they would norma!!y occur, since he would have to PIlY them if We 
did not borrow the asset We then invest these cash nows At the final time we buy one 
unit LIS obligated by our forward and repay Mr X Show the details of this mgument 

6, (Foreiglt cUITency alternutive) Consider the situation of Example 10 10 Rathel thatl short~ 
ing a futures contIact, the US firm could bonow 500/(1 +1G) Deutsche mruk (where f(; 
is the 90~d1lY interest rate in Gcrmany), sell these marks into do!!als, invest the dollars in 
T-bil!s, and then luter repay the Deutsche mark loan with the payment Ieceived for the 
German ordcI Discuss how this pIOcedure is relalcd to the original one 

7. (A bond forward) A certain 10-year bond is cUIrently selling for $920 A friend of YOUIS 
owns a forward contract on this bond that Ims <I delivelY date in I year and a delivery price 
of $940 Thc bond pays coupons of $80 every 6 months, with one due 6 months from now 
and .mother just be!"ore maturity of the torwUId The CUITent intelest rates for 6 months and 
I ycar (compounded semiannuaJ!y) are 7% and 8%, respectively (annual rates compounded 
cvery 6 months) Wh.tt is the cuIte!lt vulue of the fOIward contIi.lct? 

8. (Simple formula) Derive the formula (JO 6) by converting a cash now of a bond to that 
01 the ftxed portion or the swap 
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9. (Equity swapo) MI A GaylOId manages a pension fund atld believes that his slack 
selectiotl ability is exccJ!cnt However, he i~ worried beclItlse the tnarkct could go down 
He considers entering an equity SWitp where each quarter i, tip to qunrtcr M, he Pi.IYS 
cotlntmparty D the previous qUHrter's total rate of rctUIn '/ on the S&P 500 index times 
some notional plincipalitnd receives paymcllts at l.I fixed rate' Oil the smne prillcipal Tlte 
total li.Ite of rctum indudes dividellds SpeL'ificl.I!!Y, 1+1, (51 +(0/5,-(, where 5/ and 
ell nre the vuhle:; ot the index nt i and the dividends received hom i-I to i, respectively 
Derive the vuhle of such a swap by the followillg steps: 

((I) Let "1_((5/ +dd denote the value i.lt time i I of receiving,5, +d, at time i Argue 
that VI_d51 +dl ) == SI_I alld find VI _ I(1I) 

(b) Find V,,(I,) 

(n Find L;\~I VO(lI) 

(d) Find tlte value 01 the swap 

10. (FOIward vHnilhq The flollting li.Ite portioll of 11 plain vanilhl illterest rate swap with 
yeatJy paymellts and 11 1I0tionai princiPlll 01 one unit lUIS ca ... h nows at the elld ot eaeh YCi.ll 
defining a stream stl.Uting at time 1 of ([(I. [I, [1. ,[.II-d, where [I is the ,Idual short 
wte lit the beginning ot yeur i Using the conL'epts of (orwllrds, argue thtlt the valu!.! lit tim!.! 
zero ot [I to be received lit titlll! i + 1 is d(O, i + 1 )1 1, where, I is the short rate for time 
i implied by the current (tillle zero) teml structure and d(O, i + 1) is the implied discount 
tactOi to time i + I The nlue 01 the stream is therefore L;\!~I d(O, i + 1)/1 Show that 
this rcdnces to the torlllula for V ilt the end of Section 10 5 

11. (Specific vanilla) Suppose the current tl!rIl1 structure of interest mtes is (070, 073, 077, 
081, 084, 088) A plain vanilla interest rate swap will make p<lYlllents ilt the end 01 each 

Yl!ar l!qual to the nonting short rate that WilS posted .It the beginning of that yea! A 6-year 
SWtlp having a notional principill of $10 million is being configmed 

(a) What is the value of Ule noating rate portion of the swap? 
(b) Whilt mte ot interest for thl! fixed ponion of the ."W1Ip would make the two sides of 

the swap l!qual'? 

12. (Delivation) Denvl! the mean-vllrianL'e hedge formula given by nO 12) 

13. (Grapefruit he-dgl!) Farmer D Jonl!S has a crop of gfllpdruit that will be ready fOi hmvest 
and sale as 150,000 pounds at gmpetnlitjuice in 3 monUls Jones is worried about possible 
price changes, so he is consideling hedging There is no futures contract tor grapefruit juice, 
but there is a futUres contract for orange juiL'e His son, Gavin, recently 5tudied minimum­
variance hedging imd sugge5ts it a ... i.l possible approach Currently the spot prices am 
$1 20 per pound (or orange juh:e and $1 50 per pound for grapefnlit juice The standald 
devi;:ltion ot the prices of on.mge juke and gmpefruit jUice is nbout 20% per year, and the 
correlation coefficient between them is about 7 What is the nlinimum-vl.Ulunce hedge tor 
tanner Jonl!s, a1ld how eft'ectivl! is this hedge llS compared to no hedge? 

14. (Opposite hedge varinncl!) Assume that c.ash flow is given by v 51 tv + (F/ - Fu)" 
Let a~ Vl.U('s7), a~ var( F,), and a~l COV(,s·/, F1 ) 

(a) In an equ1l1 and opposile hedge, " is taken to be an opposite equivalent dollnr vnlue of 
the hedging instrument Therefore" -kW, where k is the price ratio between the 
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asset and the hedging imlrument Express the standard deviation of y with the equal 
and opposite hedge in the form 

(That is, find B ) 
(b) Apply this to Example 10 £2 and Compare with the minimum-vuriance hedge 

15. (lmmunization as hedging 0) A pension fund has just paid some of its nubilities, and as a 
result of this transaction the fund is no longer fully immunized The fund manager decides 
that instead of changing the portfolio, the firm should hedge its position using u futures 
contract on 11 Treasury bond The fund manager wants to hedge against parallel changes to 
the spot rute curve Use the following set of information to determine the numerical values 
of the hedging position: 

o Yeurly spot rute sequence~ 05, 053, 056, 058, 06, 061 
CI Liabilities: $l million in l year, $2 million ill 2 years, and $l mHlion in 3 years 
CI Current bond portfolio: $4253 mi!Jion in par value of zero-coupon bonds maturing in 

2 years (Use the continuous-time formulas for diseounting: e-rr ) 

CI The hedge is to be constructed using futures contracts on zero-coupon bonds mUlUring 
in 6 years, with a contract delivery date in l year 

16. (Symmetric probability 0) Suppose the wealth that is to be received at a time T in the 
ruture has the form 

where a is a constant and x is Ii mndom variable The value of the variable II can be 
selected by the investor Suppose that the investor hils a utility function that is increasing 
and strictly concave Suppose also that the probability distribution of x is symmetric; th.11 
is, t and -x have the same distribution it follows that E(\") 0 and that the investor 
cannot influence the expected value of wealth 

(a) Show that the optimal choice is II 
(b) Apply this result to the corn farm problem to show that the optimal futures position 

is +4,000 

17, (Double symmetric probability 0) Suppose that revenue htls the form 

R Ax), + Bx - It)' 

where II can be chosen and x .lnd Y lire random variables The distribution of x and y is 
symmetric about (0,0); that is, -x, -v has the same distribution liS \", v Show that the 
choice of Ir that minimizes the variance of R is 

18. (A general farm problemo) Suppose that, as in the COIn farm eXllmple, the farm has 
random production lind the fin,,1 spot price is governed by the same demand fUnction 
However, the crop of the farm is (lot perfectly correlated to total demand, but (Yep and (Y~ 
are known The current futures price is also equal to the expected final spot price Show 
that the minimum-variance hedging position is 

100,000(-3 + 7(Y~D) 
100 (Yo 
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MODELS OF ASSET 
DYNAMICS 

T
rue mUltiperiod investments fluctuate in value, distribute random dividends, ex­
ist in an environment 01 variable interest rates, and arc subject to a continuing 
variety ot other uncertainties This chapter initiates the study of such invest­

ments by showing how to model asset price fluctuations conveniently and realistically 
This chapter therefote contains no investment principles as such Rather it introduces 
the mathematical models that form the foundation f 01 the analyses developed in later 
chaptets 

Two primm y model types are used to tepresent asset dynamics: binomial lattices 
and Ito processes Binomial lattices are analytically simpler than Ito processes, and 
they provide an excellent basis fOl computational wOlk associated with investment 
problems For these reasons it is best to study binomial lattice models first The 
important investment concepts can all be expressed in tel ms ot these models, and 
many real investment problems can be formulated and solved using the binomial 
lattice framework Indeed, roughly 80% of the material in later chaptets is presented 
in teITI1S of binomial lattice models 

Ito ptocesses are more realistic than binomial lattice models in the sense that 
they have a continuum of possible stock prices at each period, not just two Ito process 
models also allow some problems to be solved analytically, as well as computationally 
They also provide the foundation for constl ucting binomial lattice models in a clear nnd 
consistent manner For these reasons Ito process models are fundamental to dynamic 
problems For a complete understanding of investment pr inciples, it is important to 
understand these models 

The organization of this chapter is based on the preceding viewpoint concerning 
the roles of different models The first section presents the binomial lattice model di­
tectly With this background most of the material in later chapters can be studied 
Therefore you may wish to read only this first section and then skip to the next 
chapter 
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The remaining sections consider models that have a continuum of price values 
These models are developed progressively from disclete-time models to continuous­
time models based on Ito processes 

11.1 BINOMIAL LATTICE MODEL 

Su 

To define H binomial lattice mode!, a basic peliod length is established (such as 
I week) According to the model, if tbe price is known at the beginning of a pe­
riod, the price at the beginning ot the next period is one of only two possible values 
Usually these two possibilities me defined to be multiples 01 the price at the previ­
ous period-a multiple II (for up) and a mUltiple d (for down) Both II and d are 
positive, with II > I and (usuu1ly) d < ! Hence it the price at the beginning 01 a 
period is .5, it wi!! be eHIlel uS 01 dS nt the next peliod The probubilities of these 
possibilities are fJ and! p, lespective!y, 101 some given plObability p, 0 < p < I 
lhut is, it the CUllcnt ptice is S, there is a probability p that the new price will be 
/I S and a pJObabitity I p that it will be d S This model continues on for several 
periods 

The genewl form ot such a luttice is shown in Figure 11.1 The stock price can be 
visualized us moving trom node to node in a JightwaId direction The probability ot un 
upward movement from any node is p und the probability of a downward Jllovement 
is I p A lattice is the appropriate stIUctule in this C3se, rather than a tICe, because 
an up movement followed by a down is identical to a down followed by an up Both 
produce Ild times the price 

The model may at filst seem too simple because it permits only two possible 
values at the next period But if the period length is small, many values me possible 
afte! several short steps 

Su·1 FIGURE 11.1 Binomial lattice stock modeL At each 
step the slock ptice S either Increases 10 uS or de~ 

Su3 C/eJses to d5 

Su' 
Sulci 

Sri'd 

Su"ci' 

Sud' 

Sd' 
SurP 

SrP 

Sd" 
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To specify the model completely, we must select values for tI and d and the 
probability p, These should be chosen in such a way that the true stochastic nature of 
the stock is captured as faithfully as possible, as will be discussed 

Because the model is multiplicative in nature (the new value being uS or tiS, 
with li > 0, d > 0), the price will neve} become negative It is therefore possible to 
consider the logarithm of pI ice as a fundamental variable For reasons discussed in 
later sections, use of the logarithm is in fact very helpful and leads to simple formulas 
for selecting the parameters 

Accordingly, we define v as the expected yearly growtll rate I Specifically, 

E[ln(S7/So)] 

where So is the initial stock price and S1 is the price at the end of I year 
Likewise, we define u as the yearly standard deviation Specifically, 

If a period length of 61 is chosen, which is small compared to I, the parameters 
of the binomial lattice can be selected as 

p - + - - .,f1;i I I (V) 
2 2 u 

(Ill) 

With this choice, the binomial model will closely match the values of v and u 
(as shown later); that is, Ole expected growth rate of In S in the binomial model will 
be nearly v, and the variance of that rate will be nearly (72, The closeness of the match 
improves if III is made smaller, becoming exact as b..f goes to zero 

Example 11.1 (A volatile stock) Consider a stock with the parameters v 15% and 
CT 30% We wish to make a binomial model based 011 weekly periods According 
to (11.1), we set 

e 30/J52 I 04248, d 1/11 95925 

and 

p HI + ~~n;) 534669 

The lattice for this example is shown in Figure II 2, assuming S(O) 100 

We shall return to the binomial lattice later in this chapter atter sttldying models 
that allow a continuum of prices The binomial model will be found to be a natural 
approximation to these models 

Ilf the process were deterministic, then 11 = In(5T/51l) implies 57 = lOCI". which shows that 11 is the 
exponential growth rate 
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FIGURE 11.2 Lattice for Example 11.1. The pil­
ramelers are chosen so Ihat the e;.o;pected growth 
rate of Ihe logarithm of price and the variance of 
thilt growlh rate match the known corresponding 
values for Ihe asset 

11.2 THE ADDITIVE MODEL 

We now study models with the property that price can range over a continuum First 
we shall consider discrete-time models, beginning with the additive model ot this 
section, and then Iatet we shall consider continuous-time models defined by Ito pro­
cesses 

Let us focus on N + I time points, indexed by k, k 0, 1,2, ,N We also 
focus on a particulm asset that is characterized by a price at each time The price at 
time k is denoted by S(k) Our model will recognize that the price in anyone time is 
dependent to some extent on previous prices. 

The simplest model is the additive model, 

S(k + I) a5(k) + u(k) (II 2) 

tor k 0, 1,2, ,N In this equation a is a constant (usually a > I) and the 
quantities u(k), k 0, I, ,N - I, me random variables The II(~)~ can be thought 
ot as "shocks" or "disturbances" that cause the price to fluctuate ~To opeHlte or run 
this model, an initial price S(O) is specified; then once the random variable u(O) is 
given, S(l) can be determined The process then repeats progressively in a stepwise 
fashion, determining S(2), SO), , S(N) 

The key ingredient ot this model is the sequence ot random variables ii(k), k 

1,2, ,N We assume that these are mutually statistically independent 
Note that the price at any time depends only on the price at the most recent 

previous time and the random disturbance It does not explicitly depend on other 
previous prices 



300 Chapter 11 MODELS OF ASSET DYNAMICS 

Normal Price Distribution 

It is insnuctive to solve explicitly for a few of the prices from (II 2) By direct 
substitution we have 

S(l) "S(O) + u(O) 

S(2) (/S(I) +lI(I) 

0' S(O) + Oll(O) -I- u(l) 

By simple induction it can be seen that for general k, 

S(k) 0' S(O) + o <-I lI(O) + o'-'lI(I) + 
Hence S(k) is o'S(O) plus the sum of k random variables 

+lI(k-1) (II 3) 

Frequently we assume that the random vaaiables u(k), k 0, 1,2, ,N I, 
are independent normal random variables with u common valiance (72 Then, since a 
linear combination of normal random variables is also normal (see Appendix A), it 
follows from (II 3) that S(k) is itself a normal random variable 

11 dIe expected values of all the lI(k)'s are zero, then the expected value of 
S(k) is 

E[S(k)] ,,' S(O) 

When a > I, this model has the property that the expected value of the price increases 
geometrically (that is, according to al..:) Indeed, the constant a is the growth rute factor 
of the model 

The additive model is structurally simple and easy to work with The expected 
value ot price grows geometrically. and all prices are nonnal random variables-, How­
ever, the model is seriously flawed because it lacks realism Normal random vmiables 
can take on negative vtllues, which means thut the prices in this model might be neg­
ative as well; but real stock plices are never negative Furthermore, if a :;tock were 
to begin at a plice of, say, $1 with a U ot, say, $ 50 and then drift upward to a price 
ot $100, it seems very unlikely that dIe u would remain at $ 50 It is more likely 
that the standard deviation would be propol tional to the price For these reasons the 
additive model is not a good general model of asset dynamics The model is useful for 
localized analyses, over short periods of time (perhaps up to a few months for com­
mon stocks), and it is a usetul building block for other models, but it cannot be used 
alonc as an ongoing model representing long- or intcrmediate-term fluctuations For 
this reason we must consider a better altelnative, which is the multiplicative model 
(However, OUI unden~tanding of the additive model will be important for that morc 
advanced model) 

11.3 THE MULTIPLICATIVE MODEL 

TIle multiplicative model has the form 

S(k + I) u(k)S(k) (l 14) 

fot k 0, I, , N - I Here again the quantities lI(k), k 0, 1,2, , N - I, are 
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mutually independent random variables "The variable u(k) defines the ,dative change 
in price between times k and k + I This relative change is S(k + I)/S(k), which is 
independent of the overall magnitllde ot S(k) It is also independent of the units 01 
price For example, if we change units from U S dollars to Get man marks, the relative 
price change is still/l(k) 

The multiplicative model takes a tamili", form it wc take the natutallogatithm 
01 both sides or the equation rhis yields 

In S(k + I) = In S(k) + In!l(k) (II 5) 

for k 0, 1,2, , N - I Hence in this form the model is of the additive type with 
respect to the logarithm of the price. rather than the price itselt "Therefore we can use 
our knowledge ot the additive model to analyze the mUltiplicative model 

It is now natura! to specify the random disturbances directly in terms of the 
In /I(k)'s In particular we let 

w(k) = In!l(k) 

for k = 0, 1,2, ,N - I, and we specify that these w(k)'s be not mal "'ndom 
v",iables, We assume tllat they are mutually independent and that each has expected 
value w(k) = v and vuriance (72 

We can express the original multiplicative disturbances as 

(116) 

tor k = 0, 1,2, ,N - I Each of the variables !I(k) is said to be a lognormal 
random variable since its logarithm is in fact a normal random variable 

Notice that now there is no problem with negative values Although the normal 
variable w(k) may be negative, the cotresponding !I(k) given by (116) is always 
positive Since the random factor by which a price i, multiplied is !I(k), it tollows that 
prices remain positive in this model 

Lognormal Prices 

The successive prices of the multiplicative model can be easily found to be 

S(k) /I(k I)u(k - 2) /I(O)S(O) 

Taking the natural logarithm ot this equation we find 

).-1 /:-\ 

In S(k) In S(O) + Lin /I (i) = In S(O) + L w(i) 
i={) i=O 

The telln In 5(0) is a constant, and the w(i)'s are each normal random variables 
Since the sum of normal random vUliables is itself a normal random vuriahle (see 
Appendix A), it tollows that In S(k) is normal In other word" all prices are lognormal 
under the multiplicative model 
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If each w(i) has expected value w(i) v and variance cr', and all are mutually 
independent, then we find 

E[ln S(k)J In S(O) + vk 

var[ln S(k)] kcr' 

Hence both the expected value and the variance increase linearly with k 

Real Stock Distributions 

(II 70) 

(lUb) 

At this point it is natural to ask how well this theoretical model fits actual stock price 
behavior Are real stock prices logn01J11al? 

The answer is that, based on an analysis of past stock price records, the price 
distributions of most stocks ale actunlly quite close to lognormal To verify this, we 
select a nominal period length of, say, I week and record the differences In S(k + 1)­
In S(k) for many values of k; that is, we record the weekly changes in the logarithm of 
the prices tor many weeks We then construct a histogram ot these values and compare 
it with that of a normal distribution ot the Same variance Typically. the measured 
distribution is quite close to being normal. except that the observed distribution often 
is slightly smaller near the mean and larger at extremely large values (either positive 
or negative large values) This slight change in shape is picturesquely termed fat 
tails. (See Figure II 3 ') The observed distribution is larger in the tails than a normal 

35 Number of samples 

30 

25 

20 

15 

10 

75% 

FIGURE 11.3 Observed distribuUon of the logarithm of return. The distribution has "fatter tails" 
than a normal distribution of the Si1me vi1riance 

2The figure shows a liistognJnl of American Airlinl!s weekly log stock rctums for the IO-yeur period of 
1982-1992 Shown ~upcrimpllSed is the nonnal distrib11tion with the same (sample) mean llnd standllrd 
deviation Along willi fat tails Ihere is invaril1bly a "skinny middle" 
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distribution This implies that large price changes tend to occur somewhat more fre­
quently than would be predicted by a normal distribution of the same vmiance For 
most applications (but not an) this slight discrepancy is not impOltant 

11.4 TYPICAL PARAMETER VALUES* 

The !etum of a stock over the period between k and k+ I is S(k+ 1)IS(k), which under 
the multiplicative model is equal to II (k) The value of w(k) In lI(k) is therefore the 
logarithm of the return The mean value ot w(k) is denoted by v and the variance of 
w(k) by (72 Typical values of these parameters for assets such as common stocks can 
be intened from our knowledge of corresponding values for returns Thus for stocks, 
typical values of 11 = E[w(k)] and u stdev [w(k)J might be 

iJ= 12%, u = 15% 

when the lengtll of a period is I year If the period length is less than a year, these 
values scale downward;] that is, if the period length is p pmt ot a year, then 

The values can be estimated trom histori.caI records in the standard tashion (but 
with caution as to the validity of these e~timates, as raised in Chapter 8) If we have 
N + I time points of data, spanning N period~, the estimate of the single-period v is 

I N-r [S(k+ I)] 
-Lin --
N k~O S(k) 

I In [S(N)] 
N S(O) 

I N-r 
N L[lnS(k+ I) -lnS(k)] 

,(:=0 

Hence all that matters is the ratio of the last to the first price 
[he standard estimate of (72 is 

&' _1_ ~ lin [5(k + I)] _ vi' 
N - I k~O S(k) 

As with the estimation of return parameters, the error in these estimates can be 
chatacterized by their vari.ances For v this variance is 

var(il) u'IN 

and for (72 it is (assuming w(k) is normal] 

var(&') 2u'/(N - I) 

JUsing log returns, Ih!! sCliling is I:.WlLT/V proponionul lhere is no error due to coUlpoumling lIS with returns 
(without the log) (See Exercise 2 ) 
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Hence for the values assumed earlier, namely, v ,I2 and CT 15, we find 
that 10 years of data is required to reduce the standard deviation of the estimatc·i of 
Ii to 05 (which is still a sizable traction of the true value) On the other hand, with 
only I year of weekly data we can obtain a fairly good estimateS of (72, 

11.5 LOGNORMAL RANDOM VARIABLES 

If II is a lognormal random variable, then the vaJiable w = lnu is normal In this 
case- we found that tbe prices in the multiplicative model are all lognormal ran­
dom variables It is therefole usetul to study a few impoltant properties of such random 
variables 

The general shape of the probability distribution of a lognormal random vari­
Hble is shown in Figure II 4 Note that the variable is alwnys nonnegative and the 
distribution is somewhat skewed 

Suppose that w is nonnal and has expected value wand variance a 2 What is 
the expected value of It eUl ? A quick guess might be u em, but this is wrong. 
Actually u is greater than lhis by the tactor e!(J:!; that is, 

(I I 8) 

This result can be intuitively undelstood by noting that as a is increased, the lognormal 
distribution will spread out It cannot spread downward below zero, but it can spread 
upwald unboundedly Hence the mean value incleases as a incleases 

The ext,a term to"' is actually fairly small lor low-volatility stocks For example, 
consider a stock with- a yemly w 12 and a yearly a ot 15 The correction term it> 

FIGURE 11A Lognormal distribution" The lognorlllal dis­
tribution is nonzero only for I( > 0 
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~a2 0225, which is small compared to w For stocks with high volatility, however, 
t-he correction can be signilicant 

11.6 RANDOM WALKS AND WIENER PROCESSES 

In Section 11 7 we will shorten the period length in a multiplicative model and take 
the limit as this length goes to zero This will produce a model in continuous time 
In preparation for that step, we introduce special random functions of time, called 
random walks and Wiener processes 

: by 
Suppose that we have N peIiods of length 6.1 We define the additive process 

(119) 

(II 10) 

for k = 0, 1,2, ,N This process is termed a random wall\:. In these equations 
E(td is a normal random variable with mean 0 and variance I-a standardized no('~ 
mal random variable. These random variables are mutually unconelated; that is, 

E[E(lj)E(ld] 0 tOl j '" k The process is started by setting z(lo) 0 Thereafter a 
particular realized path wanders around according to the happenstance 01 the random 
variables E(td [The reason tOl using -Jt;i in (II 9) will become clear shOltly] A 
particular path of a random walk is shown in Figure II 5 

Of special interest me the difference lundom vmiables z(td - :::(lJ) 1'01 j < k 
We can write such a difference ns 

/.:-1 

z(lk}- ;.(lj) = L E(li)-Jt;i 
i=j 

This is a nOlmai random variable because it is the sum of normal random vmiables 
We find immediately that 

E[Z(lk) - ;.(lj)] 0 

FIGURE 11.5 Possible random walk The move­
ments are determined by norma! r<1ndom vari­
ables 
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Also, using the independence of the E(ld's, we find 

Hence the valiance of z(!J;) -z(!,;) is exactly equal to the time differenceJL::-Ij between 
the points This calcltl';IT6i, '-:ilSo'~hows why ,Jt;i was used in the definiti~n of the 
random walk so that 6.1 would appear in the variance 

It should be clear that the ditference variables associated with two different 
time intervals ilre uncorrelatcd if the two intervals are nonoverlapping That is, if 
hi < lk~'::: lk1 < lk~, then Z(tk:<)-Z(tk l ) is unconelated with Z(tk4)-Z(tk) because each 
orthese differences is made up of different E'S, which are themselves uncorrclated 

A ~j~lleLprQCess is obtained by taking the limit of the random walk process 
(II 9) as 0.- ~_ 0 In symbolic form we write the equations governing a Wiener 
plocess as 

dz «I),,/dr (I II]) 

whew each E(I) is a standardized normnl random variable The random variables E(I') 
and EU") are unconclated whenever l' =I=- 1" 

This dcscIiption of a Wiener plOcess is not rigorous because we have no assur­
ance that the limiting operations are defined; but it provides a good intuitive descrip­
tion An alternative definition of a Wiener process can be made by simply listing the 
required properties In this approach we say a process z(t) is a Wiener process (or, 
alternatively, ~rownian motion) if it satisfies the following: 

1. For any') < 1 the quantity z(t) ::( 10) is a normal random variable ~~~ mean ze.ro 
and variance 1 - \. 

2, For any 0::: I, < I, ::: IJ < I" the random variables z(l,) - z(l,) and z(l,,) - z(IJ) 

me uncorrelated 

3. z(lo) 0 with probability I 

These properties parallel the properties of the random walk process given earlier 
It is fun to try to visualize the outcome of a Wiener process A sketch of a 

possible path is shown in FigUl e II 6 Remember that given z{t) at time 1, the value 
ot z(~) at time \ > 1 is, on average, the same as z(t) but will vary from that according 
to a standard deviation equal to ~ 
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FIGURE 11.6 Path of il Wiener process, A 
Wiener process moves continuously but is nor 
cJifferenti<:lble 

A Wienel process is not differentiable with respect to time We can roughly 
verif y this by noting that for 1 < .\, 

as.\ -+ 1 

E [~(.\) - ~(t)]2 
\ -I 

,\ -1 

(.\ - 1)2 

I 
-- --+ 00 
s -1 

It is, however, useful to have a word fot the term dz/dr since this expression 
appears in many stochastic equations A common word used, arising trom the systems 
engineeling field (the field that motivated Wiener's work), is white noise. It is really 
fun to try to visualize white noise One depiction is presented in Figure II 7 

Generalized Wiener Processes and Ito Processes 

The Wiener process (01 Brownian motion) is the fundamental building block for a 
whole collection of more general processes These generalizations are obtained by 

inserting white noise in an ordinary dil'terential equation 
The simplest extension ot this kind is the generalized Wiener process, which 

is of the [01\11 

dr(t) adl+bdc (II 12) 

FIGURE 11.7 Fantasizing whitc noisc" White 
noise is the ueriv<ttive of a Wiener process, hut 
that derivative does not exist in the nonn;)1 sense 
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where xU) is a random vUliable fat each t, ::: is a Wiener process, and a and b are 
constants 

A genelalized Wiener process is especially importtlnt because it has an analytic 
solution (which can be found by integrating both sides) Specifically, 

x(t) = x(O) + (II + b:(I) (I J. 13) 

An Ito process is somewhat more general still Such a process is described by 
an equation ot the form 

dx(t) n(x,t)dl +b(x,l)d: (II f4) 

As before, z denotes a Wiener PlOCCSS Now, however, the coefficients a(x,1) and 
b(x,1) may depend on x and 1, and a general solution cannot be written in an analytic 
form, A special form of Ito process is used frequently to describe the behavior of 
financial assets, as discus~ed in the next section 

11.7 A STOCK PRICE PROCESS 

We now have the tools necessaty to extend the multiplicative model of stock prices 
to a continuous-time model Recall that the multiplicative model is 

In S(k + I) - In S(k) w(k) 

where the w(k),s are uncotrelated nOlmul random variables The continuous-time ver­
sion of this equation is 

dlnS(t) IJdl +adc. (II 15) 

where v and a ::: 0 are constants and::: is a standmd Wiener process The whole right­
hand side of the equation can be regarded as playing the role of the random variable 
w(k) in the discrete-time model This side Can be thought of as a constant plus a normal 
landom variable with zew mean, and hence, overall it is a normal lilndom variable 
(Although all tertns in the equation are differentials 01 multiples of differentials and 
thus do not themselves have magnitude in the usual sense, it is helpful to think of 
dl and dz as being "small" like t;1 and t;c.) The term vdl is, accordingly, the mean 
value of the right-hand side This mean value is propOltional to dl, consistent with 
the fact that in the logarithm version of the multiplicati\le model the mean value of 
the change in In S is plOportional to the length ot one period The standard deviation 
of the light-hand side is a times the standard deviation of dz Hence it is ot ordel of 
magnitude aJdr, which is consistent with the lact that in the logarithm version of 
the multiplicative model the standard deviation ot the ch'lnge in In S is proportional 
to the square root ot the length of one period, as reflected by (II 70) and (II 7b) 

Since equation (II 15) is expressed in terms of In S(I), it is actually a generalized 
Wiener process Hence we can solve it explicitly using (II 13) as 

InS(t) InS(O) +"1 +az(t) (II 16) 

This shows that E[ln S(I)] E[ln S(O) 1+ lil, and hence Elln S(r)] grows linearly with 
1 Because the expected logmithm ot this process increases linearly with 1, just as tl 
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continuously compounded bank account, this process is termed geometric Brownian 
motion. 

Lognormal Prices 

Like the discrete-time multiplicative model, the geometric Brownian motion process 
desclibed by (II 15) is a lognonnal plOcess This can be seen easily flOm the solution 
(II 16) The right-hand side of that equation is a normal random variable with expected 
value In 5 (0) + PI and slnndald deviation 0 JI 

We conclude that the price S(t) itself hns a lognormal dif:;tribution We can 
express this lormally by In S(I) - NOn S(O) + VI, 0'1), whele N(III, 0') denotes the 
normal distribution with mean !II and variance a2 

Although we can wlite S(r) = exp[ln S(r)J = S(O) exp[vl + 0 ~(r )], it does /101 

follow that the expected value of S(t) is S(O)e'" The mean value must instead be 
detelmined by equation (II 8), the genelal forl11ula thm applies to lognormal valiables 
Hence, 

E[S(I)J = S(O)e l "+I"'" 

It we define 11- := ]! + !a2
, we have 

E[S(I)J = S(O)e'" 

The standard deviation of 5(t) is also given by a general relation tor lognormal 
variables In the case of the slnndUld deviation, the required cnlculation is a hit more 
complex The 100mula is (see Exelcise 5) 

stdev[5(t)J = 5(0)e"I+~"'I(e"" _1)1/' 

Standard Ito Form 

We have defined the landom plOcess 101 5(1) in telms ot In 5(1) lathel than directly 
in telms 01 S(t) The use ot In S(I) lacilitated the development, and it highlights the 
fact that the process is a stwighttOi wilid generalization ot the multiplicative model 
that leads to lognormal distributions It is, however, useful to express the process in 
telms ot S(I) itself 

In OIdinaty calculus we know that 

d5(1) 
d In[5(1)J = S(i) 

Hence we might be tempted to substitute d5(1)/S(I) fOl din S(I) in the busic equation 
[Eq (II 15)], obtaining dS(I)/S(I) = v dl + 0 d~ This would be almost conect, but 
there is n correction tet 111 that Inust be applied when changing vatiables in Ito processes 
(because Wiener procesr,;es are not OIdinillY Junctions and do not Jollow the wles of 
ordinmy cnlculus) The applopliate Ito plOcess in telms 01 S(I) is 

--= 1'+-0- dl+odc dS(t) ( I ') 
S(I) 2 ' 

(II 17) 
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Note that the correction term ~a2 is exactly the same as needed in the expression for 

the expected value of a logn;rmal random variable, Putting I.L 1J + ~a2, we may 
write the equation in the standard lt~ form for price dynamics, ~ 

dS(t) 

S(t) 
/"dt +adz (II 18) 

The telm dS(t)/S(t) Can be thought of as the differential return of the stock; hence 
in this form the differential return has a simple form 

The COlTection term required when tIansforming the equation from In S(t) to 
S(t) is a special instance of a generaillansformation equation defined by Ito's lemma, 
which applies to variables defined by Ito pIOcesses Ito's lemma is discussed in the 
next section 

Note that if the equation in slllndrud form is written with S in the denominator, as 
in (J I 17), it is an equation for dS/ S This telm Can be inteIpTeted as theJ.r1~antaneous 
rate of ret~ln_ on t~_~~_st~J:c.:-'Hencc the standard form is often referred to as~iln equmio-n 

, for the -instantaneous return 

Example 11.2 (8ond price dynamics) Let P(t) denote U,e price of a bond that pays 
$1 at time t :;::: T, with no other payments Assume that interest rates are constant at 
, The price-of this bond satisfies 

dP(t) 
--=rdt 
P(t) 

which is a deterministic Ito equation, pru:alleling the equlltion tor stock prices The 
solution to this equation is P(t) = P(O)e" Using P(T) = I, we find that P(t) = 
er (I-7) 

We now summaIize the Ielations between S(t) and In S(t): 

Relatiolls for geometric BrOWllian motioll Suppolie tlte geomel1 ic Brownian motioH 
p,oceH S(t) i~ governed bv 

dS(t) /"S(t)dl +as(t)dz 

where z i~ a ~·tandard Wiener proceH Define v I.L - !a2 Then S(t) iii lognormal 
and 

E\ln[S(t)/S(O)Jj 

stdev Iln[S(t)/ S(O)Jj 

EI S(t)/S(O») 

stdevl S(t)/S(O») 

vI 
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Simulation 

A continuous-time price process can be simulated by taking a series of small time 
periods and then stepping the process torward period by period There are two natural 
ways to do this, and they are 1101 exactly equivalent 

First, consider the plOcess in standard tOrIn delined by (II 18) We take a basic 
period length ~l and set S(to) = So, a given initial price at 1 = 10 The corresponding 
simulation equation is 

where the E(h)'s are uncoITeiated nOImal random variables of mean 0 and standard 
deviation I This leads to 

(II 19) 

which is a multiplicative model, but the wndom coefficient is normal rather than log­
normal. so this simulation method does not produce the lognormal price distributions 
that are characteristic ot the underlying Ito process (in either of its forms) 

A second approach is to use the log (or multiplicative) form (II 15) In discrete 
(Olm this is 

This leads to 

(1120) 

which is also a multiplicative model, but now the random coefficient i.~ lognormal 
The two methods are different, but it can be shown that their differences tend to 

cancel in the long fun Hence in practice, either method is about as good as the other 

Example 11.,3 (Simulation by two methods) Considel a slack wilh an initial price 
at $10 and having v = 15% and a = 40% We tuke the basic time intelval to be 
I week (/',1 = 1/52), und we simulate the stock behavior for I year Both methods 
described in this subsection were applied using the same random E'S, which were 
generllted (10m a nOlmal disuibution of mean 0 and standard deviation I Table II I 
gives the results The first column shows the random variables d;: = E....(i;i fOl that 
week The second column lists the corresponding multiplicative factors The value Pj 

is the simulated price using the standatd method as represented by (II 19) The lourth 
column shows the appropliate exponential factors tor the second method, (II 20) The 
value P2 is the simulated price using that method Note that even at the filst step the 
results are not identical Howevel, overfill the results are fairly close 
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TABLE lL1 
Simulation of Price Dynamics 

Week dz I' + adz v + adz 

0 JO 0000 10 0000 
I 06476 00802 10 0802 00648 100650 
2 - 19945 00664 10 0132 -00818 99830 
3 - 83883 - 04211 95916 - 04365 95567 
4 49609 03194 98980 03040 98517 
5 - 33892 - 01438 97557 - 01592 96961 

6 I 39485 08180 105536 08026 JO 5064 
7 61869 03874 109625 03720 10 9046 
8 40201 02672 I 12554 02518 I I 1827 
9 - 711 18 - 0350) 10 8612 03656 107812 

JO 16937 01382 II 0113 01228 109144 

II I 19678 07081 I 17910 06927 116973 
12 - 14408 - 00357 117489 0051 I 116377 
J.l 80590 049J.l 123261 04759 122049 
26 - I 23335 06399 13 1428 - 06553 129157 
39 68140 04222 17 6850 04068 173668 
52 69955 04)2) 15 1230 04169 14.7564 

fill! priLe ptoCCJI i\ lill/llialed by 111'0 lIu!lluuil Ali/WI/gil llwl' differ Hep 
by \let>. lilt' overall rl!wlll (/fl' 1;lIIilar 

11.8 ITO'S LEMMA * 

We saw that the two Ito equations-tor S(I) and for In S(I)-are different, and that 
the difference is not exactly what would be expected from the application of Oldinary 
calculus to the transformation of variables from S(t) to In S(t); an additional term ta2 
is required This extra term arises because the random variables have order v'dl, ~nd 
hence their squares produce first-order, rather than second-order, efjects There is a 
systematic method for making such transtormations in general, and this is encapsulated 
in Ito's lemma: 

Ito's lemma Suppo')e that tile 1Cmdol1l plOceH x i\ defined bv the Ito pl0ce')s 

dx(t) =a(x,l)dl +b(\",t)dz (1121) 

whele z is: a ')taHdmc/ WieHel pl0ceS') Suppose alw that the plOceH y(t) h defined by 
1'(1) = F(." t) TIlell 1'(1) Wli\fiel lI1e 110 eqllalioll 

(
BF BF I a'F ') BF 

d)'(1)= iho+ar+iBx,b- dl+a;bdz (I 122) 

~vhele z i\ the wme WieHe 1 pl0cess a~ iH Eq (II 21) 

Proof: Ordinary calculus would give a formula similar to (J I 22), but with­

out the term with! 
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We shall sketch a rough plOol 01 the full formula We expand l' with 
respect to a chnnge L),)' In the expansion we keep terms up to first order in 
~l, but since ~x is 01 order .j7;i, this means that we must expand to second 
order in L'.x We find 

ilF BF I B'F , 
l' + L'.1' = F(.,·, t) + a:;:-L'.x + arL'.1 + 2: ax' (L'.xl' 

BF BF I il' F 
= F(x,t) + Bx (aL'.I +bL'.z)+ arL'.1 + L'.1+bL'.z)' 

The quadratic expression in the last term must be treated in a special way 
When expanded, it becomes (/'(L'.I)' + 2ab L'.I L'.z + b'(L'.z)' The first two 
telms ot this expression are of mdel higher thnn I in ~l, so they can be 
dropped The term b'(L'.z)' is all that remains However, L'.z hus expected 
value zero and variance ~l, and hence this last tel m is of order ~l and cannot 
be dropped Indeed, it can be shown that, in the limit as ~l goes to zero, the 
term (L),z)1 is nonstochastic and is equal to ~l Substitution 01 this into the 
previous expansion leads to 

(
BF BF I B'F ') aF 

1'+L'.),=F(x,I)+ a:;:-a+ar+2:Bx,'r L'.I+ axbL'.z 

Taking the limit and using l' = F (x, t) yields Ito's equation, (I I 22) 

Example 11.4 (Stocl< dynamics) Suppose that S(t) is governed by the geometric 
BlOwnian motion 

d5 = 1"5 dl + a S dz 

Let us use Ito's lemma to find the equation governing the process F (5(1» = In S(I) 
We have the identifications (/ = 1"5 and b = a 5 We also have BF las = liS 

and B'Flas' = _liS' Therefore according to (1122), 

dinS = 

which agrees with our earliel lesuit 

11.9 BINOMIAL lATTICE REVISITED 

Let us consider again the binomial lattice model shown in Figure II 8 (which is 
identical to Figure II I) The model is analogolls to the multiplicative model discussed 
earlier in this chapter, since at each step the price is multiplied by a random variable 
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Su 

Su1 

Su'd 

Sd' 

Sd' 

Su'd 

Sud) 

FIGURE 11.8 Binomial lattice stod( modeJ At each 
step the stock price 5 either increases to uS or cJe~ 
creases to dS 

In this case, the random variable takes only the two possible values II and d We can 
find suitable values for If, d, and I' by matching the multiplicative model as closely 
as possible This is done by mUlching both the expected value of the logarithm of a 
price change and the variance ot the logarithm of the price change,6 

To cuny out the matching, it is only necessary to ensure that the random variable 
SJ, which is the price after the first step, has the correct properties since the process 
is identical theleaftel Taking S(O) I. we find by direct calculation that 

E(lnSI) 

var (In Sl) 

I' In /I + (I - 1') In d 

p(ln II)' + (I - p)(ln d)' - [pin II + (I - 1') In dJ" 
1'(1 - p)(inll - Ind)' 

Therefore the appropriate parametci matching equations are 

pU +(1 p)D [1/',1 

1'(1 - p)(U - D)' O'/',I 

where U In /I and D In d 

(I I 23) 

(I I 24) 

Notice that tiuce parameters are to be chosen: U, D, and p; but there are only 
two tequiIements Thelefore there is one degree ot freedom One way to use this 
treedom is to set D -U (which is equivalent to setting d llll) In this case the 

('For the lattice. the probability 01 attaining the various end nodes of lhe lattice is given by the binomial 

dislribution Specifically. Ihe probability of reaching the value Stl/..(l'l~/.. is (~) Ii (1 - P)Il-/", where 

( ") = __ II!_ is Ihe binomial coefficient This diSlribution npproache!> (in a cenain sense) a nomal 
k (1/ k)!k! 

distribUlion ror large 1/ The logllrilhm of the linal plices is 01 the form k lnu + (11- k) Ind. which is linear 
ill k Hence Ihe distribution or the end point prices can be considered to be nearly lognonnul 
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equations (I 123) and (I 124) reduce to 

(2p I)U I'M 

4p(1 p)U J a 2
(',J 

If we square the first equation and add it to the second, we obtain 

U 2 a 2 M+(IIM)2 

Substituting this in the first equation, we may solve for p directly, and then U In II 
can be determined The resulting solutions to the parameter matching equations are 

I 
P :2 + r~;=;f~=7 

Inu Ja2M + (116.1)2 (I 125) 

For small 6.1 (I L25) can be approximated as 

p I I (") r;:-: ,.+,. - ",6.1 
- - a 

II (I I 26) 

d e-qJF:i 

These are the values presented in Section J I 

11.10 SUMMARY 

A simple and versatile model ot asset dynamics is the binomial lattice In this model 
an asset's price is assumed to be multiplied either by the factor II or by the factor d, the 
choice being made each period accOlding to probabilities p and J-p, respectively This 
model is used extensively in theoretical developments and as a basis for computing 
solutions to investment plObJems 

Another broad class ot models arc those where the asset price may take on values 
from a continuum ot possibilities The simplest model ot this type is the additive model 
If the random inp!1ls of this model are normal random variables, the asset prices are 
also normal random variables This model has the disadvantage, however, that priceR 
may be negative 

A better model is the mUltiplicative model of the torm S(k+ I) lI(k)5(k) lithe 
multiplicative inputs lI(k) are lognormal, then the future prices 5(k) are also lognormal 
The model can be expressed in the altel11ative form as In S(k + I) - In S(k) In lI(k) 

By Jetting the period length tend to zelO, the multiplicative model becomes the 
Ito process d In S(t) v dl + a2dz(t), where z is a normalized Wiener process This 
special form of un Ito process is culled geometric Brownian motion This model can 
be expressed in the alternative (but equivalent) form d5(t) lrS(t)dl + a 2S(t)dz(t), 

where J1 v + ta2 
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EXERCISES 

Ito processes are useful representations or asset dynamics An important tool ror 
transforming such processes is Ito's lemma: If xU) satisfies illl Ito process, and vet) 
is defined by y(t) F(v,/), Ito's lemma specifies the process satisfied by y(t) 

A binomial lattice model can be considered to be an approximation to an Ito 
process The parameters of the lattice can be chosen so that the mean and standard 
deviation of the logarithm of the return agree in the two models ) 

1. (Stock lattice) A stock with current value S(O) 100 has an expected growlh rate of 
its Jogtlrithm of v 12% and a voltltility of that growth Itlte of (]" 20% Find 5uittlbJe 
ptlrameters of a binomitll ltlttice representing this stock with tl basic elementary period of 
3 months Draw the ltlttice and enter the node values fOJ I year Whtlt tlre the probabilities 
of attaining the vtlrious final nodes? 

2. (Time scaling) A stock price S is governed by the model 

In S(k + I) In S(k) + w(k) 

where the period length is I month Let V E[w(k)] and u 2 vru[w(k)l fOJ all kNow 
suppose the bnsic period length is changed to I year Then the model is 

In5(-:,:I-,I) In S(ln + W(K) 

where each movement in K corresponds to I yetlr What is the natural definition of W(K)? 
Show that ErW(K)J 121! and vru[W(K)] = 12u2 Hence ptlrameters scale in proportion 
lo time 

3. (Arithmetic and geometric means) Suppose that VI, V2, ,v" are positive numbels The 
mithmetic mean and the geometliL mean of these numbel':;; are, lespectively, 

and 

(a) It is always true that V,I 2: VG Prove this inequality for 11 2 
(b) If rl,12, ,1" are rates of return of a stock in each of 11 periods, the arilhmetic and 

geometric mean rales of return me likewise 

and 

Suppose $40 is invested During the first year it increases to $60 tlnd during lhe second 
year it decreases to $48 Whal <Ire the arithmetic and geometric mean nHes of return 
over the 2 years? 

(c) When is it appropriate to use these means to describe investment performttnce? 

4. (Complete the square 0) Suppose that II etl', where llJ is nOlm,d with expected value iii 
and v,triance cr- Then 
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Show thaI 

w -~[w 
2rr~ 

Use rhe fnet thaI 

to evalutUe Ti 

5. (Log variunceo) Use the melhod of Exercise 4 to find rhe vnrillnce ot n lognormal v;:triablc 
in Iefms ot Ihe paf<lmeters ot rhe underlying nOlmal variabJe 

6. (Expectations) A stock price is governed by geometric Brownian motioll wilh 11 20 
and (J" 40 The initial price is S(O) 1 Evaiualc Ihc four quallIities 

E[lnS(I)], 

E[5(1)], 

$ldev[ln5(1)] 

stdev[5(1)] 

7. (Application of Ito's lemma) A :-;lock price S is govelned by 

dS aSdt+b5d: 

where.::: is II standardized Wiener process Find the process Iltat governs 

G(I) S·t2 (1) 

8. (Revelse check) Gavin Jones Was mystified by Ito's lemma when he first studied it, so 
he tested it He started with S governed by 

d5 /,5 dt + IT 5 do 

and toulld that Q 111 5 satisfies 

dQ (jL \IT')dt + IT do 

He rltell applied Ito's lemma to this last equation lIsing the change 01 vall,tble S eQ 

Duplicate his calculations What did he get? 

9. (Two simulations 0) A usetul expansion is 

e ' l+x+!x2+ 

Use this to express the exponential in equation (II 20) in linetlr terms ot powers of 6.t 
up to first order Note that this dilfers from the expression in (II 19), so conclude that lhe 
standard form and the multiplicative (or lognormul) form ot simulation nre difterent even 
to first order Show, however, thilt the expected values ot the two expressions Ole identical 
to first ordel, Ilnd hence, over the long !Un the two methods should produce similm results 

Ht (A simuhltion experiment G) Consider {\ stock price 5 govellled by the geometric Brow~ 
nhtn motion process 

dS 

SU) 
IOd, + .lOd: 
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• BASIC OPTIONS THEORY 

An option is the light, but not the obligation, to buy (01 sell) an a>set undel 
specified terms Usually there ale a specified plice and a specified peliod of 
time over which the option is valid An example is the option to purchase, 

for a price of $200,{)OO, a certain house, say, the one you are now renting, anytime 
within the next yeat An option that gives the right to purchgse something is called a 
call option, wheleas an option that gives the Tight to sell something is called a put. 
Usually an option itself has a price; frequently we refel to this price as the option 
premium, to distinguish it from the purchase or selling price specified in the terms of 
the option The premium may be a small fraction at the plice of the optioned asset 
For example, you might pay $15,000 for the option to pUlchase the house at $200,000 
It the option holdel actually does buy 01 sell the asset accOlding to the telms of the 
option, the option holder is said to exercise the option The original premium is not 
recovered in any case 

An option is a derivative security whose un9~Tlyi<ng a?s~t is the asset that can be 
bought or sold, such us the .. ~ouse in our example the -ultimate I1nunciai value of an 
option depends on the price of the underlying asset at the time of possible exelcise 
Fm example, if the house is wOlth $300,000 at the end at the year, the $200,000 
option is then wOlth $100,000, because you could buy the house fm $200,000 and 
immediately sell it for $300,000 fm a plofit of $100,000 

Options have a long history in commerce, since they provide excellent mecha­
nisms lor controlling risk, or for locking up resources at a minimal fee The tollowing 
story, quoted from Aristotle, I is a favorite of professors who write about investments 

There is an anecdote of Thales the MiJesian and his financial device, which involves 
a principle of universal application, but is attributed to him on accollnt ot his reputation 
for wisdom He was reproached ~or his poverty, which was supposed to show that 
philosophy was of no use According to the stDlY, he knew by his skill in the stals 

I Aristotle, Palilk,', Book I Chapter II Jowell tf<lllslUlion Quoted in GijsHneau (1975) 

319 
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while it wus yet winter that there would be n great hill vest of olives in the coming 
year; so, having a little money, he gave deposits for the Use of all the olive presses 
in Chios and MiJctus, which he hired ot a low price because no one bid agaim;t him 
Wilen the harvest lime came, and many wanted them all ut once and of u sudden, he 
let them out at allY rute which he pleased, and made u quantity of money Thus he 
showed the world that philosophers c,m easily be rich if they like 

Anothcl classic example is associated with the Dutch fillip mania in about 16{)O< 
Tulips WCIC prized tor their beauty, and this led to vigorous speculation and escalation 
of prices Put options were used by growers to guarantee a pIice for their bulbs, and 
call options were used by dealers to assUie future prices The market was not regulated 
in any way and finally crashed in 1636, leaving options with a bad reputation 

Options are now available on a wide assortment of financial instl uments (such as 
stocks and bonds) through regulated exchanges However, options on physical assets 
me still very impOltant In addition, there are many implied or hidden options in othel 
financial situations An example is the option to extract oil from an oil well or leave 
it in the ground until a beltel time, or the option to accept a mortgage guarantee or 
renegotiate These situations can be fruitfully analyzed using the themy of options 
explained in this chapter 

12.1 OPTION CONCEPTS 

The specifications of an option include, {lU;t, a clear deScliption of what can be bought 
(tor a call) 01 sold (lor a put) For options all stock, each option is usually 101 100 
shares 01 a specified stock Thus a call option on IBM is the option to buy 100 shares 
of IBM Second, the exen:ise ptice, or strike price, must be specified This is the 
price at which the asset can be purchased upon exercise of the option For IBM stock 
the ex.ercise price might be $70, which me~ms that each share can be bought at $70 
Third, the period 01 time 101 which the option is valid must be specified-defined 
by the expiIation date Hence an option may be valid for H day, a week, or several 
months There are two ptilmuy conventions legarding acceptable exelcise dates before 
expiration An American option allows exercise at any time beJ'ore and including the 
expiration date A European option allows exercise only on the expiration date The 
tel ms AlIlelicoll and El/lopeoll reter to the different ways most stock options are 
structured in America and in Europe, but the words have become standard for the 
two different types of structures, no matter where they are issued Thele are some 
European-style options in Amel ica FOI example, il the option to bHY a hOHse in one 
year states that the sale must be made in exactly one yem and not sooner, the house 
option can be referred to as a European option 

These fOUl fealUres--the descl iption of the asset, whether a call 01 tl put, the 
exercise pI ice, and the expil ation date (including whether Al11eric,ln 01 European in 
style)-specily the details 01 an option A linal, but somewhat separate, feature is 
the price 01 the option itselJ'-the premium II an option is individually tailored, this 
premium price is established as p.ut of the original negotiation and is part of the 
contract If the option is traded on an exchange, the pl emium is established by the 
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FIGURE 12.1 Options quotations on Gen~ 
Call Put era~ Motors stod, (December 15, 1995)" The 

firsl column shows the dosing price of Ihe 
Option/strike Exp. Vol. Last Vol. Last stock The other columns give information 

about available options Source: The Wall 
OM 35 Dec 529 72 5lrec/ lourna/, Decemher 15 1994 -H 

37~ 35 Jan 93 3~ 
·H 90 

37~ 35 Mar 36 4 1 ., 49 

37t 35 Jun 31 51 
37~ 40 Dec 24 J. 549 7J. 

If, -If> 

37~ 40 I,m 407 !! 284 ')2. 
If, -H 

37~ 40 Mnr 746 l' H 40 

37~ 40 JUIl 91 ')11 135 3 ~ -If) 

37~ 45 Jan 104 1 49 7 

37~ 45 Mar 50 

37~ 45 Jun 110 11 ., 15 7' H 

37i 50 fun 94 
, , 

market through supply and demand, and this premium will vary according to trading 
activily 

There me two sides to any option: the pUlly that gl ants the option is said to write 
an option, wherem; the party that obtains the option is said to pUlchase it The party 
plll chasing an option faces no risk 01 loss other than the original purchase premium 
However, the pmty that writes the option may luce a large loss, since this pmty must 
buy or sell this asset ut the specified terms it the option is exelcised In the case of an 
exercised call option, il the wdtel does not alreody own the asset, he must purchase 
it in ordcI to deliver it at the specified strike price, which may be much higher than 
the cunent nhllket ptice Likewise, in the cftse of an exercised put option, the writer 
must accept the usset tOI the strike pi icc, which could be much lowel than the CUI rent 
rn~lI ket ptice 

Options on many stocks are traded on an exchange In this case individual option 
trades <lIe made through tl brokel who trades on the exchange The exchange clearing­
house guawntees the perlormunce ot all parties Because 01 the risk associated with 
options, an option wIitel is requited to post margin (a security deposit) guaranteeing 
perfOllllanCe :; 

Exchange-Haded options are listed in the financial press A listing 01 GM (Gen­
elal Motors) options is shown in Figure 12 I There are several ditlerent options 
available i"0l GM stock Some are calls and some are puts, and they have a variety 
01 strike prices and expiration dates In the figure, the fjrot column shows the symbol 
1'01 the undedying stock and the closing ptice 01 the stock itself The second column 
shows the exelcise (01 strike) price of the option The third column shows the month in 

11 he 1nhl<I.I margin level is OftCH 5017jl 01 lite slock value 01 the nption with u nmimcnuflcc level til 25% 
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which the option expires The exact expitation date dudng that month is the SiHurday 
following the thiId Friday The rourth and fifth columns give data on a call, showing 
the volume traded on the day reported and the last repolled price fOi that option The 
final two columns give the analogous information lor the put All prices are quoted 
on a pel-share basis, although a single option contl'act is for 100 shales 

As with futUles contracts, options on financial securities are lately exercised, with 
the underlying secuIity being bought 01 sold Instead, if the price 01 the security moves 
in a favorable direction, the option plice (the premium) will increase accordingly, and 
most option holders will elect to sell their options betore maturity 

There are many details with regard to options trading, governing special situa­
tions such as stock splits, dividends, position limits, and specific margin requirements 
These must be checked before engaging in serioufi trading of option~ However, the 
present overview is sufficient fOl understanding the basic mechanics of optionfi 

12.2 THE NATURE OF OPTION VALUES 

A primary objective of this chapter is to show how to determine the value of an 
option on a financial security Such a determination i~ a fascinating and creative ap­
plication of the fundamental ptinciples that we have studied so far Hence options 
theory is important pm!l), because options themselves are important flnancial instru­
ments, but also partly because options theory ~hows how the tundmnental principles 
of investment science can be taken to a new level-a level where dynamic structure 
is fundamentaL In this ~ection wc examine in a qualitative mannel the nature of op­
tion prices This will prepare us ror the deepel analysis that follows in subsequent 
sections 

Suppose that you own a call option on n stock with a strike price of K Suppose 
that on the expiration date the price of the underlying stock is S What is the value 
of the option at that time? It is easy to see that if 5 < K, then the option value is 
zero This is because under the terms of the option, you could exercise the option and 
purchase the stock for K, but by not exercising the option you could buy the stock on 
the open market for the lowel price of S Hence you would not exercise the option 
The option is worthless On the other hand, if S > K, then the option does have value 
By exercising the option you could buy the stock at a price K and then sell that stock 
on the market fO! the larger price S Your profit would be 5 - K, which is therefore 
the value of the option We handle both cases together by writing the value of the call 
at expiration as 

C = max (0, S - K) (12 I) 

which means that C is equal to the l11Llximum of the valuefi 0 01 .s - K We therefOie 
have an explicit formula for the value of a call option at expiration as a function of 
the price of the under lying seeurity 5 This function is shown in Figure 12 2({[) The 
figure shows that for 5 -< K, the value is zero, but for 5 > K, the value 01 the option 
increases linearly with the price, on a one-for-one basis 

The result is reversed tor a. put option A put option gives one the right, but 
not the obligation, to sell an asset at a given strike price Suppose you own a put 
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(a) Call option (b) Put option 

FIGURE 12 2 Value of option at expiration. A cal! has value jf 5 :;. I< A put has value jf 5 < I< 

option on a stock with a strike price of K In this case if the price .s of the stock 
at expiration sntisfies 5 > }(, then this option is worthless By exercising the option 
you could sell the stock tot a price K, whereas in the open market you could sell 
the stock for the greater pdcc S Hence you would not exercise the option On the 
other hand, if the price of the stock is less than the strike price, the put option does 
have value You could buy the stock on the market lor a price S and then exclcise 
the option to sell that same stock for a greater price K YoU! profit would be K - S, 
which is therefore the value 01' the option The general fotmula fot the value of a put 
at expiration is 

P max (0, K - S) (122) 

This function is illustrated in Figure 122(b) Note that the value of a put is bounded, 
whereas the payoff at a call is unbounded Conversely, when writing a call, the po­
tential for /O.B is unbounded 

We say that a call option is in the money, at the money, or out of the money, 
depending on whether S > K, S K, or S < K, respectively The terminology 
applies at any time; but at expiration the terms describe the nature of the option value 
Puts have the reverse terminology, since the payofts at exelcise are positive if .s < f( 

Time Value of Options 

The preceding analysis tocused on the value 01 an option at expiration This value is 
derived trom the basic stmcture of an option However, even European options (which 
cannot be exercised except at expiration) have value at earlier times, :-;ince they provide 
the potential for future exercise Consider, for example, an option on OM stock with 
a strike price of $40 and 3 months to expiration Suppose the cunent price of OM 
stock is $37 88 (This situation is approximately tllllt of Figure 12 I represented by 
the March 40 call) It is clear that there is a chance that the price of GM stock 
might increase to over $40 within 3 months It would then be possible to exercise 
the option and obtain a profit Hence this option has value even though it is currently 
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c 
FIGURE 12<3 Option price curve with vari~ 
ous times to expiration, At a given slock price 
), the vJlue of a cal! option increases as the 
time 10 expiration increases 

out 01 the money (In the example represented by the figure, the 40 call is selling lor 
$1 63 ) 

When there is a positive lime to expiration, the value of a call option as a 
function of the stock price is a smooth curve rathet than the decidedly kinked curve 
that applies at expiration This smooth cur ve can be determined by estimation, using 
data 01 actual option prices Such estimation shows that the option price cur ve tot any 
given expiration period looks something like the ctuves shown in Figute 12.3 In this 
figure the heavy kinked line represents the value of a call al expiration The higher 
curves conespond to diflelent times to expiwtion The first curve is I'or a call with 
3 months to expinltion, whereas the next higher one is for 6 months The curves get 
higher with increasing length to expitation, since additional time plOvides a greater 
chance lor the stock to lise in value, increl.lsing the final payoff However, the effect 
01 additional time is diminished when the stock price is eitheI much smaller or much 
greater than the sttike pIice K When the stock price S is much lower than K, there 
is little chance that S will rise ttbove K, so the option value temains dose to Zero 
When S is much greater than K, there is little advantage in owning the option over 
owning the stock itself 

A major objective of thi:-; chapter i~ to detellnine a theory fOl option prices This 
theOlY will imply a specific set of CUi ves, such as the ones shown in Figme 12 3 

Other Factors Affecting the Value of Options 

The volatility of the underlying stock is another factor that influences the value of 
an option ~ignificmltly To See this, imt1gine that you own similar options on two 
different stocks Suppose the prices 01 the two stocks are both $90, the options have 
sllike prices or $100, and there Ole 3 months to expiration Suppose, however, that 
one of these !itocks is veIY volatile and the other is quite placid Which option has 
male value? It is clem that the stock with the high volatility has the gIeatest chance 
of rising above $90 in the short period remaining to expiration, and hence its option 
is the more valuable of the two We expect therefore that the value 01 a call option 
incIeases with volatility, tlnd we shall verify this in our theoretical development 

What other factOls might influence the value of an option? One is the ptevailing 
interest rnte (Ol term stlucture pattern) Purchasing a call option is in some WHy a 
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method of purchasing the stock at a reduced price Hence one saves interest expense 
We expect therefore that option plices depend on interest rutes 

Another factor that would seem to be important is the growth rate of the stock It 
seems plausible that higher values of growth would imply larger values for the option 
However, perhaps sUlptisingly, the growth fute does lIot influence the theoretical value 
01 an option The reason for this will become clem when the theoretical formula is 
developed 

12.3 OPTION COMBINATIONS AND PUT-CAll PARITY 

It is common to invest in combinations 01 options in ordel to implement special 
hedging at speculative stli..llegies The payoft cutve of such l..\ combinlJtion l11lJY have 
any number of connected stlaight-Iine segmenls This overall payoff cut ve is formed 
by combining the payol! functions defined by calls, puts, and the undetJying stock 
itself The process is best illustrated by an example and a corresponding gtaph 

Example 12,1 (A butterH'y spread) One of the most interesting combinations 01 
options is the buttelfly spread It is illustrated in Figllle 124 The spread is consttuctcd 
by buying two calls, one with strike price Kl and ,lnothel with strike price /(" and 
by selling two units of a call with strike pi ice /('2. where Rl < K:.. < /(3 Usually /(::. 
is chosen to be neal the current stock price The figure shows with dashed lines the 
profit (including the payoff and Oliginal cost) associated with each of the components 
The overall profit function of the combination is the sum of the individual component 
functions This particular combinution yields (J positive profit if the stock price at 
expiration is close to /(2; othetwise the loss is quite smull The payoff ot this spread 
is obtained by lifting the CUlve up so that the hOlizontal portions touch the "xis, the 
displacement distance Cot responding to the net cost of the options 

FIGURE 12.4 Profit of bullerAy spread. This 
splead is formed by buying calls with slrike 
prices KI unci KJ and writing Iwo units of il 

call ilt K:;!, This combinillion is useful if one be­
lieves lhill the underlying stock price wil! SlilY 
in a legion neilr K~ 
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The main poim here is that by forming combinations of options and stock it is 
possible to approximate virtually any payoff function by a sequence of straight-line 
segments The cost of such a payoff is then just the sum at the costs of the individual 
components 

Put-Call Parity 

For EUJOpean options lhere is a simple theoretical relutionship between lhe prices of 
corresponding puts and calls The relationship is found by noting that a combination 
of a put, a cali, and a risk-free loan has a payofl identical to that of the underlying 
stock 

The combination can be easily imagined: buy one call, sell one put, and lend an 
amount d K The combination of the first two has a payoff that is a straight line at 45', 
passing through K on the horizontal axis By lending d,K, we obtain an additional 
payoff of K, which lifts the payoll line up so that it is now a 45' line originating 
at tile origin This final payoff is exactly that of the stock itself, so it must have the 
value S of the stock In other words, 

C P+dK S 

(See Exercise 3 for more detail ) 

Put-call pari(y Lef C and P be {he price'i of a Elilopeall cal! and a Elilopean pIlt, 
both \IIitlI a HI ike pi ice of K and both de filled 011 {he wille ~tock with plil:e SPIll-cali 
pGl itv Uafe\ dIal 

C P+dK S 

wliele d i~ the diH:OIlIIf [aam {O rhe expilGtiolI date 

Example 12.2 (Parity almost) Con,ider the OM options of Figure 12 I, and focus 
on the two 35 March options (with 3 months to expiIation) These have C = 425 
and P = I 00, respectively The interest rate for this period is about 5 5%, so over 
3 month' we have d I/O + 055/4) = 986, TIM, 

C P + d K = 4 25 I 0 + 986 x 35 00 37 78 

This is a close, but not exact, match with the actual stock price of $37 88 There are 
several possible explanations for the mismatch One of the most important is that the 
stock quotes and option quotes do not come flOrn the same sources The stock ptice 
is the closing price on the stock exchange, whereas the oplion prices are from the last 
traded options on the options exchanges; the last trades can occur at different times 
Dividends also can influence the parity relation, as discussed in Exercise 2 
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12.4 EARLY EXERCISE 

An American option alters the possibility 01 em!y exelcise, that is. exercise before the 
expiration date 01 the option We ptove in this section thm lor call options on II stock 
that pays no dividends prior to expiration, eady exelcise is never optimal, provided 
lhat prices are slich thut no mbiuugc is possible 

rhe lesuit can be seen intuitively us tallows Suppose that we ate holding a call 
option al time ( and expifi.1tion is at time J > t II the current stock price S(r) is 
less than the sttike price /(, we would not exercise the option, since we would lose 
money II, on the other hand, the stock ptice is greatel than /(. we might be tempted 
to exelcise HOWCVCI, il we do so we will have to pay R now to obtain the stock If 
we hold the option a little longel and then exelcise, we will still obtain the stock ror a 
pI ice of R, but we will havc earned udditional interel1t on the exercise money R -in 
fact, if lhc stock declines below /( in this waiting peIiod, we will nOl exeIcise und be 
happy that we did not do so eadiel 

12.5 SINGLE-PERIOD BINOMIAL OPTIONS THEORY 

We now turn to the issue 01 calcululing the theoretical value 01 an 0Plion-an area 
of work that is called options pricing theory. Thele me sevelal applOaches to this 
pIOblem, bU1-lcd on dilleIem assumptions about the market, about the dynamics 01 
stock pfice behaviOI, and about individual prclerences The most impOItant theoJies 
are based on the no mbiLIage pIinciplc, which can be applied when the dynamics at 
the undedying stock takc certain 1011ns The simplest 01 these theOIies is based on 
the binomial model at stock plice fluctuations discussed in Chapter II This the01Y 
is widely used in pIaclice because at its simplicily and case of calculation It is a 
beauliful culmination 01 lhc plinciples discussed in plCvious chapteIs 

The basic lheOlY at binomial oplions pricing hus been hinted at in am c;,ulicr 
discussions We shall develop it hCle in a self-contained munneI, bUl the readel should 
notice the connections to em lieI sections 

We shall lilst develop the. theory 101 the single-period case A single step 01 a 
binomial process is all lhal is used Accordingly, we suppose thal the initial price 01 
a stock is S At the end 01 the peliod the price will eithel be liS with plObability p 01 
dS with plobability I - P We assume II > d > 0 Also at every petiod it is possible 
to bOIIow OI lend at a common lisk-Iree inlerest late I We let R I + I To avoid 
aI bit! age OppOl tuni lies, we must have 

I1>R>d 

T a see this, suppose R .2: II > (/ and 0 < p < I Then the stock peIiOlms WOJSC 

than the fisk-free nsset, even in the "up" bU1l1ch 01 lhe latticc Hcnce one could shOlt 
$1 00 of the stock and loan the plOceeds. theleby obtaining a plOfit at eithel R - II 

01 R d, depending on lhe outcome state The initial cost is zero, but in cithCl cusc 
the pIOfil is positive, which is not possible if there ale no mbit!age oppOltunities A 
simii<u mgumel1l Jules out II > d.2: R 
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uS 

5 < max(u5 _ 1(,0) 

d5 < 
FIGURE 12.5 Three related lallices. The 
slock price, the value of a risk~free loan, 
and the value of a cal! option all move 
togelher on a common lattice, represenled 
here as three separate lattices 

,<' C ,~,,,-,m 
R 

Now suppose also that there is a call option on this stock wilh exercise price K 
and expiration at the end of the period To find the value of the call option, we USe 
a no-arbitrage argument by reterring to Figure 125, This figure shows the binomial 
lattices for the stock pricc, the value of a risk-free asset, and the value of the option 
All three of these lattices have common a.rcs, in the sense that all move together along 
the same arcs If the stock price moves along the upward arc, then the risk-free asset 
and the call option both move along their upward arcs as well The risk-free value is 
deterministic, but this is treated as if it were a (degenerate) detivative of the stock by 
just making the value at the end of each atC the same 

Assuming that we know the stock price S, then all values of these one-step 
lattices are known except the value of the call C This value will be determined from 
the other values 

The insight that we use is to note that each of the lanices on the left has only 
two possible outcomes By combining various ptoportions of these two lattices, we 
can construct any other pattern of outcomes In patticular, we can construct the pattern 
corresponding to the outcomes ot lhe option 

Let us denote 

C" max (/IS - K,O) 

Cd max (dS - K, 0) 

( 12.3) 

(124) 

To duplicate these two outcomes, let us purchase x dollars worth oj stock and b dollars 
worth of the risk-free asset At the next time period, this portfolio will be worth either 
/IX + Rb or dx + Rb, depending on which path is taken To match the option outcomes 
we therefore require 

IIX + Rb 

d,\ + Rb 

To solve these equations we subuact the second trom the first, obtaining 

Cif - Cd 

From this we easily find 

b 

x=~ 

CIf - IIX 

R 

IICd - dCrr 

R(II-d) 

(12.5a) 

(l25b) 
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Combining these we find lhat the value 01 the portfolio is 

r + b elf - Cd + /fed dell 
1/ -d 11(11- d) 

We now use the comparison ptincipie (01, equivalently, the no-atbiLIage princi­
ple) to asselt that the value" + b must be the value of the call option C The reason 
is that lhe porlfolio we constlucted produces exactly the same olltcomes as lhe call 
option II the cost of this portfolio wele less than the pricc of the call, we would never 
purchase the call Indeed, we could make arbitrage profits by buying this portfolio and 
selling the call tor an immediale gain and no future consequence If lhe prices were 
unequal in the reverse ditection, we could just reverse the argument We conclude 
therefore that the price at the call is 

c I (II d II-II) - --c +--C, 
R f/ -d IT If d I 

(126) 

The portfolio made up at the stock and the risk-free asset that duplicates the 
outcome of the option is otten l'efelIed to an a replicating portfolio. It replicales the 
option This replicating idea can be used to find the value ot any secutity defined on 
the same lattice; thal is, any security thal is a derivative of the stock 

Thele is a simplified way to vicw equation (126) We define the quantity 

II-d 
'I /f-d 

(127) 

From the relation II > R > d assumed earliel, it tallows that 0 < q -<: I Hence q can 
be considered to be a plObability Also (126) can be written as lollows: 

OptiOIl pticillg forllluia 
bva binomiallaffice i.~ 

Jbe value oj (f olle-peliod call option 011 a .Hock gave/ned 

C 
I _ 

R[qC" + (I q)Cd ] (128) 

Note that (128) can be interpi eted as stating that C is found by taking the ex­
pected value of lhe option using the probability q, and then discounting this value 
according to the l'isk-Iree late The probability q is thel efore n dsk~neutral proba~ 
bility. T'his proccdlue of valuation wOlks lor all seculities In tact q can be calculated 
by making SUle that the risk-neutwlloliTIula holds 101 the underlying stock itself; that 
is, we want 

I 
R[quS + (I q)dS] 

Solving this equation gives (127) 
As a suggestive notation, we wlite (12 8) as 

C(J I) -'-E[C(J)I 
II 
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Here C(T) and C(T I) are the call values at T and T I, respectively, and E 
denotes expecta.tion with respect to the risk-neutral probabilities q and 1 q 

An important, and perhaps inilially .surplising, fealure of the pricing formula 
(126) is that it is independeII! of the probability p of an upward move in the lattice, 
This is because no trade~off among probabilistic events is made The value is found 
by perfectly matching the outcomes of the option with a combination of stock and the 
risk-free asset Probability nevel enters this malching calculation. 

This derivation of the option pI icing formula is really a special case of the risk­
neutral pricing concept discussed in Chapter 9 At this point it would be useful for the 
reader to review that earlier section 

12.6 MULTIPERIOD OPTIONS 

We now extend the solulion method Lo mulLiperiod 0Plions by working backward one 
step at a time 

A two-stage lanice representing il two-period call option is shown in Figure 12.6 
It is assumed as before that the initial price of the stock is S, and this price is modified 
by the up and down factors It and d while moving through the lattice The values 
shown in the lattice are those of lhe corresponding call 0Plion with strike price K and 
expiration time cotresponding to the final poinl in lhe lallice The value at the option 
is known at the final nodes at the lattice In particular, 

ellll max (u 2S 

Clld max (udS 

Cld max (d'S 

K,O) 

K,O) 

K,O) 

(l29a) 

(l29b) 

(l29c) 

We again define the risk-neutral probability as 

R d 
q 

If d 

where R is the one-period retuln on lhe risk-free asset Then, assuming thal we do 
not exercise the option early (which we already know is 0plimal, but will demonstrate 

c" 

C 

Cd 

FIGURE 12.6 Two-period option The value is found by 
working backward a step at a lime 
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again shortly). we can find the values 01 C" and Cd from the single-period calculation 
given earlier Specifically. 

C" 
I 

R[qC"" + (I q)C"dJ (1210) 

I . 
R[qC"d + (I - q)Cdd ] (12 II) 

Then we find C by another application 01 the same risk~neutral discounting formula 
Hence, 

C 
I _ 

R[qC" +(1 q)Cd 

For i..\ lattice with more periods, a similar procedure is used, The single-period, risk­
free discounting is just repeated ut every node of the lattice, starting trom the final 
pedod and working backward toward the initial time 

Example 12.3 (A 5-month call) Consider a stock with a volatility of its logarithm 
01 (J 20 The Cutrent price 01 the stock is $62 The stock pays no dividends 
A cerlain cull option on this stock has an expiration date 5 months from now and 
a strike price at $60 The cuttent tOte of interest is 10%. compounded monthly We 
wish to determine the theoretical price of this call using the binomial option ap­
proach 

First we must determine the parameters for the hinomiai model of the stock price 
fluctuations, We shall take the period length to be I month. which means /:;r 1/12 
The pmameters are tQund from Eqs (II I) to be 

II 

d 
R 

ea...rt:i 

e-a...rt:i 

1+ 1/12 

Then the risk-neutral probability is 

q (R - d)/(II d) 

105943 

94390 
I 00833 

55770 

We now form lhe binomial lattice corresponding to the stock price at the be­
ginning of each of six successive monlhs (including the current month) This lanice 
is shown in Figule 12,7, with the number above a node being the stock price at that 
node Note that un up followed by a down always yields a net multiple of I 

Next we calculute the call option pi ice We start at the final time und enter the 
expiration values of the cull below the final nodes This is the maximum of 0 and 
S /( Fot example. the entry tot the top node is 8275 60 22,75 

The values for lhe previous time nre found by the single-step pricing relation 
The value of any node at this time is the discounted expected value of two succes­
sive values ill lhe nexl lime The expected vulue is calculated lIsing the risk-neULrul 
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6568 

821 

5852 

297 

7811 

7372 1860 

6959 1471 69 59 

6568 

62 696 62 

461 5852 314 

5524 1 74 5524 

0 4921 

8275 
2275 

73 72 
1372 

6568 
568 

5852 
0 

5214 
0 

4645 
o 

FIGURE 12.7 S-monlh call using a bino~ 
mlil.1 Jil.ltice. The upper numbers are lhe 
slock prices, the lower numbers Ule op-
lion values The option values are found 
by working backward lhrough the laUlce 

probabilities q and I - q For example, the value at the top node is [ 5577 x 22 75 + 
(I - 5577) x 13 72]/100833 = 1860 

We work toward the left, one period al a lime, unlil finally lhe initial value is 
reached In this case we conclude thm the price ot the oplion computed this way is 
$5.85 

Note thal the entire ptocess is independent of the expected growth rate of the 
stock This value only enters the binomial model of the stock tlHough the probability p; 
but this probability is not used in the option calculation. Instead it is the risk-neutral 
probability q that is used Note, however, that this independence results from using 
the smull /:).{ approximation for parameter matching And indeed, in practice lhis 

-approximation is almost invariably used (even for /:;r equal to I year) It the more 
genera! malching formula were used, lhe growlh rute would (slightly) inft.uence the 
result 

No Early Exercise' 

In the preceding exam pte we assumed (rightly) that lhe option woutd never be exer­
cised earty We can prove this dilectly from the binomial equaLion1l From the basic 
payoff structure we see that 

Clld ~ l/dS- K 

eM ~ d 2s - K 
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Hence, 

c" ~ [II'qS + IId(l - q)S - /( I/R 

= lI[qll + (I - q)d]S/R /(/R 

> liS - /( 

Likewise, 

Cd> dS - /( 

If the option were exercised at the end at the filst period at the two-pel iod lattice 
shown in Figure 12,6, we would obtain uS - K at ciS - /(. depending on which node 
was aClive at lhe time These inequalities show that the value of the option at lhe end 
of one period is greuter than the amount that would be obtained by exercise at that 
period Hence we should not exercise the option 

If the lanice had more periods, these inequalilies would ex lend LO the neXl 
forward peJiod us well Hence, in general, by an induclive process il can be shown 
lhat it is never 0plimal to exercise lhe oplion 

The mgument againsl early exercise does nOl hold for all 0Plions; in some 
cases an additional operation must be incorporated in lhe recursive process 01 value 
calculalion This is explained in the nexl section 

12.7 MORE GENERAl BINOMiAl PROBLEMS 

The binomial luuice melhod for calculating lhe value ot an oplion is extrcmely simple 
and highly versatile For lhis Jenson il hus become a common tool in lhe invesll11em 
and financial communilY The method is simplesl whcn applied lo a call oplion on a 
non-dividend-paYing sLOck, as illustraled in lhe previous scclion This seclion shows 
how lhe basic method can be eXlended lO more complex situations 

Put Options 

The melhod for cn1culming the values ot European pUl options is analogous lO that tor 
call oplions The main difference is lhat lhe leJlninal values tot lhe option are ditteJent 
BUl once lhese are specified, the reculsivc procedure works in a similm way 

For un American pUl, eady exercise may be oplimal This is easily nccouJ1lcd 
fOJ in the recursive pJOcess as follows: Al each nodc, firsl calculme lhe value 01 lhe 
pUl using lhe discoUJ1led Jisk-ncutral tormula; lhen calculme lhe value lhat would bc 
obtained by immediate exelcise of the put; finally, select the larger of thesc two values 
ns lhe vnlue of lhc pul al thal node 

Example 12.4 (A 5-month put) We consider the same stock that was used to evalu­
ate lhe 5-monlh cal! option of EXtlmple 12.3, bUl now we evalul1te a 5-l11onlh Amelican 
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62 00 6568 6959 7372 78 II 8275 
FIGURE 12.8 Calculation of a S~month put op-
tion price, The pUl values in the lower portion of 

5852 6200 6568 6959 7372 the figure are found by worldng bllckward Bold-
5524 5852 6200 6568 fllee entries incJicllte points where it is opUmal to 

Stock price 5214 5524 5852 exercise the option 
4921 52 14 

4645 

156 061 a 12 000 000 000 
279 I 23 028 000 aDo 

480 245 065 ODD 
Put option 7.S6 4.76 lAS 

10.79 7.S6 
13.55 

put option with a strike price of K = $60 Recall that the critical parameters were R = 
1.008333. q = 55770. II = I 05943. and d = .94390 Binomial lattice calculations 
can be very convenie11lly carded oUl wilh a spteadshccl program Hence we of len 
show lauices in spreadsheet form rmher lhan as graphical diagrams This allows us 
LO show latger lattices in a reSl!icled space, and h also indicales more directly how 
calculalions are organized, 

The binomiallauice for lhe sLOck price is shown in lhe top porlion ot Figute 12 8 
In lhis figute an up move is made by moving directly to the right, and a down move 
is made by moving to the tight and down one step 

To calculate the value of the put option, we again work backward, construct­
ing u new lallice below the stock price lallice The final values (those of the last 
column) are, in this case, the maximum ot 0 and K - S We then work toward the 
left, one column III a time To find the value of an element we fir~t calculate the 
-J!~o~nted expecte~ value as before, using the risk-neutral probabiliti~~--Now, 110w­
ever. we must also check whether this value would be exceeded by K - S. which is 
what could be obtained by exelcfsing the option at the current point We assign the 
larger of the two values to this cunent node For example, consider the fourth entry 
in the second to last column The discounted expected value there is [5577 x I 48 + 
(I 5577) x 7861/1 00833 = 4 266 The exercise value is 60 - 55 24 = 4 76 The 
larger of these is 4 76. and that is what is entered in the value lallice If the larger 
value is obtained by exercising, we may also wish to indicate this on the lanice, 
which in our figure is done by using boldface for the enlties con'esponding to exercise 
points (AlLel nati vely, a sepat ate lanice consisting ot 0' s and I' s can be constructed 
to indicate the exercise points) In OUi example we see that there are several points at 
'which exercise is optimal The value of the put is the tit st entry of the lanice, namely, 
$156 

Intuitively, eally exercise of a put may be optimal because the upSide profit is 
bounded Clemly, tor example, if the stock price tails to zero, one should ex-ercise 
there, since no gleater plOfit can be achieved A continuity argument can be used to 
intel that it is optimal to exelcise if the stock price gets close to zero 
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Dividend and Term Structure Problems' 

Many othel problems can be Heated with the binomial Inttice model by allowing 
the parameters of the model to vary from node to node This docs not change the 
basic stlUcture of the computational method It merely means that the risk-neutwJ 
plObabilities and the discount facto! may differ trom period to pCliod 

One example is the evaluation of a call option on a stock that pays a dividend 
If the dividend is proportional to the value of the stock-say, the dividend is 8S and 
is paid nt time k-then in the stock price lattice we just change the factors- ii and 
d for the period ending at k to ItO:::.O) and d(l 8) If the dividend is known in 
advance to be a fixed amount "15, then this technIque will not wOlk directly, but the 
lattice approach can still be used (See Exelcise 5 ) 

The parametels also vary when the interest rate is not constant In this case the 
appropliate single-period rate for a given period (the implied short rate) should be 
used This will change the value 01 R and hence also the value of q 

Futures Options' 

Are we ready to consider a futures option-that is, an option on a futures contract? 
This may at filst sound complicated; but we shall find that futUles options are quite 
simple to analyze, and study at the analysis should help develop a fuller undelstanding 
of the rrsk-neutral pricing process The best way to study the analysis is to consider 
an example 

Example 12.5 (A futures contract) Suppose that a celtain commodity (which can 
be stmed without cost and is in ample supply) has a cunent price of $100, and the price 
plocess is described by a monthly binomial lattice with parameters II = 1 02, d = 99, 
and R = 1.01 The actual plobabilities are not impmtant for OUI analysis This lattice, 
tor 6 months into the future, is shown in the upper left-hand corner of FigUle 129 We 
can immediately calculate the lisk-neutral plobabilities to be q = (R -d)/(II -d) = ~ 
and I q = ~ 

Let us compute the lattice ot the conesponding futures plices tor a futures 
contract that expires in the sixth month This lattice is shown in the lower left-hand 
side of Figure 129 One way to compute this lattice is to use the lesult of Chaptel 10 
that the futures price is equal to the cunent commodity price amplified by interest 
tate growth ovel the remaining period of the contract Hence the futures ptice at time 
zelO is $100(101)6 = $10615, as shown in the lattice The tutur~;:-price for any node 
in the lattice can be found by the same technique: just multiply the corresponding 
commodHy price by the factor of interest rate growth for the remaining time 

The futures price can also be found recursively by using the risk-neutral prob­
abilities We know that the tinal futules price, at month 6, must be identical to the 
price of the commodity itselt at that time, so we can fill in the last column of the alJaY 
with those values Let us denote the futures price at the top at the previous column, 
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4 4 

10000 10200 10404 10612 10824 11041 11262 416 505 604 7 12 825 942 1062 
9900 10098 10300 10506 107 16 10930 250 321 407 507 6 17 730 

9801 9997 10197 10401 10609 I 14 159 220 302 409 
Commodity price 9703 9897 10095 10297 Commodity 028 042 064 097 

9606 9798 9994 option 000 000 000 
95 10 9700 000 000 

94 15 000 

106 15 10720 10826 10934 11042 11151 11262 428 521 6_26 7.34 8042 951 1062 
104 05 10508 10612 107 17 10823 10930 254 327 4 15 5_17 6_23 730 

10199 103 00 10402 10505 10609 I 15 I 61 222 3_05 409 
Futures price 9997 10096 10196 10297 Futures 028 042 064 097 

9799 9896 9994 option 000 000 000 
9605 9700 000 000 

9415 000 

FIGURE 12"9 lattices associated with a commodity, The upper lefllaUice is the price laUice of a coJ11modity All 
other lattices are computed from it by backward rjsk~neutr<ll evaluation 

at time 5, by F If one took the long side of a one-period contract with this assigned 
price. the payoff in the next period would be either 11262 - F or 109 .30 - F. depend­
ing on which of the two nodes was attained These two values should be multiplied 
by q and I - q, respectively. and the sum discounted one period to find the initial 
vQlue, at time 5, of such a contract But since futures contracts.ate.~alpnged so that the 
initial value is zelO, it follows that '1(112 62 F) + (1 '1)(109.30 - F) ~ 0, which 
gives F q 112 62 + (I - q) 109 30 In other words, F is the weighted average 01 the 
next period's prices; the weighting coefficients me the risk-neutlal probabilities We 
do !lot disconnt the average 

This process is continued backward £l column at a time, computing the weighted 
average (or expected value) using the lisk-neutlal probabilities The final result is again 
106 15 

Notice thllt the Oliginal commodity price lattice also can be ieconstructed back­
ward by using iisk-neuhlll pi icing Given the tinal prices, we compute the expected 
values using the iisk-neutral probabilities, but now we do discount to find the value 
at the previous node Working backward we till in the entire lattice, duplicating the 
original figures in the upper left-hand corner 

The backward process for calculating the futures prices and the backward process 
tor computing the commodity prices me identical, except that no discounting is applied 
in the calculation of futures prices Hence futures prices will be the same as the 
commodity prices, but inHated by interest rate glOwth 

Example 12.6 (Some options) Now let us consider some options related to the 
commodity in Example 125, First let us consider a call option on the commodity 
itself, with a strike price 01 $102 and expiration in month 6 This is now easy fm 
us to calculate using binomial lattice methodology, as shown in the upper right-hand 
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part 01 Figure 129 We just fill in the final column and then work buckward with the 
risk-neuttal discounting ptocess The fair price 01 the option is $4 16 

Next let us considet n call option on u futures conttact with a sttikc ptice 01 $102 
II this option is exeroised, the call wtiter must delivel II futures conttact with tl futures 
price at $102, but malked to market Suppose the actual futUles price at the time of 
exercise is $11042 Then the writer can pUlchase the tututes contract (at zero cost) 

with the tlltures price $110 42 and deliver this contract together with the dinerence 
ot $11042 $10200 = $8 42 to the option holder This payment compensates tor 
the fact that the writer is delivering a contract at $11042, instead of at $10200 as 
promised In other words, iI the option is exercised, the call holdel obtains £1 current 
futures contract and cash equal to the difference between the current futures price ancl 

the option strike price 
We can compute the value of such a cull in the same mHnner ns other calls, 

as shown in the lattice in the lower right-hilnd portion of Figure 12 9 At each node 
we must check whether or not it is desirable to exercise the option This is done by 
seeing whether the corresponding lutures pJice minus the strike price is gleater than 
the risk-neutral value that would be obtained by holding the option II it is optimal to 
exercise the option, we record the option value in boldface The option pJice is found 
to be $428 Notice that even though the final payoH values are identical tor the two 
options The futUles option has a higher value because the higher intel medinte futures 
prices lead to the possibility at early exercise 

12.8 EVALUATING REAL INVESTMENT OPPORTUNITIES 

Options theory can be used to evaluate investment opportunities that are not pure 
financial instruments We shall illustrate this by again consideling our gold mine lease 
problems Now, howevel, the pJice ot gold is assul11ed to fluctuate randomly, and this 
fluctuation must be accounted lor in our evaluation of the lease prospect 

Example 12.7 (Simplico gold mine) Recall the Simplico gold mine from Chapter 2 
Gold can be exttacted lrom this mine at a lUte ot up to 10,000 ounceS per year at 
tl cost 01 $200 per ounce Currently the market price 01 gold is $400 per ounce, but 
we recognize that the price ot gold nuctuates randomly The term structure ot interest 
rates is assumed to be nat at 10% As a convention, we assume that the price obtained 
1m gold mined in a given year is the price th,lt held at the beginning of the ye31: 
but all ca~h flows OCCllI at the end of the year We wish to detel111ine the value 01 a 
10-year lease 01 this mine 

We represent future gold pi ices by a binomiallnttice Each yem the pJice either 
increases by a factor of I 2 (with probability 75) OJ decreases by a laetor 01 9 (with 
plObability 25) The resulting lattice is shown in Figure 12 10 

How do we solve the problem ot finding the lease value by the methods de­
veloped IOJ options pricing? The trick is to notice that the gold mine lease can be 
regarded as a linancial instrument It has a value that fluctuates in time as the price 
of gold fluctuates Indeed, the value ot the mine lease at liny given time can only be 
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24 I 278 312 
179 207 

129 

4 10 

4000 4800 5760 6912 8294 9953 11944 14333 17199 20639 24767 
3600 4320 5184 622 I 7465 8958 10750 12899 15479 18575 

3240 3888 4666 5599 6718 8062 9675 11610 1393 I 
2916 3499 4199 503 9 6047 7256 8707 10449 

2624 3149 377 9 4535 544 2 6530 7836 
Gold price (dollars) 2362 2834 340 I 408 I 4898 5877 

2126 255 I 306 I 367.3 4408 
1913 2296 2755 3306 

1712 2066 2479 
1550 186.0 

1.39 5 

FIGURE 12 10 Gold price lattice. Each year the price either increases by a factor of 11 or decreases 
by a factor of 9 The resulting possible values each year are shown in spreadsheet form 

11 function of the price of gold and the interest rate (which we assume is fixed) In 
other words. the lease on the gold mine is a derivative i.nstrument whose underlying 
security is gold Therefore the value of the lease can be entered node by node on the 
gold p. ice lattice 

The lease values on the lattice ille detennined easily for the final nodes, at the 
end of the 10 years: the values are zero there because we must return the mine to the 
owners At a node representing 1 year to go, the value ot the lease is equal to the pJOfit 
that can be made flom the mine that year, discounted back to the beginning of the 
year For example, the value at the top node for year 9 is 10,000(2,0639- 200)/1 I = 

1694 million For an earlie. node, the value of the lease is the sum of the profit 
that can be made that year and the risk-neutral expected value of the lease in the 
next pe.iod, both discounted back one period The risk-neutral probabilities are q = 

(I I 9)/(1 2 9) ~, and I q = t The lease values can therefore be calculated 
by backwmd recursion using these values (At nodes where the price of gold is less 
than $200, we do not mine) The resulting values me indicated in Figure 12.11 We 
conclude tilat the value of the lease is $24,074,548 (showing all the digits) 

FIGURE 12 11 Simplico gold mine" The value 
4 8 10 of the lease is found by working backward If 

342 365 377 37 I 34 I 278 169 00 
the price of gold is grealer than $200 per ounce, 
it is profitable to mine; otherwise no mining is 

233 252 264 262 243 200 123 00 undertaken 
150 167 179 18 I 170 14 I 87 00 
88 104 115 120 liS 97 61 00 

56 67 74 74 64 41 00 
Lease value (millions) 32 40 43 39 26 00 

14 20 2 I 15 00 
04 07 07 00 

00 01 00 
00 00 

00 
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Many readers will be able to see from this example that they have a deeper 
understanding of investment than they did when they began to study this book Earlier, 
in Chapter 2, we discussed the Simplico gold mine undel the assumption that the pi ice 
ot gold would remain constant at $400 aVCl the course of the lease We also assumed 
a constant 10% interest rate These assumptions, which rue fairly commonly employed 
in pIOblems of this type, were probably not regarded as being seriollsly incongruous 
by most readers Now, however, we see thai they are not just a simplification, but an 
actual inconsistency If Ihe price of gold were known to be constant, gold would act 
as a risk-free assei with zeJQ rate 01 return This is incompatible with the assumption 
that the risk-tree late is 10% Indeed, in our lattice of gold pIices we must select It, 

d, and R such that /I > R > d 
Now that we have "mastered" the Simplico gold mine, it is time to move on to 

even greater challenges, (It you think you have leally mastered the Simplico mine, try 
Exercise 8 ) 

Example 12.8 (Complexico gold mine*)3 The Complexico gold mine was discussed 
in Chapter 5 In this mine the cost of extIaction depends on the amount of gold 
remaining Hence if you lease this mine, you must decide how much to mine each 
period, taking into account that mining in one period affects future mining costs We 
also assume now Umt the price of gold fluctuates accOIding to the binomial lattice of 
the previous example 

The cost of extraction in any year is $500z2 lx, where x is the amount of gold 
lemaining at the beginning ot the year and.z. is the amount of gold extracted in ounces 
Initially there are Xo = 50,000 ounces of gold in the mine We again assume that the 
term structure 01 interest rales is flat at 10%, Also, the profit hom mining is determined 
on the basis of the price of gold at the beginning of the period, and in this example 
all cash flows oceul at the beginning of the period 

To solve this problem we must do some preliminary analysis At the final time 
the value 01 the lease is c1emly zero If we are al a node representing the end of 
year 9, we mUSI determine the oplimal amount of gold to mine during the tenth year 
Accordingly, we must compute the profit 

V9(r9) = max(gZ9 - 500~0/x9) 
~') 

where g is the price ot gold at that particular node from the calculations of Exmn­
pie 5 5 we know that the maximization gives 

V9(\'9) = g-.\'g 

2,000 

This shows Ihat the value of the lease is pIOportional to -"g, the amount of gold 
remaining We therefOIe write V9(rg) = K9X9' where 

g' 
K9 = 2,000 

J This is <I more difJicutl exm!lple which should be sludied only afler you arc fuirly comJorl<lb!c wilh the 
maJcria! of this ehupler 
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4 6 7 8 10 

3244 3938 478 I 5808 7066 8623 10587 13134 1656 I 21299 00 
2725 3299 3986 4807 5784 6944 8317 9950 11980 00 

2258 272 "1. 3270 3907 4634 5429 6219 673 9 00 
1828 2189 2600 3052 351 I 3873 379 I 00 

1436 1695 1970 2225 2373 2132 00 
K-value 108 I 1244 138 I 1428 1199 00 

769 84 I 846 675 00 
503 495 379 00 

287 213 00 
120 00 

00 

FIGURE 12.12 Complexico gold mine solution. The value of the mine is proportional to the amount 
of gold remaininA in the mine The proportionnlity fLlctor J( is found by backward recursion 

We set up a lattice ot K values with nodes COl responding to various gold prices We 
put Kto = 0 for all elements in the last column and put tile values of Kg in the ninth 
column In a similm way, following the analysis of the earliel example, we find that 
for a node at time 8, 

V,(.t8) = max[gzs -500z~/xg + dKg x (X8 -Zg)] 

'" 
where 

Kg = "Kg + (I - q)K; 

and where Kg is the value on the node directly to the right, and K~ is the value on 
the node just below that This leads to 

(g-dK9 ).tg 
Zs = 1,000 

and Vg(.t,) = K8x8, where 

(g - Kg/R)' • 
K8 = 2,000 + Kg/R 

Again, thele will be 1l different value of K8 for each node at period 8 We work 
backward with this same formula to complete the lattice shown in Figure 1212, 
obtaining Ko = 3244 The value at tile lease ;s then found as Vo = 50,000 x Ko = 
$16,220,000 

Real Options 

Sometimes options are associated with investment opportunities that are not financial 
instruments For example, when operating a factory, a manager may have the option 
of hiring additional employees or buying new equipment As another example, if one 
acquires a piece ot land, one has the option to drill fOi oil, and then later the option 
of extracting oil it oil is tound In fact, it is possible to view almost any plOcess that 
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allows control as a process with a selies of opelational options These opelationlll 
options me often telJTIed real options to cmph:'lsize that they involve leal activities 
or I elll commodities, as opposed to purely financial commodities, as in the Cll.~e, to! 
instance, 01 stock options The tel In I eet! nprirm when applied to a general investment 
problem is also used to imply that options theOlY can (and should) be used to analyze 
the problem 

Example 12.9 (A plant manager's problem) Some manut"ctUl ing plants can be 
described by a fixed cost per month (tm equipment, man<Jgement, ;).nd lent) and a 
variable cost (for material. labor. and utilities) that is proportional to the level 01 
plOduction The total cost is therefore T = F + Vx, where F is the fixed cost, V is 
the rate 01 valiable cost, and r is the amount 01 plOduct producedc The profit at the 
plant in a month in which it opelates at level x is JT = px - F - V x, where p is 
the mar ket price of its product Clemly, if p > V, the firm will operate at t equal to 
the maximum cap(lcity of the plant; it p < V, it will not opel ate Hence the film has 
a continuing option to Opclate, with a strike price equal to the IHtc at valiable cost 
(The Simplico gold mine in Example 127 is 01 this type) 

Real options usually can be analyzed by the same methods used to analyze 
financial options Specifically, one sets up an applOpriate representation of uncertainty, 
usually with u binomial lattice, and wOlks backward to find the value This solution 
process is really more tundamental than its particular applicHtion to options, so it 
seems unnecessary and sometimes artificial to force all opportunities for contlOl into 
options-real 01 othelwise Instead, the seasoned analyst takes problems as they come 
and attacks them directly 

The Simplico mine can be used to illw.tlate a complex reul option associated 
with the timing at an investment 

Example 12.10 (Enhancement of the Simplico mine*) Recall that the Simplico 
mine is capable at producing 10,000 ounces at gold por yem at a cost of $200 per 
ounce This mine already consists at a whole series of leal options-namely, the 
yearly options to cany out mining operations In fact, the value of the lease can be 
expressed as a sum of the values oj these individual options (<.Ilthough this viewpoint 
is not particularly helpful) In this example we wish to considel another option, which 
is truly in the spirit at a real option 

Suppose that there is a possibility at enhancing the production rate of the Sil11-
plica mine by purchasing a new mining machine and making some structuwl changes 
in the mine This enhancement would cost $4 million but would I aise the mine ca­
pability by 25% to 12,500 ounces per yem, at a total oper ating cost at $240 per 
ounce 

This enhancement alternative is an option, since it need not be callied out 
FUrthellllore, it is an option that is available throughollt the term of the lease The 
enhancement can be undertaken (that is, exercised) at the beginning of any year, 
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270 318 364 
195 233 

135 

Lease value 

and once in place it applies to all future yeills We assume, however, that at the 
termination of the lease, the enhancement becomes the property of the original mine 
owner 

Figure 12c 13 shows how to calculate the value of the lease when the enhance­
ment option is available We filst calculate the value of the lease assuming that the 
enhancement is already in place This calculation is made by constructing the upper 
lattice of the figure, using exactly the same technique used for the Simplico mine of 
Example 127, but with the new capacity and operating cost figures The value of the 
mine under these conditions is $270 million. This figure does not include the cost of 
the enhancement, so if we were to enhance the mine at time zero, the net value ot the 
lease would be $23cO million, which is somewhat less than the value of $24 I found 
earliel without the enhancement Hence it is not useful to cuny out the enhancement 
immediately 

To find the value of the enhancement option, we construct another lattice, as 
shown in the lower part of the figure Here we use the original parameters for pro­
duction capability and operating cost: 100,000 ounces per yem and $200 per ounce 
However, at each node, in addition to the usual calculation of value, we see if it would 
be useful to jump up to the upper lattice by paying $4 million Specifically, we first 
calculate the value at a node in the lower lattice in the normal way using risk-neutral 
probabilities Then we compare this value with the value at the conesponding node in 
the upper lattice minus $4 million We then put the larger of these two values at the 
node in the lower lattice 

FtGURE 12.13 Option to enhance mine op· 
4 6 8 10 erationc The top array is computed just as for 

404 435 452 448 414 339 207 00 
the Simplico mine, but with parameters of en-
hancement The lower array refers to the top 

266 293 310 312 292 241 149 00 one to determine when to carry out the en-
163 187 204 210 200 168 105 00 han cement 
86 108 125 134 132 11 3 72 00 

49 65 77 80 72 47 00 
23 34 41 41 28 00 

assuming enllllncement 08 I 3 18 14 00 
in place 01 02 04 00 

00 00 00 
00 00 

00 

246 286 326 c36.4 39.5 41.2 4{t8 37.4 29.9 169 0 
180 209 235 256 27.0 27.2 25.2 20.1 123 0 

129 150 167 179 181 170 141 87 0 
88 104 115 120 II 5 97 6 I 0 

56 67 74 74 64 41 0 
Lease with option 31 40 43 39 26 0 
for enhane-ement 13 20 21 15 0 

00 07 07 0 
00 01 0 

00 0 
0 
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The figures in boldface type show nodes where it is advantageous to jump to 
the upper lattice by carrying out the enhancement Note that these values ate exactly 
$4 million less than theit upper counterparts 

The overall value at the lease with the option is given by the value at the first 
node, and the $4 million is already taken out Hence the value of the lease with the 
enhancement option is $24 6 million-a slight improvement over the original value of 
$24 I millioll 

Linear Pricing 

Although we generully use risk-neuttal pricing to evaluate derivative securiHes, it is 
important to recognize that this evaluation rs based on linear plicing; that is, we match 
a parHcuJur derivative to secutities we know and then add up the values The following 
example highlights the basic simplicity of the method 

Example 12.11 (Gavin explains) Mr 0 Jones was curious about quantitative work 
all Wall SlIeet He brought it up with his SOil Gavin 

"What are they calculating with all those fancy computers?" 
Gavin said that it was all based on linear pricing "They break a secmity 

into its separate pieces, price each piece, and then add them up" 
"Are you kidding me? I don't see why you need a supercomputer to do 

that" 
"It gets complicated quickly" Gavin remembered something he had 

worked out when studying options theory ''I'll show you an example," he said, 
as be fished in his pocket tor a twenty-five cent piece 

Holding the coin up, Gavin began, "Consider this proposition: You pay 
$1 I flip this coin II it is heads, you get $3; if it is tails, you get nothing You 
can participate at any level you wish, and the payoff scales accordingly" 

Mr Jones nodded Gavin continued "The coin flip is like a stock It 
hus a price, and its outcome is uncertain; but it has a positive expected 
value-otherwise nobody would invest in it" 

"That's simple enough" 
"Alternatively, 1.L" a second proposition, you can just keep your dollm in 

yoU! pocket This is equivalent to paying $ I I flip the coin If it is heads, you 
get $1; it it is tails you get $1 Cleat?" 

"Sure" 
"Those me the basic ones Now hele is a new proposition to evaluate: 

flip the coin twice II at least one of the flips is a head, you get $9; otherwise 
you get nothing How much is this PlOposition wOlth?" 

Mr lones scratched hrs head, and after a tew seconds said, "I could work 
out the pi obabilities " 

"It has nothing to do with actual probabilities This proposition can be 
exptessed as cOl11binations ot the other two We just add up the pieces .. 

"Okay, show me" 
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FIGURE 12,14 A proposition LInd ils pLlrls Tree (a) is [) bLl5!c risky proposition; Iree (b) is a risk-free opporlunily; Llnc! 
tree (c) reprcsenlS a new, more complex proposition The value C cLln be found by breLlking 11 inJo ils parIs The finLlI 
piece is shown in (d) 

Gavrn drew fOUl trees on the edge of a newspaper, as shown in 
Figure 1214 He explained that tree (a) is tile original proposition; (b) is 
keeping money rn your pocket, and (c) is the new propositfon, with an 
unknown price C 

If the first flip is heads, the tree hom that point has payoff of $9 in each 
direction, which looks like nine times the payoff of the pocket alternative It is 
worth $9 to be there, If the first flip is tails, the tree from that point looks like 
three times the original ploposition, So it is wOIth $3 to be there, I-Ienee the 
whole thing is equivalent to tree (d) having payoffs of $9 and $3 "Clear?" 

"Very" 
Gavin showed that the payoff of 9 and 3 could be broken into 6 and 0 

plus 3 and 3 The first of these is twice the original proposition The second is 
three times the pocket alternative Hence C = 2 + 3 = $5 "Okay?" 

"Well, I'll be" 
Gavin concluded "That is what those computers are doing. Derivative 

securiHes are evaluated by using hundreds of corn flips to represent the daily 
movements of a stock The computers work through the big lIee just like we 
did in this exnmple " 

[As an excrcisc, it is usetul to determine the risk-neutral probabilities fot this 
example and work through the risk-neutral valuation] 

12.9 GENERAL RISK-NEUTRAL PRICING* 

A genelal principle ot risk-neutral pIrcing can be infened flom the analysis and meth­
ods of the plevious few sections This principle plOvides a compact formula fot the 
ptice of a derivative secnrity undel the binomial lattice fotmulaHon 

Suppose that the price 'i at nn asset is described by a binomial lattice, and 
suppose t1wt t is a secUlity whose cash flow at any time k is a function only of the 
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node at time k Then the arbitrage-free price 01 the asset is 

{",J = E (t d, fk) 
k=O 

(12 12) 

In this equation the summation represents the discounted cash flow, with the (h's being 
the risk-free discount factors as seen at time 0 The ik's are the period cash ftows, 
which depend on the particular node at k that occurs Hence the h.. 's are random The 
expectation E is taken with respect to the risk-neutlul probabilities associated with the 
lattice of the underlying asset 

Consider a European call option with strike price K The pricing formula, 
Eq (12 12), becomes 

I ' 
C = -Elmax(S, K,O)] 

R, 
(12 13) 

where R7 is the risk-free leturn fOi the whole time to expiration In this case there 
is only a single cash flow, max(SJ K.O), occurring at the final time We take the 
risk-neutral expected value of this and discount it to the present Note that actual 
calculation using this formula is best done by working backward from the end We 
use the running present value method to back the formula up one stage at a time 

In many situations the cash flow stream can be inftuenced by our actions as well 
as by chance For instance, we !TIay have the OppOi tunity to exercise an option before 
expiration, decide how much gold to mine, or add enhancements In such cases the 
general plicing formula becomes 

where the maximization is taken with respect to the available actions We have seen in 
the examples of this chapter how this maximization can in many cases be canied Ollt 
as part of the backward recursion process, although the size at the lattice sometimes 
must be increased This general formula has great power, fOi it provides a way to 
formulate and solve many interesting and important investment problems 

12.10 SUMMARY 

An option is the right, but not the obligation, to buy (or sell) an asset under specified 
terms Options have had a checkered past, but fOJ the past two decades they have 
played an important role in finance Used wisely, they can control risk and enhance 
the performance at a portfolio Used cm'elessly, options can greatly increase risk and 
lead to substantial losses. 

Options terminology includes: call, put, exelcise, sUike price, expilation, writing 
a call, premium, in the money, out of the money, American option, and European 
option 

A major topic 01 options theory is the determination 01 the cOirect price (or 
premium) 01 an option This price depends on the price at the underlying asset, the 
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EXERCISES 

strike price, the time to expilutron. the volatility of the underlying asset, the cash flow 
generated by the m;,set (such as dividend payments), and the prevailing interest rate 
Although determination ot an appropriate option ptice can be difficult, certain relations 
can be derived from simple no-arbitlage mguments For eXLlmpie, for European-style 
options there is parity between a put and a call with the same strike price likewise, 
the value of 1.1 combination of options (such as in a butterfly spread) must be the same 
combination of the prices of the component options 

One important result is that it is never optimal to exercise, before expiration, an 
Amelican call option on a stock that does ~~ PaYact1vrcreiid~Ddore~-:--

A general way to find the price of an option is to use the binomial lattice method­
ology The random process of the underlying asset is modeled as a binomial lattice 
The value of the option at expiration is entered on the final nodes of a correspond­
ing option lattice The other nodes in the option lattice are computed one at a time 
by wOlking backward through the periods For a European-style option (withont the 
possibility of early exercise) the value at any node in the option lattice is found by 
computing the expected value of the value next peJiod using risk-neutral probabilities 
This expected value is then discounted by the effect of one period's interest late, If the 
option is an American-style option, the value computed as before must be compared 
with the value that could be obtained by exercise at that time, and the greater of the 
two compared values is taken to be the final value for that node 

The risk-neutral plObabilities are easy to calculate The risk-neulial probability 
for an up move is q = (R d)/(II d) The easiest way to derive this tOlmula is 
to find the q that makes the price at the underlying security equal to the discounted 
expected value of its next peJiod value 

The binomial lattice methodology can be used to find the value of other in­
vestments besides options Indeed. it can be used to evaluate any project whose cash 
flow stream is determined by an underlying traded as:-;et Examples include futures on 
options, gold mine leases, oil wells. and tlee farms With ingenuity, even complex real 
options can be evaluated by constructing two or mOle interrelated binomial lattices 

L (Bull spread) An investor who is bullish abom a stock (believing that it will rise) mlly 
wish to cOnstruCl a bIll! ~p,e(/tl lor that stock One way to cOlIstruct such a spread is to 
buy a cal! whh strike price KI and sell a cal! with the same expiration date but with a 
sUlke price at K]. > K I Draw the payo!t curve for such a spread Js the initial cost o! the 
spread positive or negntive ? 

2. (Put-call p:nhy) Suppose over the period rO, T J a certain stock pays a dividend whose 
present value at interest rate, is D Show that the pm-cal! parity relation lor European 
options at t 0, expiring at T, is 

C+D+Kd P+S 

where d is the discoum f.lctar !rom ° to T 
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3. (Parity formu!u) To derive the put-cal! parity formula, the payo!t associated with buy-
ing one call option, selling one put option. and lending d j( is Q max(O, .s 1\.) 
m1l.x(O, I\. S) + I\. Show that Q S, and hence derive the put-call pmlty formula 

4. (Ca!! strikeso) Consider a Jan1i!y o! crt!! options on a non-dividend-paying stock. each 
option being identical exeept tor its strike price The value of the call with strike price K 
is denoted by C(k) Prove the following three general relations using arbitrllge arguments: 

«(I) /(, > K, implies C(/(,)? ((/(,) 
(h) /(, > /(, implies /(, /(,? C(/(,) - (/(,) 

(c.) KJ> K1 > 1\.1 implies 

5. (Fixed dividend ([1) Suppose tlmt a ,stock will pay a dividend ot 'ImOUnl D al lime T 

We wish 10 determine the price ot a European call option on this slock using the JaUice 
method Accordingly, the time intelval [0. I! covering the life oj the option is divided into 
N imervals. and hence N + I time periods are assigned Assume that the dividend date T 

occurs somewhere between periods k and k + lOne npproach to the problem would be to 
establish a Ian ice of !>lOck prices in the usual way, but subtmct D from the nodes at period 
k This produces a tree with node!> thm do not recombine. as shown in Figure 12 15 

The problem can be solved this wuy, but there is another representation thm does 
recombine Since the dividend amount is known, we regard rt as a nonwndom component 
of the stock price At uny time before the dividend we regurd the price as hl.lving two 
components: a IUndom component s~ and a deterministic component equal to the present 
value of the future dividend The random component S+ is del'lcribed by a lanice with 
initial value S(O) De-rr and with rI and d determined by the volatility a 01 the stock 
The optior! is evaluated on this lunite The only modification that must be made rn the 
computUlion is that when valuing the option tl1 a node. the stock price used in the valuation 
formula is not just S' at thut node. btu rather 5 S~ + De-r<r-n for t < T Use this 

technique to find the value ot a 6-month cull option with 5(0) 50, K 50. a 20%, 

R 10%. and D $3 to be paid in 3t months 

FIGURE 12 15 Nonrecombining divi" 
dend tree. 
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6. (Call inequali1y) Consider 11 European call option On a non-dividend-paying slock The 
strike price is K, the lime 10 expiratron is T, and the prrce ot one unit of a zero-coupon 
bond maturing at T is B(T) Denote the price of the culi by C (5, T) Show that 

C(S,T)? max[O,S- KB(T)] 

[Him Consider two portfolios: ((/) purchase one call, (b) purchase one share of slock and 
sell K bonds 1 

7. (Perpetuul call) A perpetual option is one that never expires (Such an option must be 
of American style) Use Exercise 6 10 show that the value of 11 perpetual call on a nOll-

diVidend-paying stock is C S 

8. (A SUrpriSC0) Consider n deterministic CilSh flow stream (x(), XI • .\"2. ,XII) with all pos-
itive flows LeI PV(/) denote the present value of this streum at an interest rute , 

(a) If I decreases, does PV(r) increase Or decrease? 
(b) Solve the Simplico gold mine problem with, 4% and find that the value of the 

lease is $2.2. I million Can you explain why the value deereased relative to its value 
\Vflh, IO%? 

9. (My coin) There are two propositions: (a) I flip a coin It it is heads, you are paid $3: if 
it is tails, you are paid $0 It costs you $1 to participate in this proposition You may do 
so at any level, Or repeatedly, and the payoffs scale accordingly (b) You may keep your 
money in your pocket (earning no interest) Here is a third proposition: (c) I flip the coin 
three times It at least two oj the flips llre heads, you are paid $2.7; othelwise zero How 
much is this proposition wOlth? 

10, (The happy call) A New York firm is offering a new financ:ial instrument called a "happy 
call" It has a payoff function at time T equal to max( 55, 5 K), where 5 is the price 
of a stock and K is a fixed strike price You always get something with a happy call Let 
P be the price of the stock nt time I ° and let C] and C2 be the prices of ordinary calls 
with strike prices K and 2.K. respectively The fair price of the happy call is of the form 

Find the constants Q', fJ, and V 

11. (You are a president) It is August 6 You are the president of a small electronics company 
The company has some cash reserves that will not be needed for about 3 months, but 
interest rlItes are very low YOU! chief financial office I (CFO) tells you that a progressive 
securities firm has an investment tlmt guarantees no losses and allows participation in 
upward movements of the stock market In fact. the total rate of return until the third week 
of November is to be determined by the formula max(O, 2.5,). where, is the rate of return 
on the S&P 100 stock index during the ]-nlonth period (ignoring dividends) The CFO 
suggests that this conservative investment might be an ideal alternative to participation in 
the interest rate market and asks Jor your opinion You pick up The Wall 511eel /olllllal 
and make a few simple calculations to check whether it is, in fact, a good deal Show these 
calculations nnd the conclusion Use the data in Table 12. I (Note thnt 410c denotes a call 
with strike price 410) 



TABLE 12 1 
Data for the President 

S&P S&P 
100 index Options index 414]4 

Nov 41()c 13 Treasury bills 

Nov 410p 81 , Nov 12: yield 311 

Nov 420c 7t 
Nov 420p II! ., 

Source: S«lndurd & PO()(~ a division \If (he McGraw-Hil! Compa­
nies Rcprinlt:d wilh pcnllissi(lll 
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12. (Sirnplico invuriance) If the Simplico mine is solved with all parameters rCn1<1ining the 
same except that II I 2 is changed to II I 3, the value ot the lease lcnwins unchanged 
to within three decimal places Indeed, quite wide variations in II and d have aln10st nO 

influence on the lease price Dive an intuitive explanation for this 

13. (Change ot period length 0) A stock has vOlatility a 30 and n current value oj $36 A 
put option On this stock hus a strike price of $40 and expIration is in 5 months The interest 
rnte is 8% Find the value ot this put using a binomial lattice with I-month intervals Repeat 
using 11 lattice with halt-month intervals 

14. (Average value Complexico 0) Suppose that the price received for gold extrncted from 
time k to k + I is the average of the price of gold at these two times; that is, (g~ + 8~+1 )/2 
However, costs are inclIITed at the beginning of the period whereas revenues are rel:eived 
at the end of the period Find the value of the Complexico mine in this case 

15. ("As you like it" option) Consider the stock of Examples 123 and 124, which hlls 
a 20 and an initial pril:e of $62 The interest rate is 10%, compounded monthly 
Consider a 5-l11onth option with a strike price of $60 This option can be dedarcd atter 
exactly 3 months, by the purchaser to be either u European call Or a European put Find 
the value of this "as you like it" option 

16. (Tree Imrvesting~D) Yon me considering <In investment ilt a tree farm Trees grow e<lch 
year by the tollowing factors: 

Year 10 

Orowlh 16 15 I 4 I 3 1 2 I 15 1 I 105 102 101 

The price of lumber follows <I binomi<ll I<luice with II I 10 and d 9 The interest 
rote is constant at 10% Jt costs $2 million eal:h year. payable at the beginning 01 the year, 
to lease the lorest land The inithil value of the trees is $5 million (assumhlg they were 
harvested immediately) You can cut the trees <It the end 01 any yem nnd then not pay rent 
after that (For those readers who care, we assume that cut lumber can be stored nt no cost) 

«(/) Argue that if the rent were zerO, you would never cut the trees as long as they were 
growing 

(b) With rent of $2 million pel year. fwd the best cutting polky and the vnlue of the 
investment opportunity 
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• ADDITIONAL OPTIONS 
TOPICS 

13.1 INTRODUCTION 

Options theory plays a major role in the modern theory of finance because it so 
clearly highlights the power of the comparison principle. based on the assumption 
that there are no arbitrage opportunities The previous chapter presented the theory in 
a simple and practical form, using the binomial lattice framework That material is 
by itself sufficient to solve most options problems, There is, however, a continuous­
time version of the theory and extensions of the lattice theory, which lead to new 
financial insights, allow consideration of more complex derivative securities, provide 
alternative computational methods, and prepare the way for the more complete theory 
of investment presented in the following chapters, 

13.2 THE BLACK-SCHOLES EQUATION 

The famous Black-Scholes option pi icing equation initiated the modem theOlY at 
finance based on the no-arbitrage principle Its development triggered an enormous 
amount of research and revolutionized the practice of finance The equation was de­
veloped under the assumption that the price fluctuations of the underlying security can 
be descdbed by an Ito plOcess, as plesented in Chaptel II The logic behind the equa­
tion is, however, conceptliully identical to that used for the binomial lattice: at each 
moment two available securities are combined to construct a portfolio that leproduces 
the local behaviOi of the delivative security Historically, the Black-Scholes tlleOlY of 
options predated the binomial lattice theOlY by several years, the lattice theOlY being 
a result of simplification 

Io begin the presentation at tlle Black-Scholes equation, let the price S at an 
underlying secmity (which we shall refer to as a stock) be governed by a geometric 

351 
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BlOwnian motion process ovel a time interval [0, T1 described by 

dS JlS dl + "S dz (13.1) 

where.: is standnld Brownian motion (or a Wiener process), Suppose also that there 
is a risk-free asset (a bond) ciluying an interest rate of lover [0, T] The value B of 
this bond satisfies 

dB ,Bdl (13.2) 

Finally consider a security that is derivative to S, which means that its price is il 

[unction of S and I Let f (S, I) denote the price of this security at time I when the 
slock plice is S We want a (nonrandom) equation lor the function frS, I), which 
will give the price 01 the derivative explicitly TIlis function can be found by solving 
the Black-Scholes equation as stated: 

Biac/c-Sc/IO/es equation Suppme that the pI ice oj (I ~ec/ll itv i~ govel ned bv (/3. J) 
and the inteleH late is 1 A del ivative 0/ thi~ fieCIll itv 11m a pI ice f (5, t), which sati'die~' 
tlte pm fial dutel ellfial eqllClfio}( 

ilj aj I a' j , , 
at + as'S + 2: 8S' ,,- S- , / (13 3) 

We present il plOof of this lesult later in this section, but first let us look at its 
significance 

As u simple example, consider the stock itsell It is (in a trivial way) a derivative 
of S, so f (S, I) S should satisfy the Black-Scholes equation In fact, with this 
choice of r we have ilf/al 0, of/as I, a'//as' 0 Hence (133) becomes 
r S r S, which shows that / (S, I) S is a solution 

As another simple example. consider the bond It also is (in a trivial way) a 
derivative of S, so / (S, I) e" should satisfy the Black-Scholes equation In fact, 
with this choice of j we have a/ jal Ie", a f/a S 0, iJ' Jlas' 0 Hence (1.3 3) 
becomes le rl le rl

, which shows that, indeed, {(S, t) erl is a solution There are 
uncountably more solutions 

In general, the Black-Scholes equation can be thought of in two ways First, 
suppose that we arbitrarily specify a function / (S, I) and announce that this is the 
price of a new security Since we specify the function, we can anange for it not to 
satisfy the Black-Scholes equation Whnt is wrong? If I (S, I) does not satisfy the 
Black-Scholes equation, then thele is all arbitrage opportunity lying somewhere among 
S, B, and j By n propel combination of these (and the combination may change with 
time) it will be possible to extract money, risk free Hence the first way to look at the 
Black-Scholes equation is that it establishes a property that must hold for a derivative 
security's priCe function 

The second way to view the equation is thnt it can be used to actually find the 
price function cOllesponding to various derivative securities This is done by specifying 
appropriate boundary conditions that me used in conjunction with the Black-Scholes 
partial differential equation to solve lor the price function For example, specify­
ing frS, T) S(T) leads to I(S, I) S(I); specifying frS, T) e'T leads to 
((S, I) e" As a nontrivial example, the plice C(S, I) of a European call option 
on a stock that pays no dividends must satisfy the Black-Scholes equation (with C 
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playing the role of f) and it must satisfy the boundary conditions 

e(O, t) 0 

C(5, J) = max (S - K, 0) 

Likewise, for u European put with price P(S, t) the boundary conditions nre 

P(oo, t) 0 

P(S, J) max(K - S, 0) 

(l3 4) 

(135) 

(136) 

(l3 7) 

Other derivative securities may have different 100lTIS 01 boundmy conditions, 
which are sufficient to determine the entire function J (S, J) For example, the bound­
my conditions tor an American call option and an American put on a non-dividend­
paying stock require, in addition to the conditions mentioned, a condition concerning 
the possibility of eatly exelcise These are 

C(S, t) ?: max(O, S - K) 

P(S, t) ?: lTIllX(O, K - S) 

(l3 8) 

(139) 

Of cotllSe, the additional boundary condition for calls is unnecessmy, since un Amel­
ican call on a Hon-dividend-paying stock is never exclcised early 

Example 13.1 (A perpetual call) Considel a perpetual call option with stlike price 
K There is no tClminal boundmy condition since J 00 Howevcl, the eady exercise 
condition f (S, t) ?: max(O, S - K) ror all t must be satisfied by the solution f In 
addition, we must have f (S, t) :'0 S [or all t since the call must cost less than the 
security itself As an (informed) guess we might try the simple solution r 5 Indeed, 
we know that this satisfies the Black-Scholes equation The two boundary conditions 
ate also satisfied 

The solution f (S) S for the value of a perpetual call does make intuitive 
sense 11 the cull is held for a long time, the stock value will almost celtainly inclease 
to n velY latge value, so that the exeldse price R is insignificant in compadson Hence 
if we owned the call we could obtain the stock latel for essentially nothing, duplicating 
the position we would have if we initially bought the stock 

Proof of the Black-Scholes Equation* 

How can we derive the Black-Scholes equation? The key idea is the same idca lIsed 
in Chap tel 12 to detive the binomial lattice pi icing method At nny time we tot m 
a portfolio with portions of the stock and the bond so that this portfolio exactly 
matches the (instantaneous) retUln charactedstics ot thc derivative secutity The value 
of this portfolio must equal the value ot thc dcrivative security In a binomial lattice 
framework the matching is done period by peliod, lelating the vulue at one time point 
to those at the next In the continuous-timc tramewOlk, the matching is done at each 
instant, lelating the value at one time to the lates ot change nt that time Replication 
is used in both cQ.;;es Herc is thc prool 
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Proof: By Ito's lemma [Eq (II 22)] we have 

df ( 
aj aj I a' j ") a / - + -!-'s + - -IT-s- dt + -'-IT s dz 
at as 2 as' as 

(13 10) 

which is an Ito process fol' the price of the derivative security This ptice 
fluctuates mndomly along with the stock price S and the Brownian motion z 

We form a portfolio 01 Sand B that replicates the behaviOl of the 
derivative security In particulm, at each time t we select an amount \'1 of 
the stock and an amount YI of the bond, giving a total portfolio value ot 
G(t) x,S(t) + v,B(t) We wish to select t, and v, so that G(t) replicates 
the derivative secUlity value t (S, t) The instantaneous gain in value of this 
portfolio due to changes in security prices (the investment gain) is 

dG x, dS + l't dB, 

Expanding, we WI ite 

dG <,dS+ v,dB 

x, filS dt + ITS dzl + v,, B dt 

(x,!-,S + v,, B)dt + X,ITS dz 

(13 II) 

(13 12) 

Sincc we want the portfolio gain of G(t) to behave just like the gain of I, 
we match the coefficients of dt and dz in 1.3 12 to those of (13 10) To do 
this we first match the dz coefficient by setting 

aj 
as 

Rcquiring G t,S + v,B and G f, gives 

v, - I(S t)-S-I [ aj
] 

B ' as 

(13 13) 

Substituting these expressions in (13 12) and matching the coefficient of dt 
in (I 3 10), wc obtuin 

aj I [ -11S + / (S, t) as B sill]rB as 

Or, finally,' 

ill + ill, S + ~ a' j IT'S' 
at as 2 as' 

(13,14) 

This is the Bluck-Scholes equation (For an aiternate proof bused on the bi-

I This is lICIUlIlly 1I ~impJi!ied proof Equlltion (13 II) sllOllld include x; 5" -I- y; B, but it can be shown th!!t 
this sun\ is zero 
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nomi"1 pricing framework, see the Appendix of this chapter In that proal the 
case where cash flow rates OCCur at intermediate times is included) I 

13.3 CALL OPTION FORMULA 

-3 

Although it is usually impossible to find an analytic solution to the Black-Scholes 
equation, it i.~ possible to find such a solution tor a European call option This analytic 
solution is ot great practical ilnd theoretical use 

The 101 mula uses the function N(x), the standard cumulative normal proba­
bility distribution. This is the cumulative distribution of a normal randoln variable 
having mean 0 and variance I It can be expres::;ed as 

N(t) (13 IS) 

The lunction N(t) is illustrated in Figure 13 I The value N(t) is the area under 
the familiar bell-shuped CUlve from -00 to t Particular valucs are N(-oo) 0, 
N(O) l-, and N(oo) I 

The function N(x) cannot be cxpressed in closed form, but there are tables for 
its values, and there are accurate approximation formulas (See Exercise I ) 

Black-Scholes call option formula (omidel a Ell10pean call option with .wike Juice 
R. and e-rpiwfioll time J U the undellying stock pal's no dividends dwing the time 
[0, I] and ij i1lfele.H is COllstant and c01lfimwHs/v compounded ot (l late 1, the B/ack-
5<1lOle, solutioll i.1 frS, t) C(5, I), defilled hI' 

-2 -1 x 0 -3 -2 

(a) 

-1 

75 

o 
(6) 

(13 16) 

N(x) 

FIGURE 13.1 Normal density and cumulative distribution. (a) The curve is the nOlmal density (l/../2ii)e-'~/2 The area 
under the curve up to the point x gives the value of the cumulative distribution N(x) (b) The cumulative distribution 
itself rises smoothly from 0 to 1, but it does not have a closed-form representation 
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II'lzele 

ond wlzele N(\) dellote~ 'he \"tando,d cumulative }lOlma! probability diHliblltioll 

Lel us examine some special cases First suppose t T (meaning the option is 
at expiration) Then 

ell ch (
+_0000 

if 5> K 
if 5 < K 

becausc the d's depend only on the sign of In(5(K) Therefore, since N(oo) I and 
N(-oo) 0, we find 

( 0
5 - K 

CiS, T) 

which agrees with the known value al T. 

if 5> K 
if 5 < K 

Next let us consider T 00 Then d, 00 and e-,(7 -I) 0 Thus C(5, 00) 

S, which agrees with the resuit derived em lie, for a perpetual call 

Example 1.3,2 (A 5-month option) Let us calculate the value of the same option 
considered in Chapter 12, Examplc 123 That was a 5-month call option on a stock 
with a curtent price 01 $62 and volatility of 20% per year Thc strike price is $60 and 
the interest rate is 10% Using 5 62, K 60, " 20, and I .10, we find 

641287 

ch ell 2J5;l2 512188 

The cOllesponding vnlues lor the cumulative normal distribution are found by the 
approximation in Exercise I to be 

739332, N(,!,) 695740 

Hence the value for the cnll option is 

C 62 x 739332 - 60 x 95918 x 695740 $5 798 

This is close to the valuc of $5 85 found by the binomial lattice method 

Although a fOlmula exists lor a call option on a non-dividend-paying slock, 
analogous formulas do not generally exist for other options, including an American 
put option The Blnck-Scholes equation, incorpOlating the corresponding boundary 
conditions, cannot be solved in analytic rOlln 
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13.4 RISK-NEUTRAL VALUATlON* 

In the binomial lattice ilamewOIk, pricing ot options and other derivatives was ex­
pressed concisely as discounted tisk-neulral valuation This concept wOlks in the Ito 
process framewor k as well 

For the geomettic BlOwnian motion stock price proce::;s 

clS(t) 11Sdf+o-Sd~ (13 17) 

we know from Section II 7 that 

E [S(t)] S(O)e,a (13 18) 

In a risk-neutral setting, the price 01 the slock at time zelO is tound from its price at 
time f by discounting the risk-neutral expected value ilt the risk-free rale This means 
that there should hold 

5(0) e-"E [S(t)] 

It is clear that this lor mula would hold if E[S(t)] S(O)e" From (1317) and (1318) 
this will be the case if we define the process 

dS , S df + 0- S di (13 19) 

where f. is il standardized Wiener process, and we define E a::; expectation with respect 
to the £ process In other words, starling with il lognormal Ito process with rate 11, we 
obtain the equivalent risk-neutral process by constructing a similar process but having 
rate} 

This change of equation is analogous to having two binomial lattices for a stock 
process: a lattice for the real process and a lattice for the risk-neutral process In the 
first lattice the probabilities of moving up or down are p and I p, respectively 
The risk-neutral lattice has the same values as the stock prices on the nodes, but the 
probabilities of up and down are changed to q and I q. For the Ito process we have 
two processes-like two lattices Because the plObability structures are different, we 
use Z and i: to distinguish them 

Once the risk-neutral probability structure is defined, we c-an use risk-neutral 
valuation to value any security that is a derivative of S In particular, for a call option 
the pricing formula is 

(13.20) 

This is analogous to (12 13) in Chapter 12 
We know lhallhe risk-neutral disnibution 01 S( T) satisfying (13 19) is lognormal 

with E [In[S(J)(S(O)]1 , J - to-' J and var [In[S(J)(S(O)11 0-' J We can use 
this distribulion to find the indicated expected value in analytic form The result will 
be identical to the value given by lhe Black-Scholes equation for a call option price 
Specifically, writing out the details of the lognormal distribution, we have 

c (1321 ) 

This is the Black-Scholes Immuia in integral lorm 
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13.5 DELTA 

At ilny fixed time the value of il derivative secmity is il function of the underlying 
asset's price The sensitivity of this function to chilflges in the price of the underlying 
asset is described by the quantity delt. (bTlf the derivatrve security's value is [(5, I), 
then formally delta is 

Delta is rrequently expressed in approximation form as 

The delta of a call option is illustrated in Figure I J 2 It is the slope of the curve 
that relates the option price to the stock price 

Delta can be used to construct portfolios that hedge against risk As an example, 
suppose that an option trader believes that il certain call option is overpriced, The 
trader would like to Wlite (that is, sell) the option, taking a very large (negative) 
position in the call option, However, doing so would expose the tradel to il great deal 
of price risk If the underlying slock plice should increase, the trader will lose money 
on the option even ir his assessment of the option value relative to its current price 
is well founded The trader may not wish to speculate on the stock itself, but only 
to profit from his belief that the option is overpriced The trader can neutralize the 
effect of stock price fluctuations by offsetting the sale of options with a simultaneous 
purchase of the stock itselr The appropriate amount of stock to purchase is delta times 
the value of the options sold Then if the stock price should rise by $1, the profit on 
the trader's holding of stock will offset the loss on the options. 

The delta of a call option can be calculated from the Black-Scholes fOlmula 
(13 J) to be 

(1 J 22) 

This explicit fOlmula can be used to implement delta hedging strategies that employ 
call options 

In genelal, given u portfolio ot securities, all components of which are derivative 
to a common underlying asset, we can calculate the portfolio delta as the sum of the 

c 

K 

FIGURE 13,2 Delta of iI call option, Delta 
measures the sensitivity of the option value to 
small changes in the price of the underlying se~ 
curity 
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deltas of each component of the portfolio T raden; who do not wish to speculate on the 
undcrlytng asset prices will form a portfolio thal is delta neutral, which means thal 
the overall delta is zero In the Case of the previous trader, the value 01 the portfolio 
was -C + 6, x S Since the delta of S is I, the overall delt" of this hedged portfolio 
is -6,+ 6, =0 

Delta itself varies both wilh S and with L Hence a portfolio that is dclta neullal 
initially will not remain so~ It is necessary, therefore, to ['ebalance the potllolio by 
changing the proportions of its securities in ordet to matntain neutrality lilts process 
constitutes a dynamic hedging strategy. In theory, rebalanctng should occur COIl­

tinuously, although in practice it is undertaken only periodically 01 when delta has 
materially changed from zero 

The amount ot rebalancing required is related to another constant termed gamma 
(f) Gamma is defined as 

f 

Gamma defines the curvalute of the derivative price CHive In Figulc 13 2 gamma is 
the second derivative of the option price curve at the point under consideration 

Another useful number is theta (8) Theta is denned as 

oj (S, t) 
8 al 

Theta measures the time change in the value of a derivative security Refening again 
to Figure I3 2, if time is increased, the option curve will shift to the right Theta 
measures the magnitude ot this shift 

These parameters are suffident to estimate the change in value of a detivmive 
security over small time periods, and hence they can be used to define appropriate 
hedging strategies In particular, using 8 f, 8S, and 81 to represent small changes in 
f, 5, and I, wc have 

8f '" 6, 85+ if x (8S)'+8 x 81 

as a first-order approximation to 8 f 2. 

Example 13.3 (Call price estimation) Consider a call option with 5 43, K 40, 
" 20, riO, and a time to expiration of J 1 6 months 5 The Black-
Scholes fOlmula yields C $556 We can also calculate that 6, 825, f 143, 
and 8 -6 127 (See Exelcise 7 ) 

Now suppose that in two weeks the stock price increases to $44 We have 8S 
and 81 1(26; therelore the price of the call ar that time is approximately 

C '" 5 56 + 6, x I + if x (I)' + 8 x (I (26) $622 

The actual value of the call at the larer date according to the Black-Scholcs formula 
is C = $6 23 

.2 Recall that 85 i~ proportio!1lI1 to Jrt :'0 we mU);! indLlde thtl (05)2 term 
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13.6 REPLICATION, SYNTHETIC OPTIONS, AND PORTFOLIO 
INSURANCE* 

The derivation of the Black-Scholes equation shows that a derivative security can be 
duplicated by constructing a porttollo consisting of an aPPlOpriate combination of the 
underlying security and the risk-free asset We say that this portfolio replicates the 
derivative security The proportions of slock and the risk-tree asset in the portfolio 
must be adjusted continuously with time, but no additional money need be added 
or taken away; the portfolio is self~financing. This replication can be carried out 
in practice in Older to construct a synthetic derivative security using the underlying 
and the risk-free assets Of course, the required construction is dynamic, since the 
particular combination must change evelY period (or continuously in the context of 
the Black-Scholes framework) 

The process for a call option is this: At the initial time, calculate the theoretical 
price C Devote an amount C [0 the replicating portfolio This portfolio should have 
b..S invested in the stock and the remainder invested in the risk-free asset (although 
this will usually require bOIl mt'ing, not lending) Then both the delta and the value 
of the portfolio will match those of the option Indeed, the short-term behavior of the 
two will match 

A short time later, delta will be different, and the portfolio must be rebalanced 
However, the value of the portfolio will be approximately equal to the corresponding 
new value of the option, so it will be possible to continue to hold the equivalent 
of one option This rebalancing is repeated frequently As the expilation date of the 
(synthetic) option approaches, the pOI tiolio will consist mainly of stock ii the pr ice of 
the stock is above K; otherwise the portfolio's value will tend to zero 

Example 13.4 (A replication experiment) Let us construct, experimentally, a syn­
tiletic call option on Exxon stock with a strike pi ice of $35 and a life of 20 weeks 
We will replicate this option by buying Exxon stock and selling (thm is, borrowing) 
the risk-rree asset In Older to use real data in this experiment, we select the 20-week 
period from May II to September 21, 1983. The actual weekly closing prices of 
Exxon (with s[Ock symbol XON) are shown in the second column of Table 13.1. The 
measmed sigma corresponding to this period is a ;::;:: 18% on an annual basis, so we 
shall use that value to calculate the theoretical values of call prices and delta We 
assume an intelest rate of 10% 

Let us walk across the first lOW or the table There are 20 weeks lemaining in 
the life of the option The initial stock price is $3550 The third column shows that the 
initial value of the call (as calculated by the Black-Scholes formula) is $262 Likewise 
the initial value of delta is 70 I To construct the leplicating portfolio we devote a 
value 01 $2 62 to h, matching the initial value of the call This is shown in the column 
marked "Portfolio value" However, this portlolio consists of two parts, indicated in 
the next two columns The amount devoted to Exxon stock is $2489, which is delta 
times the current stock value The remainder $262 $2489;::;:: -$2227 is devoted 
to the risk-free asset In other words we borTOW $2227, add $262, and use the total 
of $24 89 [0 buy Exxon stock 
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TABLE 13 1 
An Experiment in Option RepHcation 

Weeks XON Call Portfolio Stocir Bond 
remaining price price Delta value portfolio portfolio 

10 3550 262 701 262 1489 -2227 
19 3463 196 615 196 2118 -1932 
18 3375 140 515 I 39 1737 -1598 
17 3475 I 89 618 I 87 2147 -1959 
16 3375 125 498 122 1679 -1558 
15 33 00 085 397 81 13 09 -1228 
14 3388 I 17 494 I 14 1674 -1560 
13 3450 142 565 141 1948 -18 07 
12 3375 096 456 96 1539 -1443 
II 3475 140 583 I 38 2027 -1889 
10 3438 I 10 522 113 1794 -1681 
9 35 13 144 624 149 21 92 -2043 
R 36 00 194 743 2 00 2674 -2475 
7 37 00 265 860 269 3180 -29 II 
6 3688 244 858 253 31 65 -2912 
5 3875 4 10 979 4 08 3792 -3384 
4 3788 3 17 961 3 16 3639 -3323 
3 38 00 321 980 322 3725 -3403 

3863 376 998 376 3856 -3479 
3850 357 1000 357 3850 -349.3 
3750 250 250 

A call 011 XON I\·it/l I'trike ,nicc .i5 mill 20 wah' to expiration i.1 rCl'liwted h\' 
blll'illg XON Hod mul sel/ing tlte rilk-ftee (/He! at /0% 7/11: IJOltjo/io iI' 1IIljll.ltel/ 
weft I\'eek (/u"ol'llillg to tlte I'll/lie oj Ilelta a/ IluII time. IVIII:'" tilt: l'oll1#lity ii' .Iet 
(//18% (the lIcllla/I'oblt! III/rlllg f/tat peliod) the fJOItJo/iO I'O/IIL C/iH"e/1' /lit/Idle I 

tlU! B!l/(k-SdlOlel NI/tll! of tlte ((III 

Now wnlk across the second lOW, which is calculated in a Slightly ditfelent 

way The first four entries show that there are 19 weeks remaining, the new stock 
price is $3463, the cOlTesponding Black-Scholes option price is $1 96, and delta is 
now 615. The next entty, "Portfolio value," is obtained by updating from the row 
above it The eallier stock pUlchase of $24 89 is now worth (3463/35.50) x $24.89 = 
$24.28 The debt 01 $2227 is now a debt of (I + 0 10/52)$2227 = $22 31 The new 
value of the portfolio we constructed last week is thelefore now $2428 $2231 = 
$196 (adjusting lor the lOund-of! elIor in the table) This new value does not exactly 
nglee with the cunent call value (although in this case it happens to agree within 
the two decimal places shown) We do not add or subtract from the value However, 
we now rebalance tlle portfolio by allocating to the stock $21 28 (which is delta 
times the slock price) and borrowing $1932 so that the net portfolio value remnins 
at $196 

Succeeding rows are calculated in the same fashion At each step, the updated 
por tfolio value may not exactly match the current value of the call, but it tends to be 
velY close, os is seen by scanning down the table and compnring the call and portfolio 
values The maximum difference is II cents At the end of the ::W weeks it happens 
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in this case that the pOitfolio value is exactly equal (to within a fraction of a cent) to 
the value of the call 

The results depend on the assumed value of volatility The choice of a = 18% 
represents the actual volatility over the 20-week period, and this choice leads to good 
resuits, Study of a longer pcriod of Exxon stock data before the date of this option 
indicates that volatility is more typically 20% If this value were used to construct 
Table 13 I, the resulting final portfolio value would be $2,66 rather than $250 If 
a = 15% were used, the nn.1 pOitfolio value would be $227 

The degree of match would also be affected by transactions costs The exper­
iment with an Exxon call assumed that transactions costs were zero and that stock 
could be purchased in any fractional al110unt In practice these assumptions me not 
satisfied exactly But lor large volumes, as might be typical of institutional dealings, 
the departure from these assumptions is small enough so that replication is in fact 
practical 

EX'h1ple 13.5 (Portfolio insur.nce) Many institutions with large portfolios of eq­
uities (stocks) are interested in insuring against the lisk of a major mmket downturn 
They could protect the value of uleir portfolio if they could buy a put, giving them 
the right to sell their portfolio at a specified exercise pi ice K 

Puts are available for the major indices, such as the S&P 500, and hence one 
way to obtain piOlection is to buy index puts However, a p:.uticular portfolio may not 
match an index closely, and hence the plOtection would be imperrect 

Anothel approach is to construct a synthetic put using the actual stocks in the 
portfolio and the risk-tree asset Since puts have negative deltas, construction of a put 
requires a short position in stock and a long position in the risk-free asset Hence some 
of the portfolio would be sold and later bought back if the market moves upward This 
strategy has the disadvanttlgc of disrupting the portfolio and incurring trading costs 

A third IIpproach is to construct a synthetic put lIsing futures on the stocks held 
in the portfolio instead of using the stocks themselves To implement this strategy, 
one would calculate the total vallie of the puts required and go long delta times this 
amount of futures (Since ;:, < 0, we would aClllally shOi t futures) The difference 
between the value of stock shorted and the value oj a put is placed in the risk-tree 
aSseL The positions must be adjusted periodically as delta changes, just as in the 
previous example This method, termed portfolio insurance, was quite popular with 
investment institutions (such as pension runds) 1'01 a shOll time until the US stock 
market fell substantially in October 1987, and it was not possible to sell lutmes in 
the quantities called for by the hedging rule, resulting in loss of protection and actual 
losses in portfolio value 

13.7 COMPUTATIONAL METHODS 

The theory presented in this chapter can be transformed into computational methods 
in several ways Some of these methods me brieRy outlined in this section 
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Monte Carlo Simulation 

Monte Cario simulation is one of the most powerful and most easily implemented 
methods tOi the calculation of option values However, the procedure is essentially 
only useful 1'01 European-style options, where no decisions are made until expiration~ 
Suppose thal there is a derivative secUlity that has payoff at the terminal time J of 
I (S( J) and suppose the slock pi ice S(t) is governed by geomeuic Brownian mOlion 
according to 

dS = /1Sd! +o-Sd~ 

where z is n stnndmdized Wienel process The basis for the Monte Carlo method is 
the Iisk-neunal pricing formula, which Slales that the initial price of the dedvative 
secudty should be 

P = e-d Ell (5(J)] 

To evaluate the right-hand side by Monte Carlo simulation, the stochastic stock dy­
nnmic equation in a risk-flee wodd 

dS = ISd! +o-Sdz 

is simulated over the time intel val [0, J] by dividing the entire time period into sevell.ll 
periods of length b..! The simulation equation is 

where E (td is chosen by a random number generator that produces numbers according 
to a normal distribution having zero mean and variance b..! (Or the multiplicdtive 
version of Seclion II 7 can be u,ed) After each Simulation, the value I (S(J» is 
calculated An estimate P of the true theoretical price of the delivative security is 
found hom the for mula 

P = e-'[avelagel/(S(J)] 

where the avelage is taken over all simulation trials 
A disadvantage of this method is that suitable acculacy may require a very large 

numbel of simulation trials In geneiUl, the expected enor decreases with the number 
of trials II by the facto! 11.Jli; so one more digit 01 Hccuracy requires 100 times as 
many trials Often tens of thousands of trials are required to obtain two-place accuracy 

Example 13.6 (The S·mon!h call) Simulation is unnecessary fOi a call option ,ince 
better methods are available, but this example, which WHS solved earlier in Exam­
ple 132, provides a simple illustlation 01 the method 1'01 lhis call S(O) = $62, 
K = $60, 0- = 20%, and I = 12% The time lo malulily is 5 months 

To cany Ollt the simulation the 5-month period was divided into 80 equal small 
time intervals The stock dynamics weiC modeled as 

S(t + t>t) = S(t) + 15 (t)t>! + o-S(t)E(t)~ 
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Running average value 

5 H5 

580 

575 

570 

565 

Number of trials 

5,000 10,000 is,OOG 20,000 25,000 

FIGURE 13"3 Monle Carlo t.!valualion of a 
call. The value of il c[lll is estimated as the 
discounted ilvemge of final p[lyoff when sim¥ 
ulillions ,He governed by the risk~neulml pro­
cess The method is easy 10 implement but 
requires il large number of lri[lls for reason­
able accuracy 

where <:(1) is chosen randomly from a nOlmal distribution with mean zero and unit 
variance 

After each simulation trial, the terminal value ot the call, maxiS K, 0), was 
determined based on the final stock price, and this value was discounted back to the 
initial time A running average of these discounted values was recorded as sliccessive 
runs were made Figure 1.3 3 shows a graph of the discounted average value obtained 
as a function or the total number 01 trials A reasonably accurate and stable result 
requires about 25,000 simulation trials FlOm the figure we can conclude that the 
price of the call is in the neighborhood of $580 plus or minus mound 10 cents The 
Black-Scholes value is in fact $5 80 

The simulation can be improved by various variance reduction procedures, 
the two most common of these being the control variate method and the antithetic 
variable method. (See Exercise 9 ) 

Although it is costly in terms of computel time to use the Monte Carlo method, 
the method is in fact often used in practice to evaluate European-style delivalives that 
do not have analytic solutions The method has the advantages of Hexibility and ease 
01 programming, and it is reasonably foolproof 

Finite-Difference Methods 

Numerical solution of the Black-Scholes partial differential equation is a second ap­
plOach to the calculation of option pi ices In this method a lUi ge rectangular grid is 
established, a small version of which is shown in Figure 134 In this grid the hOli­
zontal axis represents time! and the velticnl axis represents S The time difference 
between horizontally adjacent points is b..!, and the price difference between vertically 
adjacent points is 6,S The function f (S, t) is defined at all the conesponding grid 
pornts If the S values on the grfd are indexed by i and the! values are indexed by i, 
then the function at the grid point (i, j) is denoted by Ii j 
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FIGURE 13.4 Grid for finite-difference meth­
od. The finite-difference method approximates 
the Black-Scholes equation by <lJgebraic rela­
tions among values at grid points. The method 
can handle Americ<ln JS well <15 European op­
tions 

T he method is implemented by using the finite-difference applOximations to 
partial derivatives as tollows: 

i}l '" f,+I,) - f,,) 
ilS t1S 

a' j j,+I,) - jL) - jLj + f,-I.) 
as' '" (t1S)' 

ilf at '" ~'------"-'''-

kH,) 2fi,j + f,-I.) 
(t1S)' 

The tel1ninal conditions imply that f, j is known at the light boundary ot the 
grid Additional boundary conditions may be specified, depending on the pmticuiul 
derivative security In the case of a put option, fOJ example, it is known that the 
value ot the put is at least equal to R. - S evel ywhere, and since the value of the put 
approaches zero as S -----+ 00, we may specify that the value is zero along the top edge 
of the gJid 

When these approximations are used in the Black-Scholes equation, the lesuit is 
a large set of algebraic equations and inequalities These can be solved systematically 
by working backward trom the right edge oj the grid toward the left In tact, the 
equations are closely related to the equations of backwald solution in a lattice 

The finite-difference method has the advantage that it can handle delivative 
securities such as AmeJican puts that impose boundm y conditions othel than tel minttl­
time conditions An inhelent disadvantage, however, is that the equations are only 
approximations to the actual partial diHelential equation, and thelefore, aside from the 
obvious approximation enol', their solutions are subject 10 instabilities nnd inconsis­
tencies, which are not chmactelistic of the partial differential equation itself (usually 
resulting from implied probabilities becoming negative) As a genewl rule of numeri­
cal ploblem solving, il a problem is to be solved with" /inite-step "pplOxim"tion, it 
is usually better to letOJmulate the problem itself in finite-!·;tep tOJ111 and then solve 
that problem directly, lUther than to tormulate the problem in continuous time :'111d 
then applOximate the solution by a finite-step method In the case of derivative se­
curities this means that lUther than approxin1<J.ting the Black-Scholes equ<J.tion, it is 
probably better to use a discrete formulation, such as the disclete-titne risk-neutlal 
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pricing formula or the binomial lattice fOllnulation These discrete formulations will 
intJOduce approximation en or, but will not instill numericul instabilities Despite these 
c<J.ve<J.ts, finite-difference methods, when c<J.lcfully designed, do have <J. useful role in 
the numerical evaluation ot derivative secuJities 

Binomial and Trinomial Lattices 

A popuhu method for finding the yulue of a derivative secutity is the binomiul lattice 
method of Section 126 The method is straightforward and leads to reasonably accurate 
results, even if the time divisions nre crude (say, 10 or so time periods over the 
remaining time intervul) However, it is also possible to use other tree nnd hltticc 
structures For example, <J. good choice is to use <J. trinomiul lattice, as shown in 
Figute 13 5 For a given number of time periods, the trinomial Iuttice has more nodes 
than a binomial luttice and hence can produce a better approximation to the continuous 
solution 

At first it might seem that a tJinomial lattice cannot replace a binomial lattice 
because it is impossible to replicate three possible outcomes using only two securities: 
the stock and the risk-free asset This is correct; replication is not possible Hence 
the trinomial lattice cannot be used as a basis for options theory However, once the 
theOlY is deduced by otller methods (such as the Black-Scholes method), we can 
seek alternative ways to imp1ement it A trinomial luttice is a convenient structure for 
implementing the risk-neutf<ll pricing formula 

To set up a suitable trinomial Iuttice refet to Figure 13 6, which shows one piece 
ot the lallice There are three paths leaving a node, with probabilities PI, P2, and PJ 
The three resulting nodes replesent multiplication 01 the slOck value by II, I, and d, 
respectively, where we set d = 1/11, so that an up followed by a down is equal to I 

To assign the pmameters of the trinomialluttice we can mbitrmily select a va1ue 
tor II Then if the mean value for one step is to be I + V 6.1 and the variance is to be 

FIGURE 13"5 Trinomkll kltticec A Jrinomia! !<1ttice 
can give a more <1ccur<1te repreSenl<1tion th<1n a bi­
nomia! lattice for the S<1me number of sleps 
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FIGURE 13,,6 One piece of a trinomial lattice" In this lattice we 
must have d = l/u so that the nodes recombine after two steps 

a 2 6.1, we select the probubilities to satisfy 

p, + p, + P3 = I 
~Pl + P2 + ~P3 = 1')+ f.1. 6.1 1 

u-p, + P' + d-PJ (r 1:11 + (I + 1" 1:1t)-

(1323) 

(The last line represents E(x') = vm(x) + E(x)', where x is the ,andom factor by 
which the stock price is multiplied in one period) This is just a system of three linear 
equations to be solved for the three probabilities Once these probabilities are found, 
we have a good approximation to the underlying stock dynamics (Note that we are 
implicitly using the dynamics of (II 19)) 

To use this lattice for pricing. we must instead liSe the risk-neutral probabilities 
q" q2, and q3 These are found by solving the same set of equations (1323), but with 
the mean value changed trom f.1. 6.1 to I 6.1 Once the risk-neutral probabilities are 
found, the lattice can be solved backward, just as in the binomial procedure 

Example 13,7 (The 5·month call) Let us find the price of the 5-month call option 
of Example 12 3 using a t,inomial lattice, justlO compare the results We have S(O) 
$62, K $60, I 10%, and (J 20% The time to expiration is 5 months 416667 
To set up the Iallice we must select a value of /I and solve the equations (1323) fO! 
the probabilities (when f.1. is set to I ) in the equations The choice of It requires a bit ot 
experimentation, since for some values the resulting risk-neutral probabilities may not 
be positive Fo' example, using /I I 06 leads to 'I, 57, q, = - 03, and qJ = 46 
Instead we use 1/ I 1031277 and 'I, 20947, 'I' = 64896, and 'I) 14156 This 
leads to the'lattice shown in Figure 13 7 Note that the value of the option obtained is 
$5 83, which is slightly closer to the Black-Scholes result of $5 80 than is the price 
of $5 85 determined by a binomial lattice 3 

The lattice 01 Figure 137 has the stock value listed above each node and the 
option value listed below each node The final option values are just max(O, S - /() 
The option values at other nodes are tound by discounted risk-neutral pricing For 

J In this exanlP]c we assullled nlOnthly compounding. while the Bl:lck-Scho]cs formula ilnplicitly a~~umes 
cOlltilluOUS COlllpoUllding WI.: c.m 'llso use the I.:quiV'llent cOntiIluOUS compounding rate in the example. and 
the result differs by only one-temn of a cl.:nt from $5 83 
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6839 

063 

62 62 

563 
523 
562 

1 88 

91 81 

101 28 
41 28 

91 81 
31 81 

8323 
2323 

7545 
1545 

6839 
839 

62 
2 

562 
0 

5095 
0 

4619 
0 

41 87 
0 

3795 
o 

FIGURE 13.7 s-month call using a trinomial lattice. Siock prices ;)re lislecJ above nodes; <mel oplion 
prices are listed below The discounted risk-neutral valuation is easily generalized to the trinomial 
lattice 

example, the value at the top node alter 4 months is (I + 1O/12)-t(gt x 4128 + 
q2 x 3181 + g3 x 2323) 3231 If in this calculation the stock values 10128, 
9181, and 8323 were used instead of the option values, the resuit would be the stock 
value of 91 81, but of COUIse it is not necessary to use this backward proceduIC for 
the stock prices 

13.8 EXOTIC OPTIONS 

Numerous variations on the basic design of options have been pJOposed Each variation 
off CIS etIcctive control of the risk pCIceived by U cCltain gJOup ot investoIs OJ eases 
execution and bookkeeping We Jist a few of these variations here: 

1. Bermudan option In this option, the allowable exelcise dates are restricted, 
in some case to specific dates and in othel cases to specific peJiods within the 
lifetime of the option Warrants on stock often have this characteristic 
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2. Forwm'd start options These ate options that ate paid tor at one date, but do 
not begin until a later date 

3. Compound options A compound option is an option on an option 

4. ~'As you like it" OJ "chooseI''' options The holder ot an "as you like it" option 
can, after a specified time, deelare the option to be eithCl a put or a call 

5. CAPs These options I estIictthe amount ot plOfitthat can be made by the option 
holder by automatically exercising once the profit reaches a specified leveL A $20 
CAP on a call option, means that once the stock ptice rises to $20 over the sttike 
price, the option is excIcised 

6. LEAPS This term stands to! "Long-telm Equity AnticiPation Seculitiesc" They 
are 1ong-term, exchange-traded options with exercise dates a~ tm as 3 years into 
the futurec 

7. Digital options In a digital option the Jlayofl is $1 it the option is in the money 
and zero othel wise A European digital call option, IO! example, has payotl I if 
S(I) > K, and 0 if SeT) < K, where K is the strike price 

8. Exchange options Such ("In option gives one the tight to exchange one specified 
security for anothel 

9. Yield-based options A yield-based option on a bond defines the exercise value 
in terms of yield lather than price Hence the holder ot a yield-based call option 
benefits it bond prices decrease since yields move in the opposite direction to 
prices 

10. C['oss~ratio options These are foreign-currency options denominated in another 
foreign cunency; for example, a call on Gelman marks with an exercise price in 
Japanese yen 

II. Knockout options These options telminate (with zero value) once the pI ice 01 
the underlying asset reaches a specified point For calls these ate "down and out" 
options, which terminate once the price ot the underlying asset falls below a 
specified level For puts the analogous option is a "up and out" option 

12. Discontinuous options These options have payoffs that are discontinuous tunc­
tions of the price of the undeJiying asset For example, a call option may pay 
either zero or ,~20, depending on whether the final price of the underlying asset is 
below or above a specified stJ ike pJice 

13. Lookback options In a look back option the eftective strike plice is not specified, 
but is detelmined by the minimum (in the case of a call) or maximum (in the case 
01 a put) of the price of the underlying asset during the period of the option For 
example, a European-style lookback call option has a payolf equal to max (S, -
5 ll1in, 0) = 57 Snlill' whele SlIli!! is the minimum value ot the price S over the 
period from initiation to the termination time J Such options me very attractive 
to investors, since in fact they always have positive value (unless 5)'1 = SllIlu) Of 
course their prices reflect the apparent attractiveness 

14. Asian options The pay ott 01 Asian options depends on the avelage price S,," of 
the underlying asset during the peliod 01 the option There are basically two ways 
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that the average can be used In one, Savg serves as the strike price, so that the 
payoff of a corresponding call, tor example, is max (ST - S.," 0) In the second 
type, S,," is substituted for the final price Thus the payoff of the corresponding 
call is max (S"" - K, 0), where K is a specified strike price 

Pricing* 

Plices ot some ot these variations can be worked out computationally by using the 
theory and methods presented in this chapter In other cases, formulas analogow; to 
the Black-Scholes formu1a have been derived There me cases, however, that present 
a serious technica1 challenge to the investment analysis community 

Example 13.8 (A down and outer) Consider a down and out call option on a non­
dividend-paying stock This option has a strike price of K and a "knockout" price of 
N < K If the stock price S falls below N, tlle option is terminated with zero value. 
A closed-form expression for the original va1ue of such an option can be found using 
the Black-Scholes framework; however, the details are not neat We shall consider a 
simplified case, where the option is perpetual (that is, T 00) but still has the down 
and out provision. 

Since there is no explicit time dependence in the price of a perpetual option, the 
Black-Scholes equation reduces to 

t(J"S'C"(S) + I SC'(S) -IC(S) 0 

The boundary condition is 

C(N) 0 

We also know that C(S) '" SasS --> 00. 

To solve (1324) let us try a solution of the form C(S) 
algebraic equation 

~O'2a(a-I)+la-1 0 

(13.24) 

sa This gives the 

which has solutions a = I and a = -V, where y 2//0'2 We may write the general 
solution of (13 24) as a linear combination of these two; that is. 

C(S) =a,S+a,S-v 

Using the boundary condition we find a, -a, Ny+1 Hence C(S) a, [S -
N(Sj N)-Y) Using the asymptotic property. we have a, I Therefore the final result 
is 

C(S) S - N(SjN)-1' 

Since the value of a perpetual call is S, the second term in this expreSRion can be 
regarded as a discount for the down and out teature 
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The lookback and Asian options are pmticularly interesting because their payoffs 
are path dependent; that is, their payoffs do not merely depend on the nnal value 
of the price of the underlying asset, but also on the way that that price was reached 
So the conventional binomial lattice method of evaluation is not applicable However, 
there are ways to modify the lattice approach to handle such cases; but as one might 
expect, the amount of computation required tends to be substantially greater than tor 
a conventional option 

For European-style options that are path dependent, the Monte Carlo method 
otfelS a simple and e!lective procedure The principle of risk-neutral pricing stili 
npplies, so it is only necessary to simulate the plocess repeatedly, using the risk-neutral 
probabilities tOl the underlying asset pJice fluctuations, and to average the payoffs 
obtained during the Silllulations The control valiate method for reducing the number 
of requiled simulations is e.'lpeciaJly useful tOI these options, and a corresponding 
non-path-dependent option, for which n solution is readily found, can be used as the 
conllol variate (See Exer cise 9 ) 

13.9 STORAGE COSTS AND DlVIDENDS* 

Commodity stOJuge costs and security dividends can complicate an evaluation proce­
dUle, but there is an important special case, 01 proportional costs or dividends, that can 
be handled easily This case is useful in applications, and the study of the teChnique 
involved should further enhance your understanding ot riskNneutral pricing 

Binomial Form 

Suppose the commodity pJice S is govemed by a binomial process having an up tactor 
II and a down lactOJ d There is a storage cost 01 cS per period, payable at the end ot 
each peJiod The total risk-free return per period is R 

If you invest in the commodity at the beginning of a period, you must pay the 
cUlrent price S At the end 01 the period, you receive the new commodity minus the 
stOJage cost; hence you receive eithel (II - c.)5 or (d - c.)S The new lactors II - c. and 
d -, ore the legitimate factors that deline the restllt of holding the commodity, and 
therefore thel"le ale the lactors that can be used in a replication mgument It follows 
thut the risk~neutral probabilities for up und down are 

1/ -( - II 
I-q=~ 

respectively (To avoid ulbitrage we must have II c. > R > d -c.) These risk-neutral 
probabilities should be used to evaluate securities or vel1tUles that are derivative to 
the commodity 

Example 13.9 (A foreign currency put) Mr Smith, a successful but cautious U S 
businessman, has sold a pmduct to a German firm, and he will receive payment 
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of I million German marks in 6 months Currently the exchange rate M is $ 625 
per DM To plotect the value of this anticipated payment, Mr Smith is considering 
the purchase 01 a 6-month put of DM I million at a strike price of $ 60 per DM 
Mr Smith wants to compute the fair value of such a put to see whethel the market 
price is reasonable 

To make the calculation, Mr Smith notes that the US dollar interest rate is 
5% white the Gelman mark intelest tate is 8% The interest on marks acts like a 
proportional dividend or, equivalently, a negative holding cost The volatility of the 
exchange tale is 3% per month 

To find the value of the put, Mr Smith sets up a binomial lattice with six monthly 
periods, with II e ()] I 03045 and d 1/11 97045 The risk-neutral probability 
for an up move is 

(I + 05/12) -d - 08/12 
II d = .387 

Mr Smith then evaluates the put with the usual backward process Specifically, he sets 
up a lattice of DM prices using the II and d factor s defined by the volatility He then 
sets up a corresponding lattice 101 put prices The terminal values are found easily, 
and othel values are tound by discounted lisk-neutral valuation using the risk-neutral 
probabilities 

Brownian Motion Form* 

Suppose a commodity-let's take copper-has a pricc governed by geometric BIOwn­
ian motion as 

dS ILSdr +"Sd~ (1325) 

whele :: is a standmd Wienel process If an investor buys COppCI and holds it, there 
is a proportional storage cost that is paid at the rate of cS per unit time It at any 
moment r the investOl holds copper with total value W(r), the holding cost can be 
paid at the rate of c W(r)dr by selling copper at this rate The process for the value of 
copper holdings is therefore 

d W = l' IV dr -I- "W d~ - c W dr 

(/1 c)W dr + "W d~ (J3 26) 

whcle W(O) = S(O) Equation (1326) can now be regalded as that governing the 
value of u security with the holding costs accounted fOi We might term W the value 
of lief coppel, since it is thc net value ntter holding costs 

If we consider an investment OppOi tunity that involves coppel, such as an option 
on copper llitures 01 U leal option on a ploject that involves coppel as a commodity 
(sllch as a copper mining opel ation or an electl ical equipment project), we can value 
this opportunity by I isk-nelltrul techniques We change thc process 101 net coppel to 
risk-neutlul form since it is net coppel that can be used in constlucting a leplication 
01 other seclilities Specifically, in a risk-neutral setting with intelest lute I, net COppCI 
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is governed by 

d W = 1 W cil + a W d: (1327) 

whele 2 is a standard Wienel process 
The appropliate transtormation embodied in the foregoing is that hom (13 26) to 

(13 27), which boils down to the change f.1. C -----+ 1 This is equivalent to /1 -----+ 1 + C 

Hence the original copper pIicc in a risk-neutral world satisfies 

dS (I +<)Sdl +aSd: (13.28) 

This is the equalion lhal should be used tOI dsk-neullOl valualion of coppel-Ielaled 
investments 

13.10 MARTINGALE PRICING* 

Considel any security with a continuous-time price process set) Suppose that the 
intelest rate is I and the security makes no payments tor 0 ::.:: 1 ::.:: J The theory of 
risk-neutral pricing states that there is a risk-neutral version of the process on [0, J] 
such that 

(1329) 

where E denotes expectation in the risk-neutml world We can translate this expression 
to time I] to write 

S(ld e-d'o-"'EdS(lo)) 

to! any 12 > 1], where Ell denotes risk-neutral expectation as seen-] at time I] We can 
then rearrange this expression to 

e-""5(1d = e-'·'oE" )5(1,)) 

Equivalently, if tor 0111 we define 

Set) = e-'·' set) 

we have the especially simple cxplession 

S(ld E,,[S(I,)) 

101 all 10 > II 

(1330) 

In general, a process r(l) lhal salisfies .1'(11) E"l.r(l,)] tor alii, > II is called 
a martingale (attel the mathematician who ihst .studied these processes) The expected 
future value of a martingale is equal to the Ctlllcnt value of the plOcess-there is no 
syslemalic drill 

Equalion (1330) sUiles lhallhe secUi ily price 5(1) de Hated by the discount faclO! 
flOm 0 to 1 is n mmtingalc under the lisk-neutral probability structure 

Furthermore, our results on risk-neutral evaluation imply, in the same way, that 
the price process P of uny secuIity which is derivative to S (and which does not 

.1111 (13 29) we could write Eo bUl1hc lime rderence is umlcr~loot1 
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generate intermediate cash flows) must also be a martingale under the same probability 
structure; that is, 

(13.31) 

This is just a restatement of the risk-neullul pricing formula because we can unscramb1e 
(13 31) to produce 

(1332) 

Example 13.10 (Forward value) Consider a lor ward contract on a security with 
price process S The contract is written at 1 0 with forward price Fo for delivery at 
time T The initial value of this contract is to 0 At time 1 > 0, new contracts have 
forward price F/ Whut is the value II of the original forward contract at I? 

The function }I is a derivative ot the security S; hence its deflated price must 
be a martingale in the risk-neutral world Hence, 

[, E,(fr) 

Egui valently, 

(13 33) 

The same argument applied to a contract written at 1 with forward price F/ (and value 
zero) gives 

o e-"E,(S, - F,) 

or, equivalently, E(Sr) F, Using this in (1333), we find the desired result 

j, e-d'-"(F, - Fo) 

which agrees with the formula detived in Section 104 by more elementary (but less 
general) arguments 

The martingale formulation cun be used in the binomial lattice framework as 
well The analog of (J3 31) is 

(13.34) 

for i > k, where 

and Ek denotes expectation at k with respect to the risk-neutral probabilities Again 
Pis P deHated by the discount factor In the binomial framework (13 34) is usually 
applied a single step at a time, in which case it is identical, once the interest rate 
terms are made explicit, to the familiar backward discounted risk-neutral recursive 
eva1uation pIOcess 



13 11 SUMMARY 375 

Because or this association with mm tingales, the risk-neutral plObabilities are 
otten termed martingale probabilities. However, in this text We genclally prefer 
risk-neutral terminology to martingale tClIninoiogy 

13.11 SUMMARY 

The Black-Scholes cquatioll is a partial diffelential equation that must be satisfied by 
any function ICS, 1) that is derivative to the underlying security with price process 

dS IISdl +aSd~ 

where z: is a standllldized Wienel plOcess In particulm, the functions S and eN both 
satisfy the Black-Scholes equation, The price functions of other derivative securities, 
such as options, satisfy the same equation, but with different boundm y conditions 

It is usually difficult or impossible to solve the Black-Scholes equation explicitly 
for a given set of boundary conditions It can be solved for the special case ot a call 
option on a stock that does not pay dividends duIing the lite of the option The 
resulting solution formula C(S, I) is coiled the Black-Scholes fOlmula for the price 
of a call option, This formula is expressed in terms of the function N, the cumulative 
distribution ot a standard normal tandom variable, The function N cannot be evaluated 
in closed lorm, but accurate approximations are available 

The Black-Scholes equation can be regarded as an instance ot Iisk~neutral pric­
ing Indeed, the value of a delivative security with payoff Vcr) at J and no other 
payments can be wlitten as V :::::: e-rl ErV(T)], where E denotes expectation with 
respect to the risk-neutlal process dS = I S dl + as elz 

Delta is defined as '" = af/as Delta therefore measures the sensitivity of a 
delivative asset to the chnnges in the underlying stock pi ice S A portf01io can be 
hedged by constrllcting it so that its net delta is zero Delta can also be used to 
construct a derivative secUlity synthetically, by replication To do this, one constructs 
a special pOitfolio containing the undedying security in sufficient amount so that il<; 
value is equal to the va1ue of delta times the price of the underlying security The 
portfolio also contains the Iisk-fiCe asset (either short or long) in an amount to make 
the entire portfolio have value equal to the theoretical value 01 the derivative Tl1e 
portfolio is reba1anced periodical1y so that the value continues to tlack the theoretical 
value of the delivative closely Portfolio insUiance is an extension of this idea, but it 
constructs the leplicating portlolio with flallIes contracts on the underlying security 
rather than with the underlying security itself 

There are several ways to compute the value of options 01 other derivative 
securities numelically Monte Carlo simulution is n simple method that is well suited 
to European-style options, even those that me path dependent in the sense that the finnl 
payoff depends on the purticular price path of the underlying security as well as the 
fina1 price itself (as, tor example, a call with strike price equal to the average price ot 
the underlying security dUling the life 01 the optiOIl) A disadvantage of Monte Carlo 
is that it may require a very large number of simulation runs 

Finite-difference meUlOds approximate the Black-Scholes equation by a set of 
algebraic equations, which can be solved numelically The method can tr"eat American-



376 Chapter 13 ADDITIONAL OPTIONS TOPICS 

as well as European-style options, but it cannot trent path~dependent options, except 
in special cases, 

Lattice and lIce methods me very popu1ar A disadvantage is that the size of the 
lattice or Lice often becomes very great Path-dependent options require trees rather 
than lattices, and hence the number of nodes can become truly enormous 

Many vmintions of the option concept exist Formu1as for the theoretical prices 
of some of these exotic options have been devised, but in most cases the prices must 
be tound numerically 

If storage costs me incurred or dividends are received while holding an asset, 
those will influence the value ot securities derivative to that asset If the storage costs 
or dividends are proportiona1 to the asset price, the value of a derivative security can 
be found by properly adjusting the risk-neutral probabtHties or, in the continuous-time 
case, by adjusting the growth coefficient in the risk-neutral process governing the asset. 

If intermediate payments are made or costs incuned while holding a derivative 
security itself, those additional cash flows can, within the binomial lattice framework, 
be accounted for at each node during the discounted risk-neutral valuation process, as 
illustrated in Chapler 12 In the continuous-time tramework, additional cash flow rates 
can be entered as an additional lelm in the Black-Scholes equation, as shown in the 
Appendix to this chapter 

The risk-neuttal valuation equation can be transformed (easily) to martingale 
form: the price of a derivative deflated by the discount factor defines a mattingale 
process tinder the risk-neutral probability structure 

APPENDIX: ALTERNATIVE BLACK-SCHOLES DERIVATlON* 

Here we deIive the Black-Scholes equation using the disclete-time risk-neutral pricing 
formula and taking the limit as 6.1 --+ 0, In addition, we sha11 account for intelmediate 
cash !lows 

The price of the undellying security is governed by 

dS /-LSdl +aSdz 

where z is a standard Wiener plOcess The derivative security pays cash flow at a rale 
h ( S, t) at time I and has a final cash flow of g (S, T) 

To determine the price 01 the detivative security, we set up a binomial lattice 
approximating the price process of S Following the usual procedure (see Chapter II), 
we select 6.1 and put 

II 

d 

R 

The risk-neutral probabilities lor up and down moves me 

R-d 
'1=--, 

II-d 

u-R 
1-'1=-­

II-d 
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We use lhe first-order approximations 

ea.fZi I + am + ta2,';1 

e -a.JZi 1 - a vt;i + ~a2 6.1 

crt. t 1+16.1 

e-r 6.1 :::::: I - 1 6.1 

Substitllting these into the expressions for q £lnd 1 q and keeping terlllS only up to 
!i.rst order gives 

'I - + - 1 - -a- v,';1 I I ( I ') ~ 
2 2a 2 

I 
1-'1 = 2: ~ (I - ~a2) m 

2rr 2 

Let I (S, I) be the value of U,e deriv!llive security at 5 and I According to the recursive 
pricing formula we have 

(5, I) h(S, 1),';1+(1-1,';1) ['1/(115, 1+ ,';1) + (I - q)(dS, 1+ ,';I)J (1335) 

However, to first order, 

l(lIS, 1+,';1) I(S, I) + il} (am + ~,';I) S 
as 2 

I a2 (, ,il) 
+ :2 as' (a-,';I )5- + at,';1 

(d5,1+,';I) = (5'1)+:~(-am+~,';I)S 
I a'l, ,il} + --'-(a-,';I)S- + -,';1 
2 as2 at 

Using these in (1335), keeping teIlllS up to ordCI 6.1, and combining similo] terms 
(requiring a bit of algebra), we obtain 

(S, I) 
a( I a' ( , , il) 

b(5, 1),';1 + 1 (S, I) - 1 (5,1),';1 + -'-I S,';I + ---'-,a- S-,';I + -,';1 as 2 as- al 
Canceling 1(5, I) and ,';1 we have 

(1336) 

The boundary condition is (S, 1) g(5, J) This is the Black-Scholes equation 
when there is cash flow 
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EXERCISES 

L (Numerical evaluation of normal distribution 0) The cumululive normal distrfbution can 
be approximated (to wiUlin abOlll six dccim.li places) by lhe modified polynomial relation 

where 

N(x) = II -N'(r)(a,k + <I,k' + a,k' + a,k' + ask') 
1- N(-.t) 

N'(x) = 

+ )IX 

Y 2316419 

a, .319381530 

a, 35653782 

a, = 1 781477937 

a., -1 821255978 

a, = 1 330274429 

for.r ~ 0 
for x < 0 

Use this fonnuln to find lhe value of i.l call option with parameters T 5, a 
08, K 35, and 'I! $34 

25, 

2. (Perpetual put 0) Consider a perpetual American put option (with T = 00) For small 
slock prices it will be advantageous to exercise lhe put lel G be Ihe largest such stock 
price The lime-independent Black-Scholes equalion becomes 

ja','P"(S)+ISP'(,) ,P(,)=O 

for G ::: S :5 00 The appropriate boundary conditions me P (00) 0 l1nd P (G) K - G 
G should be chosen to maximize the vnlue of the option 

(a) Show that P (5) has the lorm 

P(,) = (/,5 + a,S-I' 

where), 21 fa 2 

(b) Use the rwo boundary conditions to show thai 

P(S) = (K - G)(SIG)-I' 

(L) Finnlly, choose G 10 maximize P(5) to conclude that 

P(,) 

3. (Sigma estlnHuion E!') Twden; in IlHljor financitll institutions usc the Black-Scholes formula 
in tJ backward lashion to inler other traders' cstimnles of a flom option pi ices In fact, 
truders flequently quote sigmas to e,lch other, l'llther than pi ices, to arrange trades Suppose 
a enll option Oil a stock Ulat pays no dividend lor 6 monU1S has a strike price ot $35, a 
premiulll 01 $215, and time to maturity of 7 weeks The cunent shorHerm T-bill rale is 
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7%, lind the plice 01 the undeJ1ying stock is $36 12 What is the implied volatility of the 
underlying security? 

4" (Black-Scholes approximation 0) Note thm to nrsl order N(d) = ~ + d/J2n Use this 
to derive the vi.llue ot 11 call option when the stock plice is at the -pregent v~l11e of the 
strike price; thut is,S = K e-r7 Specifically, show that C ::::::: 4Say'f Also show that 
.6. ::::::: ~ + 2ay'f Use these approximations to estimnte the value 01 the call option ot 
EXllnlj;le 1 3 2 

5. (Deltli) Using the same p:nameters as in Example 13 2, nnd the vlIlue ot the 5-month call 
it the initial value ot the slock is $63 Hence estim,tle the quantity t::,. l::,.C / l'!.5 Estimate 
E> !le/!ll 

6. (A special identity) GlIvin lones believes lhat for II derrvmive security with price P(S), 

the values of t::.., rand G are related Show that in f<lct 

E> + IS!l + ~a' s'r = I P 

7. (Gamma and theta 0) Show that tor a Europe.an call or put on 1.1 nonwdrvidendwpaying stock 

r = N'(d,) 

Saft 

fHillf Use Exercise 6 J 

e = _SN'(d,)a -I/(c-"N(d,) 
2ft 

8. (Great Wesrern COm) Great Western Bank has otlered 1.1 special certificate of deposir 
(CD) tied to rhe S&P 500 Funds • .ire deposired inro rhe account at the beginning of n 
month and are held in rhe accounr for 3 years Inrerest is credited ro rhe accounr ar the end 
of each YC(lr, and rhe .amount of inreresr paid is based on rhe performtmcc 01 the S&P 500 
index during rhe previous 12 monrhs Specifically,S :.u rhe end of rhe first year, if rhe value 
of the index at the end 01 k mOnThs is S/.., k = 0, 1,2, ,12, rhe average oj the 12wmonrh 
index values is defined <IS A = fi :L::l s/.. ;:tnd the interest paid is 

I = mux[O, (1\ - 5,,)/5,1 

limes lhe inilial accOUnt b~tl<lnce interesl in lhe lollowing years is compuled itt lhe same 
tashion, wilh new values 01 ;:tCL::OUItl balance and index values Assuming lhal monlhly 
changes in lhe S&P 500 index c<ln be modeled as geometric Browniatt tlloliott wilh (f = 20, 
whal riskwfree rate is equivalenl lo lhis CD? lHim Try a lree Use 2wOlonth intervuls j 

9. (file conlrol variale melhod) Suppose lhm it is desired H1 eSlimate lhe expecled value of a 
flmdom variable r Ohis r:mdom v::Iri::lble might be the discounted tCltllimli value of a call 
option on <I stock thtll is lollowing 1.1 risk-neutral Jandom process; then the expected value 
is the value of the option) One way to do the estimution is to genelUte numerolls samples 
01 x, according to its probahility distribution, and then take the avetage of the results A 
difJiculty with this method is tiltH it may take a velY huge Illltllbel of samples to obtain 
satisfactory results The process Call be speeded up somewhat by the use of 1111 .<ldditional 
Hmdom valiable V called 1.t control variate. The control vuJi;:tte must he correlated with x, 

.5 There \'.'cl'e some minor dwnges ill rhe ilCIULlI IOfllUJl:l 
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and its expected value must be known For eX!lmplc, if x is the terminal value oj a call 
with 1.1 down i.\Od out feature, we might choose V to be the terminal value of a similar 
call without the down and out feature We can determine the vlllue of E(v) = y by direct 
melhods such as the Black-Schotes formula Or a binomial lattice But we do expect that 
if the stock should happen to cnd high on a particular simuhltion trial, the value of both x 
and y will be relatively high as well Hence the two vllriables nrc correlated 

The estimate t of E(.t) is made with the formula 

Sometimes a small value of a is selected mbitrarily However, no optim.tl value of a Can 
be estimated as well Find lhe value 01 a that minimizes lhe variance of.t (The result will 
depend on certi.lin variances and covariances ) 

10. (Control variate application e) Use the control variate method of Exercise 9 to determine 
the v!due of a 5wmonUl Asian call option on a stock with 5'0 = $62, (f = 20%, and 1 = 10% 
and a strike price of $60 

(a) As a control variate use the 5~month swndard call option treated in Example 123 
(b) Use S~Vll as a control variate and compare with part (a) 

ll. (Pay~later options) Pay-later options are options for which the buyer is not required to 
pay the premium up front (i e , at the time that the contlact is entered into) At expiration, 
the holder of a pny-Iater option III/HI exercise the option if it is in the money, in which 
case he pays lhe premium at lhat time Otherwise the option is left unexercised and no 
premium is paid 

The stock of the CCC Corporation is currently valued at $12 and is assumed to 
possess all lhe properties of geometric: Browni:w motion It has an expected annual return 
of 15%, an annual volatility of 20%. and Ule annual risk~free rate is 10% 

(a) Using a binomilil hHtke, determine the price of 11 call option on CCC stock maturing 
in 10 months' time with a strike price of $14 (let Ule distance betwcen nodes on your 
lree be I monUl in length) 

(b) Using a similar meUlOdology, determine the premium for a paywlater call with nil lhe 
same parameters as the call in part (a) 

(c..) Compare your answers to parts (a) and (b) Do the answers differ; if sO why, if not 
why not? Under whot conditions would you prefer to hold which option? 

12. (California housing put $) Suppose you buy a new home and nnance 90% of the price 
with a mortgage from a bank Suppose that a few years later the value of your home 
faUs below your mortgage balance and you decide to default on your loan California has 
antidenciency judgment legislation that states that the bank can only recover the value of 
the house itself, not the entire mortgage balance 6 (Of course, real estate values in California 
always increase, so this is never an issue!) 

Suppose you take out a 15~year mortgage for 90% of the home price, and suppose 
that the risk-free rate is constant at 10% Assume also tbat the bouse bas a net value to 
you (perhaps in saved rent) of 5% 01 its market value eacb year Housing prices bave a 
volatility of 18% per yellr Wbat is the value of this put option for a loan of $90? Wbat is 
tbe fair value for the interest rate on your mortgage? (Use the small t::..r applOximmion ) 

6This is. of coursc. n simplification ot lhc 11Iw 
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13. (Foresl value) Solve Exercise 16 in Cbapter 12 assuming that the annual storage cost of 
cut lumber is 5lfii of its value 

14. (Mr Smith's pllt) Find the value of the pUl for Mr Smilb descIibed in Example! 39 
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INTEREST RATE 
DERIVATIVES 

S
ecurities with payoffs that depend on interest tales ate called interest rate 
deTlvatives. Such securities ale extremely impOItant because almost every finan­
cial tr:.lnsaction entails exposure to inteIcst rate risk-and interest late derivatives 

provide the means [01 controlling that I isk In addition, as with other delivative secu­
rities, interest lale derivatives may also be used cIeatively to enhance the pedormance 
o~ investment portfolios 

Some examples at interest lale deIivutives are listed in the next section These 
examples illUSltate the complexity of the interest late environment and the range at 
financial instruments designed to harness that complexity 

The complexity of the interest rate market is reflected in the theoretical structure 
used tor its analysis Even in the deterministic case, we found that it is nccessary to 
define an entire term structUie of interest rates in order to explain bond pdces When 
uncertainty is introduced, it is necessary to define a randomly changing term structUle 
We will find, howevel, that the concepts and methods that we have developed in the 
past few chaptels-namely, risk-neutral pricing, binomial lattices, and Ito processes­
can be combined with the ideas of term structurc very nicely to develop a coherent 
approach to the pricing of intercst ratc derivative secudties The readel should therefore 
find this chapter quite intelesting, both because the topic is itself cxtremely important 
in the investment wOlld, and because it blings togethet much of the previous material 
and expands it 

14.1 EXAMPLES OF INTEREST RATE DERIVATIVES 

382 

Interest rate derivative securities are Iclevant to many fOlms of investment Here are 
some examples 
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1. Bonds Bonds themselves can be regarded as being derivative to interest rotes, 
although the dependency is quite direct In particular, the price of a risk-free 
zero-coupon bond with maturity in N years is a direct measure of the N -yeill 
interest rate COllpon-bearing bonds can be regruoded, as always, as combinations 
of zero~coupon bonds, 

2. Bond futures Futures on T rctlsury bonds, Treasury notes, and other interest tale 

instruments are traded on exchanges These were discussed in Chapter 10 

3. Bond options An option can be granted on Il bond An Americlln call option 
on a lO-year TreasUlY bond would grant thc light to purchase the bond at a fixed 
(stIike) price within a fixed period 01 time 

4. Bond futures options More common than actual bond options are options on 
bond futures Such options are traded on an exchange thnt deals with futures 
on rreasury notes and other interest rate futures contracts Such options specify 
delivery of the underlying futUies contract 

5. Embedded bond options Many bonds me callable, which means that the issuer 
of the bond has the right to repurchase the bond nccording to certain terms 
(Usually a bond is callable orily after 'a specified number of years) A call provision 
can be regarded as an option granted to the issuer, the option being embedded 
within the bond itself The issuer at such a bond will find it advantageous to 

exercise the call option if interest lates fall below those at the original issue 
Some bonds are pu~able, which means that the owner of the bond can require 
that the issuer redee'~l"the bond undel certain conditions, SUch bonds grant an 
embedded put option to the bond holder 

6. Mortgages Typically, a home mortgage canies with it cenain prepayment priv­
ileges, allowing the mOl tgagee to repay the loan anytime (Often there is a repay­
ment penalty tor, perhaps, the lirst 2 yerus) The repayment plivUege is analogous 
to a call provision in a bond, with the homeowner taking the role of the issuer 
Some mortgages have special features such as rates that adjust with prevailing 
interest lutes 

7. MOTtgage~bacl{Cd securities Mortgages are usually packaged together in mort­
gage pools A mortgage-backed security is an ownetship share of the income 
generated by such a pool or an obligntion secured by such a pool The individual 
mortgages in a pool are typically serviced by b;mks, which receive the monthly 
mortgage payments and send them to the mortgage owner For this reason these 
securities are also termed pass thI'oughs. The overall market for mortgage-backed 
securities is enOlnlOUS, sUlpassing that of the corporate bond matket 

8. Interest tate caps and Hoors It is quite common lor a financial institution to 
offer loans to businesses in which the outstanding balance is charged an interest 
rate that is pegged to a standard, such as the prime rate or the LIBOR I lute 
However, the institution may oHel to cap the interest rate over a certain time 

I Tbe London Interbank Oftered Rate (LlBOR) is the ralC used jor US. dollar borrowing Ibrough London 
inlermediaries There <lrc LlBOR rale!; ror variou~ mUlurilies stich Its I momb, 3 months 6 montbs imd 
so on 
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peIiod FOl example, it may afret to chmge each day, ovel the next 6 months, the 
LIBOR lUte plus 1%, but the chUlge will never exceed 10% (annual rate). Similarly 
a /100/ might be established, where the interest late will never fall below the floor 
level Adjustable-rate mOl tgages often have cap and floO! featUles The interest 
rate is updated periodically accOlding to an interest tate index. but the charge 
cannot exceed a cellain specified amount each peliod and may be limited over the 
life at the mortgage by an overall cap 

9. Swaps A swnp is an tlgreement between two parties to exchllnge the cash flows 
01 two interest rate instruments Fot example, patty A may swap its !1xed-income 
stream wilh patty B's adjustable-rate stream 

10. Swaptions The term is short for \'\vop option A swtlption is an option on lln 

intetest rate swap Such options Ole quite popular among COlpoHltions wishing 
to hedge interest rate risk (See Exercise 10) For the student, they represent 
an excellent example of how the interest rate matket is becoming ever mOle 
sophisticated 

14.2 THE NEED FOR A THEORY 

Wise investOls take intelest rate movements into account as a fOlm of risk To analyze 
this fisk systematically, it is best to develop a model of intClest rate fluctuations 
Development of n model may seem difficult because the interest rate environment 
is chllIllctetized at anyone time, not by a single interest late, but by nn entire term 
structure, composed of a selies oj spot tates, 01 (l spot rate curve This entire CUlve 
varies its shape with time 

A simplistic approach to modeling the fluctuations is to assume that the indi­
vidual spot Intes move independently of one another in a completelY umdom fashion, 
This is pel haps acceptable abstractly, but it is not in accord with the obsel vation that 

r1!!:.~21.91 adjacen~ m.aturities tend to move togelhel A lealistic theOlY would account 
for this obselvotion and bu-ild additional structure into a,e model of allowable lluctu­
ations Howevel, as soon as a specific model is proposed, a new issue atises-that of 
potential al bi trage 

To see how lhis issue alises, let us hypothesize, as a simple model lestIicting 
the fluctuations, that the teIlTI structure is always flat, but that it moves lllndomly up 
and down-all r~tery.,rrlOvin.g together by the slime amount This simple model was in 
tact used in the i1mmunization analysis oj Chapter.3 To complete the model we could 
decide on a probabilistic structure for the up and down movements, assuming eithel 
a discrete set 01 possible jumps 01 n continuous distribution ot movements FOl the 
plesent argument, howevel. we do not need to be tlwt specific No mattel how the 
pJObabilfties are assigned, this simple model 01 term structure valiations implies that 
arbitrage opportunities exist The simplest proof ot this is to look again at Chapter 3, 
Example 3 10, which treal<; the immunization problem of the X Corporation According 
to that example, if interest rates me flat at 9%, one can form n portfolio by buying 
$292,788 worth 01 bond I and $121,854 worth of bond 2 while shorting $414,642 
worth of a zero~coupon bond that matUies in 10 years The total cost of this portfolio 
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is zero However, if the term structure moves eithc! up or down, the net value of 
the portfolio will increase Hence there is a chance that a positive profit can be made 
trom the portfolio and no chance of a loss-a cia.'lSic type B arbitrage situation (This 
is a general result tor the flat term structure assumption. as shown in Chapter 3, 
Exercise 16) This example shows that one cannot mbitlarily select a framework for 
term structure fluctuation if arbitrage opportunities are to be avoided How can we 
find a realistic framework that is mbitrage free? 

14.3 THE BINOMIAL APPROACH 

Our tamiliar tool-the binomial lattice-provides a suitable framework 101 construct­
ing interest [ate models We set up a lattice with a basic till1e span between successive 
nodes equal to the period we wish to use fO! replcsenting the te!1ll stlucture-perhaps 
a week, a month, a quarter. 01 a year We then assign a short rate (that is, a one­
period wte) to eHch node 01 the lattice The interpretation 01 this lattice is that if the 
process reache.'l a .'lpecific node, then the one-period rate, 1'01 the next period, is the rate 
specified at that node To complete the model we may assign probabilities to the var­
ious node transitions so that we have a full plObabilistic plocess to! the short rate 
Howevel, leal probabilities lor node tnmsitions are not relevant for the pricing theory 
that lollow~ Instead we will also a.uigll a set 01 risk-neutral node transition prob­
abilities The a~signment ot the short lute values and the corresponding lisk-neutral 
probabilities completely defines an interest rate structure lor all maturities, as will be 
demonstrated shortly It is important to undelstand that the rh;k-neutral probabilities 
are assigned in this case rather than derived from a replication argument 

Since the risk-neutral probabilities HIe assigned, rather than computed, it is con­
venient to set them nil equal to one-hall We follow this convention in this section It 
is convenient as well to establish an indexing convention to! the nodes of the lattice 
For this purpose, it is easiest to draw the lattice in the right-triangle form showll in 
Figure 14 I Note that at time I there arc a total of I + I rlodes, indexed by i Irom 0 

a 

FIGURE 14.1 Indexing system fOt short rate 
lattice. Nodes are clouble indexed in the form 
It, i) The t refers 10 time as shown at the bot-
10m of the lanice, and i refers to the height 
above the lowest part of the lattice 
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to I A convenient way to visualize this notation is to imagine that the two branches 
leading trom any node me considered to be "up" and "flat" The index i at time I 

denotes how many ups it has taken to reach the node A specific node in the lattice is 
indexed by the pair (I, i), with I being time and i being the node index at that time 
At a node (I, i) there is specified a short rate 1/1 ::: 0, which is the one-period rate at 
that point 

This lattice forms the basis fOI pI icing interest rate .secUlities by using risk-neutral 
pricing When the plocess is at any node, the value 01 any interest rate secuIity depends 
only on that node; and we assume that all node values are related by the ri1:;k-neutral 
pricing [ormu!tl For example, consider a given node (r, i) somewhere in the middle 
of the lattice, and any iutelest rate secutity Suppose the value of this security at node 
(t, i) is VIi Then according to the rules of the lattice, this value is related to the value 
of the security at the next two p055ible 5ucceSSOl nodes according to the risk-neutral 
pI icing formula 

(14 I) 

where Dri is the dividend puyment2 at node (t, i) 

Implied Term Structure 

It may seem that we are a long way from having specified an entire term structure 
model, since all we have are short rates-but actually the whole structure is already 
there We just have to extract it The extraction is ;:tccomplished in the same way 
that a spot late curve hi extracted from a series of one-period forward tates in the 
deterministic case For the binomial lattice, the exuaction is based on lisk-neutral 
pI icing To see how this wOlks, suppose that we are at the initial time, at node (0.0) 
The one-period spot rate is simply 10(), as defined at that node To find the twO­
period spot rate, we consider a bond that pays $1 at time 2 We lind its value in two 
steps, wOl king backward using the risk-neutral pricing formula In detail, suppose for 
simplicity the period length is a full year Denote the price at node (I, i) 01 the bond 
that matures at year 2 by P,j(2) Then, 

PlO (2) = _I_(~ x I+~ x 1)=_1-
1+1", - - 1+1'0 

I (' ') I P" (2) = ~ ;: x I + , x I = ~ 

and next 

I [' 'l Poo(2) = --- ,P",(2) + ,P" (2) 
1+100 - -

2This formula assumes !hu! DI/ depends only on 1 and i For some con1plex securities. this does no! hold 
and !he valmuion process is then pmh dependent Snch cases arc illustraled in Itller sections 
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This process can be applied to evaluate the plice Pno(k) for any k The cOlresponding 
spot rate for period k is then the rate <\k that satisfies 

Pon(k) 

Example 14.1 (A simple short "ate lattice) Figure 142 shows a shalt rate lattice 
giving the rates for 6 years (The period length is I yem) The figure was constructed 
by using an up factor of /I = I 3 and a nat (or down) lactor 01 d = 9 Risk-neuoal 
probabilities lor the lattice were assigned as q 5 tOi up and I - q = 5 lor nut 

The entire term structure oj intere.'lt rates can be determined lrom this lattice 
by computing the prices ot the zero-coupon bonds of various maturities An example 
of such a calculation is shown in the lower part of the figure tor n bond matUi ing 
at time 4 The value is computed by moving backward through the lattice in the 
familiar way, at each period weighting the next petiod's values by the lisk-neutral 
probabilities and discounting by the one-period lute FOi example, the top entIy in 
the third column is P,,(4) = t( 8667 + 9038)/1 1183 = 7916 The value of the 
bond at time zero is found to be 7334 times it~ face value This corresponds to a 
spot rate from time zero to time 4 at .\4 = (1/7334)" - I = 0806 The other 
spot rates can be calculated in a similar way by constructing a lattice of the cor­
responding length with l's in the finnl column If this is done, the resulting term 
stlUcture is found to be (0700, 0734, 0769, 0806, 0844, 0882) Note how the 
term structure rises smoothly in a manner that is tairly characteristic 01 actual term 
structUles 

A short rate binomial lattice gives birth to a whole tamily ot spot tate curves, 
depicting the way the teI111 stlUctUle varies landomly with time To see this, imagine 
the process initially at the node (0,0) The Call esponding tellll structure (spot late 
curve) can be determined by the calculations illustrated in the foregoing example 
Attel one peliod the process moves to one of the two successor nodes This successor 
node is then considered to be the new initial node of a (smaller) short late lattice that 

FIGURE 14,2 Simple shorl rate lattice and val-
2599 ualion of a 4-year bond The hand is valued by 

SharI rate 1999 1799 working backwald in lhe lower Idllicc, slalling 
1538 1384 1246 from lhe lerminal value of 1 0 and discounting 

1183 1065 0958 0862 wllh lhe ~hoJt rale values in lhe upper laUice 
0910 0819 0737 0663 0597 

0700 0630 0567 0510 0459 0413 

I nooo 
Bond vI.t1uc 8667 10000 

7916 9038 10000 
7515 8481 9314 10000 

7334 8180 8909 9514 10000 
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is a sublattice of the Oliginai one A corresponding spot rate curve can be computed 
exactly as before, but it will have somewhat diffelent values, replesenting the one­
period change If the plOcess had moved to the other possible node, the corresponding 
spot fOte Clllve would be somewhat diffelellt still We can therefOIe visualize a spot 
rate CUIve associated with every node in the lattice As the underlying process moves 
from node to node, the entire spot HUe curve changes 

No Arbitrage Opportunities 

Is the telm structllle determined from the short rate binol11iallattice free (rom arbitrage 
possibilities? Yes! This important fact follows from the fisk-neutral pricing formula. 
To pIOve it, fiIst considel the possibility of mbitrage over a single period, starting at 
node (I,i) Any security at that node is defined by its values Vr_H 1 and Vr+ 1 1+1 at 
period I + I and its price P" at (I, i) These are lelated by 

if this security replesents an arbitrage, then we must have Po .::: ° and VI+I I .::: 0, 
VI+LI+I ::: ° with one of these inequalities being strict This is c1eady impossible since 
all coefficients in the equation linking these values me positive Hence no arbitlage is 
possible over one period 

The argument fot two pedods is similar A security will have price PI! at time 

I, payouts D I + I I, DI+I !+I at time 1 + I, and values Vr+2 I, VI -I_2 H.I, Vr+2 1+2 at time 
1+2 It should be clear (see Figure 143) that these values are related by 

Again for an arbitIage, all variables on the right must be greatel than or equal to 
zelO, and Po must be less than or equal to zero, with at least one strict inequality 
Clearly this is not possible Hence no two-period atbittage exists The mgument can be 
exlended to an arbitrary number of pedods Theretole the short rate lattice approach to 
modeling interest lates is mbitrage hee, and hence specification of a short rate lattice 
provides a workable model of interest rate variations 

FIGURE 14.3 No arbitrage is possible. The initial price 
PI1 is determined by discounled risk-neutral valuation. If 
ill! pilYOf(S (Ire nonnegative. then the initial price must <Ilso 
be nonnegative 
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14.4 PRICING APPLICATIONS 

Many interesting securities can be pIiced with the shOtt tate lattice Sometimes the 
shOtt fate lattice togethel with the promised payout patteln on the nodes 01 the lattice 
IS all that is needed to set up 1.\ backward calculation to detcl mine value Other times 
somewhat more subtle techniques must be used But a wide assortment 01 problems 
arc amenable to tait Iy quick calculation using the binomial lattice hamework This 
section discusses and jllustlates a replesentative group ot important and intelcsting 
applications of this type 

Bond Derivatives 

The previous section showed how to calculate the value of zero~coupon bonds using 
the binomial lattice methodology It is 1.1 straightfolward extension to calculate the 
value of other bonds To calculate the value 01 a dedvative of a bond, we proceed in 
two steps: fiIst we calculate the price lattice ot the bond itself, then we culculate the 
value of the derivative We illustrate the pIocedure fOt an option on a bond 

Examl)le 14.2 (A bond option) Considel a zero-coupon bond that has 4 years re­
maining to matmity and is selling at u ctUrent pIice of 73 34 Suppose that we are 
granted a European option to pmchase this bond in 2 yeals at a stdke plice of 8400 
What is the value of this option? 

We assume that the term su uctm e is govemed by the shOt t I ate lattice of Ex­
ample 14 I The value of the zero-coupon bond at any node is indicated in the bond 
ptice lattice shown in the bottom pOttion of Figure 142 To evaluate the option we 
only need the filSt three periods of this lattice The value at expiration at the option 
is max(O, P - /(), where P is the price of the bond at expilation and f( is the strike 
price We can then constmct a smail lattice to determine the option value, as shown 
in Figure 144 The last column shows the value 01 the option at expilation The 
earlier columns show the value obtained by wOtking backwaId (as usual), using the 
Iisk-neutIal pwbabiiitics of 5 and discounting according to the cOlIesponding values 
in the short late lattice We conclude that the value of the option is 14703 

Forwards and Futures* 

Forward and futures contI acts on interest tate secmities, such as bonds, are easily 
tleated by the binomial lattice method This method pIOvides additional insight into the 

o 
3712 81 

I 4703 27752 509 

FIGURE 14.4 Bond option calculaliono The standilrcJ backwillcJ method 
is appliecJ 
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results of Chapter 10 and generalizes those results in important ways, since it is not nec­
ellsary to assume that interest rates are deterministic< Actually, the results for forward 
contracts are not influenced much by the introduction of unceItainty, but the results for 
futures are. This means, in particular, that the futureR-forwards equivalence result no 
longer applies However, the calculations required for interest rate futures are simple 

Example 14.3 (A bond forward) Consider a forward conttact to purchase a 2-year, 
10% Treasury bond 4 years from now, Assume that the intelest rate process follows 
the lattice of the previous examples, as shown in Figure 142; and assume that coupons 
are paid yemly and that the conleact specifies that delivery will be made just after the 
coupon payment at the beginning of year 4 

The first step of the calculation is to find the value of the Treasury bond at the 
beginning of the fourth year This is done in the usual way by backward calculation, 
as shown on the right side of Figure 145 In the calculation the coupon payments for 
years 5 and 6 are included For example, the top entry in yem 5 is I ~6 ( 5 x 110+ 5 x 
110) + 10 = 9731 The column for year 4 is computed in a similar way, but without 
the coupon The figures in the column for year 4 are the prices that the bond would 
sell for that year 

The left part of the lattice continues the backward calculation, but does not 
include any coupon payments The resulting value at the initial node is the value of 
the 2-yem bond delivered at year 4, but paid for at year zero This is 72 90 

With the forward contract there is nO initial payment; the payment is at year 4 
This delay of payment has time value, which is determined by the value of a 
4-year zero-coupon bond The value of such a zero-coupon bond was calculated in 
Example 14 I to be 73 34. We can find the correct tor ward plice of the bond by 
comparing it with the forward plice of $100 cash that is to be delivered in 4 years; 
this forward price is of COUIse just $100 Hence the correct price of the [OIward is 

Fo = forward price of bond 

0 

Forward period 

7307 
722 8446 

729 8381 9372 

current value of bond 
= forward price of $ 100 x CUlTent value of $100 

7290 
100x--=9940 

73 34 

FtGURE 14.5 lattice for bond for~ 
Year ward. The value of the bond is calcu-

4 6 
latecJ backward from year 6 to year 4. 
The forward price is then computed 

Bond 110 
backward using the year 4 bond values 
as final values 

9731 110 
8356 10323 110 

7638 9269 10782 110 
8706 9996 11127 110 
9569 1055 I J3 80 110 

1024 1097 11563 110 



o 

Futures pel ioel 

9588 
9912 10236 

Futures' 

Year 

9221 
9954 

105 18 
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88 13 
9633 

10275 
10761 

4 

8356 
9269 
9996 

10553 
10968 

FIGURE 14.6 lattice for bond future FllIures 
prices are computed by ,wel<1ging in backward sleps 
wilhou! disCDunling 

The plicing ot tuture~ conuacts is olso easy using a binomial lattice The method is 
be't desclibed by a continuation 01 Examplc 143 

Example 14.4 (A bond future) Considel a lutUle, cont",ct on the 2-yem, 10% bond 
to be pmclwsed in 4 years As before, we need to know the value 01 the bond <H each 
node fOf year 4, when the jutmes conti act is due This calculation W<15 calTieci out 
in the previous example, and we simply entcI the vulues iIi a new lattice at yem 4, 
as shown in Figure 14 6 Now suppose that you are at the top node 01 yea! 3, and 
that the plice of the flUUles contract is F at that point You pay nothing then, but 
next peliod you would obtain tl plOfit 01 eithel 83.56 - F 01 9269 - F The plicc 
you should pay at yem 3 is therefore 5(8356 - F) + 5(9269 - F), discounted 
by the shalt late at that point But this price is zelO, since you pay nothing for the 
contI act Hence F = 5 (83 56 + 91 69) = 88 13 In othel word" the futures fll ice i, 
the average ot the two next pi ices (using the lisk-neutral plobabilities) This argument 
can he applied to evelY plevious node So wejust wOlk backward, computing nvelHges 
wi/holl! discounting The value at the initial node is the pJice at the futures conti act; 
namely, 99 J2 Note that indeed this value is slightly dilTerent than the COllCSpOlldcllg 

forward price ot 9940, thus demonstrating thal futures-forward equivalence does not 
hold when interest wte, are landorn (although the discrepancy is likely to be small) 

14.5 LEVELING AND ADJUSTABLE-RATE LOANS' 

Luckily we have been able to solve most plicing problems in this book using binomial 
lattices, rathel than more complex tree structures Lattices are very desilable since the 
number of nodes in a lattic~ glows only in proportion t6 It, the number oj periods, 
whereas for mOle geneli.ll llees the number of nodes may grow geometrically (such 
as 21/ Jor a binomiul tlee) Hence it a lattice cun be used, leplcsentation will be 
lelalively easy and computHtional eflort will be lelatively Sl11l.1li; whereas everything 
is more dillicult if a full tree is lequired Not sUlprisingly, we are willing lo work 
hatd to convert tree struclures into lattice structures when that is possible This seclion 
descIibes a method lor doing just th;l(, ;Ind then applies the method to the evaluation 
of adjustable-rate loans 
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When using a lattice, nodes me typically defined by the value 01 some underlying 
variable that uniquely determines the cash Ilow at that node Fat example, lor standard 
options, the slock price serves that function, whereas tor a bond the short rale is used, 
11' the cash flows associated with a node depend on the path used to arrive at the 
node, then the cash flow plocess is said to be path dependent and the lattice is 
not an appropdate structure A tree structure, on the other hand, does not have this 
shOitcoming because each node in a tree is reached by a unique path Hence one way 
to solve path-dependent ploblems is to sepmate ali the combined nodes in a lallice, 
thereby producing a tree that represents the same problem 

Usually, what is going on in a path-dependent case is that more than one variable 
is needed to describe the cash flow at a node Sometimes we can collapse these 
variables into one and salvage the lattice 

We term the technique thut we lIse leveling for a reason that will become clear 
It applies to situations where cash flow is defined by two variables, say, j and x The 
first of these is a disclete variable that by itself would define a lattice The second 
Vat iable is a continuous variable that is also needed to define cash flow As an example, 
consider the Complexico gold mine with random gold prices (which was treated in 
Chapter 12, Example 128) The gold price can be modeled as a binomial lattice, so 
this price serves as the lattice variable j However, after arriving at a lattice node, the 
cash flow there depends also on the amount of gold remaining in the mine, and hence 
this amount serves as the .\" variable The mine value is path dependcnt because the 
amount t at any gold price node depends on the path that led to that node Problems 
of this type look discouraging because we fear that we might need a lot more nodes 
to account for the r dependence 

The path-independent dilemma can be circumvented if the price at a node can be 
proved to be proportional to the vmiable _\ If this is the case, we can decide on a fixed 
level Xo of., and lise this one level at all nodes, then later scale the results appropriately 
Specifically, when working backward, at any node j we value the security price V at 
node j using the underlying variable values i and .to The resulting value is V) The 
step-by-step backward computation is simple because we can easily keep track of the 
changes in x Jor a single step. FOI example, suppose we are at node i and we need 
the price at node j + I, which is one step ahead, but we need the price at j + I when 

, '" Xo By linearity this price is (x/'o) Vj+I, where VJ+I is the price at j + I when 
x \"0 Things are especially simple if we choose Xo = I Then the price at any node 
i and level t is 01 the lorm Vi(t) = Kjt" We jllst need to keep lIack of the K/s; 
then multiply by the appropriate x 

The method is called leveling because the x variable is kept at a constant level 
The Complexico gold mine pIOblem was solved this way, after it was found that the 
lease vHlue was lineat in the gold rescrve amount.\' The method seems to be especially 
valuable in interest late derivative ploblcms We shall use it to treat adjustable-rate 
loans in the next subsection That example should c1mily the method 

Adjustable-Rate Loans 

Adjustable-rate loans are very common llnd very important A typical adjustable-rate 
loan charges an interest {ate in any period that is tied to a standard index, such 
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as the 3-month T -bill rate FOI example, the rate charged might be the T -bill rate plus 
2 percentage points However, if the loan is to be amortized avel a fixed numbet oj 
periods (that is, it is to be paid oft essentially uniformly). a change in interest rate 
implies a change in the level oj the required payment The payment in any period is 
calculated so thnt the loan will be retired at the maturity date, under the assumption 
that the interesl mte will lemain conslant until then 

Suppose you were to try to eV;lllrate such a loan You could take the perspective 
of the bank thm makes the loan, and see how much the bank would pay lor the 
(random) income stream represented by the IOHn repayment schedule You would SHut 
with a binomial lattice model 01 the r-billrate Then you would be inclined to enter 
the payments due at any node in the lattice and evaluate this paymenl structure by 
backward calculation in the standard way However, in thinking about this, you would 
soon discover thut the payments could not be entered on the lunice in a unique way 
because the payment due at any node depends not only on that node, but also on the 
path taken Lo get to that node For example, if a path of high inlerest rates were tuken, 
the loan baJance might be Imger than if a path 01 low interest lates were taken The 
loan balance at a node therefore depends on the pat ticular history oj interest tates 
Your thought at tllis point would most likely be "Oh, no; it looks like I might have to 
use a binomial tree, wilh its thousands oj nodes, instead of a lattice 8tH wait; maybe 
I can use leveling" 

Example 14.5 (The auto huyer's dilemma) Denise just graduated from college and 
has agreed to purchase a new atrtomobile She is now faced with the decision ot how 
to finance the $10,000 balance she owes after her down payment She has decided on 
a 5-year Imm, but is given two choices: (A) a fixed-lUte loan at 10% interest 01 (8) an 
adjustable-rate loan with interest that at any year is 2 points above the I-year T-bill 
rate at the beginning of that year Currently the T -bill {ate is 7% She wants to know 
which is the beller deal 

Denise is pretty adept with spreadsheet programs, !l0 she does a Jhtle homework 
that night First she decides that the T-biJI rate can be modeled by the lattice that we 
lIsed ellt lier in Example 14 I She decides to take the viewpoint 01 the bank Hnd see 
what the two loans (lre worth lo it She makes the assumption lhnt all paymenls <He 
made unmntIJy, statting at the end oj the first year 

The fixed-rate loan is easy The payments are found by using the annuity lor mula 
in Chapter 3 Namely, 

A = 1(1 +I)"P 
(1+1)"-1 

For P $10,000, 1 = 10%, and II = 5 this yields A = $2,638, which is the annual 
payment The cash flow at each node is shown on the lattice on the left side at 
Figure 147 The lattice on the right side 01 the figure shows the COl responding value 
of this cash flow computed using the interest rales of Example 14 I } Denise concludes 
that the fixed-rate loan is worth $561 10 to the bank 

3 r he loan vuhtc CUll cquivalemly bl! cukulutcd u!. -$10 000 + L:""t [$2,638/( I + \1)1] whl!re tht \1 !> 
urc the !>pnt rate!> implied by the !.hort rate lattice 
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Year Year 

0 4 0 4 

2,638 2,638 
Payment received 2,638 2,638 Loan value 4,8365 2,638 

2,638 2,638 2,638 6,881.3 4,9553 2,638 
2,638 2,638 2,638 2,6.38 8,9147 7,1571 5,0453 2,638 

2.6.38 2,638 2,638 2,6.18 2,638 11,009 0 9,3508 7,3680 5,1119 2,638 
- 10,000 2,6.38 2,638 2,638 2,638 2,6.18 561 1 11,591 7 9,6848 7,5247 5,1602 2,638 

FIGURE 14.7 Value of fixcd~rate loan, The lattice on the right is found by slilncJarcl discounted rjsk~nelltrill evaluation 
lIsjn~ the payments shown in the left l<lttice 

For the adjustable-tate loan, Denise quickly recognizes that the cash nows are 
not unique at a node, but depend on the particular path by which the node was teached 
She could plOcced by constructing a tIee and recording at each node both the short rate 
and the loan balance Cash flow at the node would be uniquely determined by these 
two vnlucs Instead, she preserves the lattice structule by using the leveling technique, 
wOlking with loans of the same balance at every node She uses a balance value of 
$JOO At each node she calculates the tequircd annual payment to amortize a loan 01 
value $100 starting at that time and ending at year 5 These values are shown in the 
lattice on the left side of Figure 148 For example, the top element of year 4 shows 
$122, which is the amount that must be paid at the end of I year to clear a loan of $1 00 
made at an interest rate of 19.99% + 2% Similarly, the initial node shows $2571, 
which is the amount that would have to be paid at the end 01 each year to amortize a 
loan of $100 ovel the entile 5-year period at a fixed intelest rate of 7% + 2% This 
table is constructed by using the nmortization formula It could be used on an ongoing 
basis to find the actual payments of the adjustable-rate loan Denise would simply find 
the balance 01 the loan at the node (which depends on the path to the node) and then 
apply the amount in the lattice !IS a p!lyment pel' $100 01 balance This payment would 
be made at the end ot the then current yem 

The lattice on the tight side of Figure 148 contains at each node the value to the 
bank of initiating an adjustable-rate loan fOl $100 at that node But the length of the 

Year Year 

o 4 o 4 

100 0 
Payment rate 122 100 Value per J 00 1 667 0 

63.38 1158 100 25.35 I 757 0 
4295 5967 1116 100 3436 2665 1 825 0 

.323 4035 571.3 1086 100 4.3744 3601 2763 1 876 0 
2571 30.19 3857 5539 106 6 100 5149 456512 372.3 28.35 1912 0 

FIGURE 14.8 Value of ildjustablc~ratc loan. The lattice all the right is found using the leveling 
technjque, keeping the loan bi'llance flxed at $100 The payments shown in the left lattice are those 
associated with a balance of S 100 
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loan is such that it terminates at the end of the original 5-year period The lattice has 
the final values of 0 since loa liS initiated there would be paid back immediately and 
110 interest payments would be received At the top node of year 4 the bank could loan 
$100 at a rate of 22% This would give it a payment of $122 next year This payment 
has a present value of $122/1 20 = $10167 Subtracting the $100 loan outlay gives 
a net present value profit ot $1 67 The earlier nodes are a bit more complicated The 
top node ot year 3 is calculated by noting that a new loan of $100 will geneuHe a cash 
flow of $63,38 next year Part of this payment is interest payment and pmt reduces the 
principal The lemaining principal will be $100- $63 38+($15 38+$200) = $54 00 
This principal is received by the bank and then loaned again to Denise during the next 
peliod at rates detelmined then (In effect, Denise will P"Y the bank $6338+$54, and 
the bank will then issue hel a Hew loan for $54) T he value of this next loun is either 
$1 67 pel $100 or $1 76 per $100, each with (risk-neutral) probability 01 one-half 
This amount tog ethel with the first payment can be discounted back one period and 
the $100 subtl"cted to obtain the overall net present value of $2 535 Specifically, 

54[1 + W 67 + I 76)/100) + 6338 _ 100 ~ 2 535 
I 1538 

Working back thtough the lattice, Denise finds that a $100 Io<m mude at yem 
zero is wolth $5 349 Hence the $10,000 loan is wolth $534 90, which is only slightly 
lower than the $561 10 valuc found lor the fixed rate Hence she concludes that 
the adjustable-rate loan is somewhat better than the fixed-rate loan in tcmls of price 
(although she may wish to callY out a diffelent analysis to see which is best for hel 
utility function, since she is probably unwilling to engage in active I-bill Hading to 

fully hedge the unceltainty) 

14.6 THE FORWARD EQUATION 

Backward evaluation through a tree or lattice is a powerful method 101 evaluating 
financial instruments There are times when a dual method-a fOlward recursion­
is even better This tor ward method is palticularly usetul tor determining the ternl 
structure based on a short late lattice 

In Section 144 we saw th.1t a sholt late lattice completely determines the teIln 
structure This term structUie can be computed by finding the prices of zero-coupon 
bonds lor each maturity using the backward evaluation method However, separate 
recursions and separate pJice lattices are requil ed tor each 01 these maturities Hence 
if thele nre If pCliods, 11 separate lecursions must be made in ordel to compute the 
entiJe term structure For large vulues of 11 the number of single-node evaluatiolls is 
approximately 1l 3/6, tiS compured to 112/2 fOi one pass through the entire tree -I The 
forward process desclibcd next requiles only a single recursion 

~ A recur:;ioll lit period} - I rcquire~ j ~itlglc cvalu<ltiotl~ Hence to i.!v<llu.llc;.\ bond 01 Ulaturity k requires 
1+-2 + + k (k +- I )k/l :;cpur<lte evaltllltions Siltce this tllust be done lor lilli/ ttHlturitie~ tlte totul 
i:; L~""l (k + 1 )k/2 := 111(/1 + 1)2/611 1 + 1/(11 +- 1)1 For one piiSS through the entire tree dw ntllllbcr 01 
evuhwtiotls is 11(11 + 1)/2 
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The forward recursion is based on calculating elementary prices. The elemen­
talY price PoCk, s) is the price at time zero ot a ~ecurity that pays one unit at time k 
and state \, and pays nothing at any other time 01 state The prices PoCk, 'I) are termed 
elementary prices because they are the prices of elementalY securities that have payoff 
at only one node We could find Po(k, I) for any fixed k and \ by assigning a I at the 
node (k, s) ill the bttke and then wOIking backward to time zero Alternatively, we 
can work forward, 

Suppose that elementary prices have been found for all nodes in the lattice to! 
times fIom 0 through k Considel a node of the 101m (k+ I, I), where \ '" 0, , '" k+ I; 
that is, s· is not the bottom or the top node of the lattice at time k + I This situation 
is illustrated in Figure 149 Such a node has two prcdecessOI nodes (nodes leading 
to it), namely, (k" - I) and (k, n Suppose that a security pays one unit at node 
(k + I, 'i) and nothing elsewhere Ii we Were to wOlk backwmd in the lattice, this 
security would have values 5th \-1 and 5ch,,\ at the lespective predecessor nodes, 
where {J,.., \-1 and dJ,. 1 me the one-pel iod discount factors (determined from the short 
mtes <It those nodes) 

At time zero the values <It these two predecessor nodes are wOJth, by definition 
01 the elementmy prices, S,h ,-IPOU(, ,-I) and S,h .. ,Po(k, I), respectively The total 
value <It time zelo is the sum ot these two, and this is the elementary price at (k+ I, 'i) 
Thus Po(k+ I, n = .5,t, .,-IPo(k, ' - I) + S,t, ,Po(k, I). This is a forward recursion 
because the value at time k + 1 is explessed in terms of values at time k If 'i = 0 
or k + I, thele is only one predecessOl node, and the result is modified accordingly 
Ovelall we obtain the three forms of the torward equation, depending on whethel the 
node is in the middle, at the bottom, 01 at the top of the lattice, 

Po(k + I, ,) = ~[dk .'-IPo(k,' - I) + d, ,Po(k, I)], 0 < , < k + I (1420) 

Po(k + 1,0) = ~dk oPo(k, 0), 

Po(k+ I,k+ I) = ~'hkPo(k,k), 

1=0 

I=k+1 

(l42b) 

Although we derived this equation through intuitive reasoning, it is posb'ible to 
derive it algebraically from the backwmd equation This forwmd equation is just a 
different way of organizing the fundamental risk-neutral pricing equations 

The price of any intelest late security can be found easily once the elementary 
prices me known We simply multiply the payoff at any node (k, \) by tlle plice 
Polk, \) and sum the Iesults over all nodes that have payoffs For example, the plice 
at time zero of a zelO-coupon bond with value I that matures at time 11 is 

5d, , I 
Ik'5)~lk+l,S) 

/SC",-, 
Ik" 1) 

Po = L Po (II , I) 
1=0 

FIGURE 14,9 Construction of forward equation, The clemen­
t,lry price for node (k + 1,5) can be expressed liS a combinalion 
of the elel11el1l.1ry prices for the Iwo predecessor nodes 



Short wle 

0910 
0700 ()630 

Elementary prices 

4673 
10000 4673 

Bond prices 9346 

Spot rates 0700 
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2599 
FIGURE 14,10 Use of elementary prices to find term 
structure. The elementary prices are determined by a single 

1999 1799 fOf'\'Vard sweep through the lallice The sLIm of i'lny column 
1538 1384 1246 then givC!s the price of a zero-coupon bond of that matu~ 

1183 1065 0958 0862 rily, Nole that a shorl rate applies over the coming ye;J.r 

0819 0737 0663 0597 while a spot tate applies 10 the previotls yeats Hence the 

0567 0510 0459 0413 inilial short rale ,1ncJ the inilii'll spot tale, i'l1~lOugh equal, 
,Ire one column apClrt 

0069 
0173 0468 

0415 0943 1302 
0958 1754 2028 1894 

2142 2961 2757 2155 1527 
4340 3046 1913 1134 0648 
2198 1040 0495 0237 0114 

8679 8006 7334 6670 6021 

0734 0769 0806 0844 0882 

The forward equation can be used to find the entire tClffi SUlIctule corresponding 
to a shOH rate tree by a single forward recursion-because nIl zelO~coupon bond prices 
can be detel mined 

Example 14.6 (The simple lattice) Let us apply the forward equation to Exam­
ple 14 I The elementmy price lattice can be calculated dilectly from the short rate 
lattice It is shown in Figure 14 10 togetl1cI with the resulting zero~coupon bond prices 
and the derived term structUle 

As an example of the calculation, both ter ms in the second column arc derived 
ti"om the single predecessor node; and these terms are equal to one~half times the 
discount rate at the first period times the elementary price at 0, which is I Hence 
these valltes ale .5/107 = 4673 The figures directly below the lallice are the sums 
of the clements above them These values correspond to prices of zero~coupon bonds 
The final figures below the lattice make up the tellll stlUcture, expressed as spot lutes 
computed directly hom the bond prices above The values agree with those computed 
in Example 14 I by the more laborious process 

14.7 MATCHING THE TERM STRUCTURE 

Happily we now Iu.lve an excellent stalt on a workable methodology fO! pricing intcl­
est late derivatives, based on the consuuction of H sholt rate binomial lattice From 
that lattice we can compute the telln su ncture and evaluate interest tnte derivatives 
using the risk-neutral pricing formula and bnckward recursion One vital PUlt of this 
methodology, which we have not yet fully addressed, is how to consuuct the oJiginnl 
short rate lattice so that it is tepresentative of actual interest rate dynamics This is the 
subject of this section 
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Interest rate fluctuations are simi 1m in chatacter to the fluctuations of stock prices 
Therefore a shott tate lattice should teflect those basic properties However. we also 
know that once a short tate lattice is specified, it implies a certain telm structure It 
seems approptiate therefore to conStrllct the lattice so that its initial term structure 
matches the CUlfcnt observed term structure This is easily accomplished using the 
concepts and tools developed in the plcvious sections 

The Ho-Lee Model 

Let us index the nodes of a sholt rate lattice according to our standard format as (k, ~.), 

where Ii. is the time, k = 0, I, ,11, and ~ is the state, with s = 0, i, ,k at time k 
We must make the assignments 1/.:.,\ of short lutes at each node 

One simple method of assignment is to set 

(143) 

This is the Ho-Lee tOlm It only temains to select the parameters ak and bk for 
k = 0, I, ,11 The variation among nodes at a given time is completely determined 
by the parameter bk In fact, from any node (k i, <;) at time k 1, the next rate is 
eitller a, + b" or a, + b,(1 + 1) The difference between the two is b, Indeed, it 
can be shown easily (see Exercise 6) that the (risk~neutral) standard deviation of the 
one-petiod rate is exactly bk/2 Hence we teier to b" as a volatility parameter. The 
patameter ak is a measure ot the aggregate drift from period ° to k If we remain in 
state 0, the short rate increases to ak 

In the standard Ho-Lee model, the volatility parametels are all set equal to a 
constant b, which is characteristic of the observed volatility of interest rates (accounting 
for the factor of one-half) It therefore remains only to select the ak's; and these can 
be selected to match the obser ved term structure at time zero 

If the times are 0,1, ,11, thele are 11 + 1 values of Ok to be chosen and 11 + 1 
spot rateS to be matched Hence we have equal numbers of variables and requirements 
The only difficulty is that the relation between the o,,'s and the spot rates is somewhat 
indirect; but the matching can be carried out numerically 

Example 14,7 (A 14-year match) Consider tile 14-yeat term structure used in Chap­
ter 4 We will assume that this is the obsel ved spot rate curve To match it to a tull 
Ho-Lee model, we must make some assumption conceming volatility Suppose that 
we have mea~ured the volatility to be 01 per year, which means that the short rate is 
likely to fluctuate about I percentage point during a year 

We can cany out the match using a spreadsheet package that includes an 
equation~solving routine The details are shown in Figure 14 II The first two lines of 
the figure show the given spot rates over the 14~year petiod. The next row shows the 
parameters Ok that are used in the Ho-Lee model These parameters are considered 
variable by the program Based on these parameters a short rate lattice is constructed, as 
shown next in Figure 14 II From this the forward equations are constructed as another 
lattice, based on the short rate lattice The sum of the elements in any column gives 



Year I 2 3 4 5 6 7 8 10 II 12 13 14 
Spot 7.67 8.27 8.81 9.31 9.75 10.16 10.52 10.85 ILl5 11.42 11.67 IU9 12..09 12.27 

7.67 8.863 9.878 10.79 11.49 12.18 12.64 13.12 13.5 13.79 14.1 14.23 14.4 14.51 

State 13 14.77 
12 14.64 14.75 
II 14.45 14.62 14.73 
10 Short rates 14.30 14.43 14.60 14.71 
9 13.97 14.28 14.41 14.58 14.69 
8 13.66 13.95 14.26 14.39 14.56 14.67 
7 13.26 13.64 13.93 14.24 14.37 14.54 14.65 
6 12.76 13.24 13.62 13.91 14.22 14.35 14.52 14.63 
5 12.28 12.74 13.22 13.60 13.89 14.20 14.33 14.50 14.61 
4 11.57 12.26 12.72 13.20 13.58 13.87 14.18 14.31 14.48 14.59 
3 10.85 11.55 12.24 12.70 13.18 13.56 13.85 14.16 14.29 14.46 14.57 

9.92 10.83 11.53 12.22 12.68 13.16 13.54 13.83 14.14 14.27 14.44 14.55 
8.88 9.90 10.81 11.51 12.20 12.66 13.14 13.52 13.81 14.12 14.25 14.42 14.53 

7.67 8.86 9.88 10.79 11.49 12.18 12.64 13.12 13.50 13.79 14.10 14.23 14.40 14.51 

14 IE-05 
13 3E-05 2E-04 
12 6E-05 4E-04 .001 
II Elementary pnces IE-04 8E-04 .002 .004 
10 3E-04 .002 .004 .008 .012 
9 8E-04 .003 .008 .014 .02 .024 
8 .002 .007 .015 .024 .031 .036 .036 
7 .004 .014 .027 .04 .048 .05 .047 .041 
6 .009 .027 .048 .063 .069 .067 .059 .048 .036 
5 .02 .052 .081 .096 .095 .083 .067 .05 .036 .024 
4 .044 .098 .131 .136 .12 .095 .07 .048 .031 .02 .012 
3 .097 .175 .196 .175 .136 .096 .063 .04 .024 .014 .008 .004 

.213 .291 .263 .196 .131 .082 .048 .027 .015 .008 .004 .002 .001 
.464 .4;2.7 .291 .175 .098 .053 .027 .014 .007 .003 .002 8E-04 4E-04 2E-04 
.464 .213 .097 .044 .02 .009 .004 .002 8E-1l4 3E-04 IE-04 6E-05 3E-05 IE-05 

P" .929 .853 .776 .7 .628 .56 .496 .439 .386 .339 .297 .26 .227 .198 
Forward rate 7.67 8.27 8.81 9.31 9.75 10.16 10.52 10.85 ILl5 11.42 11.67 i 1.89 12.09 12.27 

FIGURE 14.11 Match of term structure. The observed spot fatE' curve IS gIven at the top oj the Hgufe. Below that are listed some <ls5umed v<lluE's 
tor the .ilJ,.'s. Usmg thesE' .ilk'S, the sh~ri rate latt!cE'!5 constructed and the elementary prices <lfe computed by the lOp.vilrd equa.tlons. The elementary 

w pnces are summed column by column to obtam the ZE'rO~Coupon bond pncE'S, and these are converted to lhe tOr\vard rates shown In the bottom 

'" row. An equation-solving routme !s run which adjusts the assumed .ilk'S until the bottom row agrees with the spot rates shown at the top. 

'" 
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the pIicc of a z.ero-coupon bond with maturity at that date Ftom these prices, the spot 
rHtcs can be directly computed The equation-solving routine is run, adjusting the ak's 
until the bottom row matches the assumed Spot rate values given in the second row 

The spreadsheet method takes advantage of the forward equation and is an 
appropriate method when the number ot periods is not large When the number of 
peJiods is really lmge, it is bettet to take advantage of the fact that the spot rate ~I 

depends only on ao. <;2 depends only on 00. 01, and so forth The ar'S can therefore 
be found sequentially by a very rapid plOcess 

The Black-Derman-Toy Model 

An alternative to the model given by (143) is to assume that the values in the short 
rate lattice me of the form 

(144) 

This can be viewed as a Ho-Lee model applied to In 1 kI In this case bk represents the 
volatility of the logatithm ot the short rate from time k I to k 

In the simplest version ot the Black-Derman-Toy model, the values of bk are 
all equal to a value b The ak's arc then Hssigned so that the implied term structure 
matches the observed forwatd rates The computational method is very similar to that 
tor the Ho-Lee model 

Matching Volatilities 

The procedure of this section can be extended to match volatilities5 of the spot rates 
as well as the spot rates themselves To cany out this extended match, both the ak's 
and the bk 's ale varied The volatilities of the spot rates ate first observed by recording 
a history of each of the spot rates FO! example, a history of the rates for 2-year zero­
coupon bonds will provide an estimate of both the 2-year spot rate and the volatility 
of that rate It is likely that the volatilities associated with different matutities will 
differ In fuct, it is common to define a term structure volatility curve as well as a 
term structure late curve 

14.8 IMMUNIZATION 

Our new understanding of intelest rate fluctuations and theil impact on the term stIuc­
ture plovides the basis to! n new, more sophisticated approach to bond portfolio 

5The probabilities used ure risk·nelltrl1l probabilitics, so strictly spcnking, the IJk'S determine risk~neulral 
volatilities However, for small time periods the renl probubililies nre close to one~h<1lf, so real and rh;k~ 
neutral volatilities lIre llppro:dll1ately C(tual 
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immunization, HS discussed in Chaptcis 3, 4, and 5 in tho,<;c ealiict chaptcis uncertainty 
was not ueated explicitly; instead, a porttolio was immunized against parallel shifts in 
the spot tatc cutve Howevet, we saw in Section 142 that the pau.tllel shift assumption 
is not only simplistic, but in IHct inconsistent with a theory that pwcludes arbiuage 
The new nppronch doc~ not have that wc..1kness 

The new approach is based on the binomial Inuke ilumework Suppose that 
we have a series of cHsh obligations to be paid at specific times in the tuture, 
Si:JY, up to yem 11 Suppose also that we have decided on a specific binomial lat­
tice leple~ntmion of the short tate Then we can compute the initial value of the 
obligation stteaiTI using this hmice One way to compute this value is to fiuH find 
the term sttuctute at time zeta (using the forward equations) and then computc the 
present value of the obligation stream, just as we lemned to do in Chaptet 4 Alter­
natively, but equivalently, we can compute the initial value ot the obligation stream 
by applying the risk-neuttal discounting backward process to the obligation suean1 
rhe value a.t the initial node will be the initial (present) value of the slleam To 
honOl the obligation stream, we must have a bond pOi ttolio with this same pi esent 
value 

Attet the fitst peliod, the value of the obligation SUeam can ta.ke on eithel ot two 
possible values, conesponding to the values at the two successol nodes FOI simplicity 
assul11e that no payments must be made ul this time The value ill a pmticular node 
would conespond to the present value tlHlt would be obtained using the new telln 
stIuctute at that node Likewise, OUI bond pottfolio will have new values at the two 
SllcceSSOI nodes Our pOI ttolio is immunized it its value at each of the twO successol 
nodes exactly matches the present value of the obligation at those nodes In othet 
wOlds, to immunize lor one pedoel, we must match the pi esent values at tlu ee plnces­
the initinl node nnd the two successor nodes 

The matching might seem complex, but bccause of the nO-iubitIage plOpelty 01 
the intetest tate sttucture, things fall into place velY nicely To see how this wotks, 
imagine two difterent bonds that ate valued at $1 at timc zelo One of these bonds 
is the single-pedod, Iisk-flee bond that pays I + 100 at each of the two successor 
nodes "T he othel is $1 WOl th of a zelo-coupon bond thut n1atures at yea! 11 This 
second bond will have a lelatively low value next peliod il the spot HUe incleases, 
but it will have a Idatively lmge value il the spot H1te decleases The two bonds 
provide two independent outcomes fOI the next period, and thc.refOle they cun be 
used in combination to replicate the one-peJiod peJiollnance 01 any othel interest 
HUe instIllment In palticulm, they can be combined to leplicme the behaviOi ot the 
obligation 

The solution to the immllnizmion plOblem is now cle<.u Using any two dissimilar 
bonds, we construct a pOI tlolio having the s<.llne values at both 01 the next two states 
By the no-albiuage plOperty, the initial value 01 this poltfolio will be equal to the 
inithtl value of the obligation sueam thut it Icplicutes Furthellnole. the total poltfolio 
consisting of these bonds ~md the oblig,nion stream is immunized in the sense that its 
net value is exactly zelo initially and at the next period, no matter which state occurs 
Ailer one period, the pOitfolio can be lebalanced to obtain il1l1nuniz"tion 101 the next 
peJiod as well By continuing to lebahmce each peJiod (with the result dependent on 
the state that OCCUIS). complete immunization ovel all periods is possible 
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Bond 1 
6595147 

7096636 
71 05353 

Bond 2 109 4342 
10 1 6677 109 497 

Obligation 6759499 
62 80256 67 64404 

FIGURE 14.12 Initial branching of "alues, The iniUiJl and 
next-period values of the Iwo bonds and an obligation are 
shown A combination of the bonds will replicate the abli­
g<llion for one period 

Example 14.8 (Our earlier problem) We consider again the immunization problem 
of Example 4 8 in Chaplet 4 In lhis problem we have tl $1 million obligalion allhe 
end ot 5 yeats We wish to immunize this obligation with two bonds Bond 1 is a 
12-year 6% bond wilh a pI ice of $65 95 Bond 2 is a 5-year 10% bond with a price 
of $10165 The SpOl rale curve is known and is equal 10 lhal of lhe Ho-Lee malching 
ploblem solved in the last section 

To cany out the immunization we use the shOlt late lattice found in Exam­
ple 147\ since this matches the teIm structure given in the emliet example Using this 
lattice we solve backward for the pI ices of each ot the two bonds and of the obligH~ 
tion We need to know the Jesuits only fOI the fiIst two peIiods, which me shown in 
Figure 14 12 (The inilial prices differ slightly flOm lhe prices compuled earlier due 
to lounding errors in the lattice) In each case, the values shown are percentages of 
the face value 

To construct the immunization, we let XI and.\2 be the number ot units of bond I 
and bond 2, lespectively, in the porttolio We then solve the equations 

65 95147x 1 + 101 6677x2 = 628,0256 

7096636" + 109 4342x, = 675,9499 

(145) 

(146) 

(It is not necessary to Ieplicate explicitly state 0 in peIiod 1 This will OCCllI automat­
iCHlIy; otherwise there would be an arbitrage opportunity-which is impossible) The 
result is that 

XI 2,16566 

x, 4,772 38 

(147) 

(148) 

This solution is quite ilnelHitille to the volatility assumed when constructing the short 
rale hlllice NOle lhal lhe Solulion is very close to lhe values of 2,208 17 and 4,744 03 
obtnined using the standard duration matching method presented in Chapter 4 This 
seems to be generally true, and hence despite the deeper elegance of the lattice theOIY, 
the conventional method of duration matching is frequently used in practice with good 
results 

14.9 COLLATERALIZED MORTGAGE OBLIGATIONS* 

Collateralized mortgage obligations (CMO,,) are securities constructed from mort~ 
gnge pools The cash flow derived from a pool is sliced up in various ways, and the 
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individual slices define the pilyout ot a particulm CMO The slicing plOcess can be 
quite intricate, fOl ruthcl than merely Hpportioning the principal or the interest payment 
stream, CMOs arc made up of slices that vary the !'ruction of interest and principal 
over time There arc numerous variations ot the general theme, and new designs arc 
introduced frequently 

T he motivating lorce behind the introduction ot CMOs is the prcpuyment option 
inherent in real estate mortgages Homeowners can pay the balance of their mortgage 
at any time (with some restrictions) nnd therefore terminate the mortgage This pre­
payment feature means thnt the payment stream of a mortgage is not fixed in advance 
because the plincipaJ might be paid early This timing uncertainty is somewhat alle­
viated by the averaging effect deJived hom a pool. but it is not entirely eliminated 
because the prepayment pattern cannot be fully predicted CMOs were devised in order 
to reduce the varillbility 01 the ot cash flow due to prepayments 

CMOs were first issued by the Federal Home Loan Mortgage Corporation (called 
Freddie Mac), which buys individual mortgages and forms pools CMOs issued by 
Freddie Mac me fedeJally insured against default Other agencies and corporations 
now ofter CMOs, but tllOse OIiginated by Freddie Mac make up the majority of the 
market 

The i1lst CMOs were sequential CMOs, and they nre still very common In 
this structure the plincipal payments are assigned in sequence to different chtsses, or 
tranches, of CMO bonds Typicully there are tour to twelve different classes The total 
principal ot the pool is i1rst divided among tlle classes In the early years, mortgage 
payments leceived by the pool are used to pay interest to ali classes in proportion 
to their existing unpaid principal balances, unless they are defined to be Z boods. in 
which case owed interest is not paid but instead is accmed and added to the principal 
balance 01 that class The remaining pOltion 01 the received mortgage payments is paid 
to the first class to reduce its principal balance This continues until the first class is 
tully letired After that, the principal 01 the second ChlSS is reduced until it is retired, 
and so on Once all plevious classes me retired, a Z class bond receives income to 
reduce its (now greater) principal and to pny interest on that principal 

For example, suppose there are three classes A, B, and Z Then, as the filst 
mortgage payments are received, interest is paid to classes A and B, and the remaining 
income is disuibuted to the A class to reduce its principal. The interest that is due to 
class Z is paid as principal to class A, thereby speeding the retirement ot that class 
This foregone interest also augments the principal owed to the Z class When class A 
is retired, the principal payments pass to class 8, and then finally to class Z The 
principal balance patterns are illusuated in Figure 14 13 lor a 20-year mOltgage pool 

The valuation of CMOs depends very much on the assumed prepayment pattern 
A simple approach is to assume n lixed pattern over time There is in fact a benchmark 
pattern adopted by the Public Securities Association (PSA) This pallern assumes a 
prepayment rate 01 2% (on an annual basis) the filst month,.4% the second month, 6% 
the third month, and so fouh until month 30 After that, the plepaymel1t rate is assumed 
to be fixed at 6% annually = ,5% monthly For this pattern, or those similar to it, it is 
easy to project the cash flow pattem 1m any of the CMO classes The cmTesponding 
value of the CMO class call then be obtained by stIaigi1tfOi ward discounting using the 
current spot rate curve No lattice OJ uee calculations ale required 
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FIGURE 14013 Principal balance patterns of 
a three-clas5 sequential CMn Class A is paid 
principal before the other classes. When class A 
is retired, then dass G is paid Class Z does not 
receive interest until all previous classes are re~ 
tired Instead its interesl is accrued, augmenting 

20 the principal balance 

20 

20 

Years 

In tlctuality, plcpayments depend on prevailing interest rates Homeowners are 
more likely to 1 efinancc their loans (which entails prepayment of the existing loan) 
when interest rateS are relatively low Using such a model, a CMO class can be valued 
using the lattice and tree techniques that We have studied 

Exnmple 14.9 (Quick, buy this CMO) Mr lohnathan Quick. the city lIeasurer ot 
White Falls, is young, we11 educated, and wants to modernize the financial affairs 
of the city A major New York bank has urged him to purchase, for White Falls' 
account. a portion of class A 01 a CMO originated by Freddie Mac This CMO has 
four classes A. B. C. and Z. each entitled to one-follIth of the principal ot a pool 
of 30-year mortgages canying an interest rate of 12% He has been told that these 
mortgages ate guaranteed by the federal government The cunent short rate is 10% 
and the price that he is quoted 101 the class A bonds is 10500 

Mr Quick decides to cany out a simple prototype valuation of this CMO To do 
this he lirst makes a lew simple calculations The yearly payment on a 3D-year 12% 
mortgage is found (see Ch<lpter 3) to be 1241 per hundred The interest thal will be 
paid to each of the classes Band C while A is not yet retired is 25 x 12% = 3 

He then constructs a short rate lattice covering 4 years, as shown nt the top 
of FigUIe 1414 (The lattice starts at the top left node TIle succeSSor nodes are the 
two nodes in the next lOW) This lattice has lisk-neutral probabilities of 5 Next 
he assigns estimated prepayment rates He assigns a 5% annual rate whenever the 
shOit rate goes down, and a 2% rate when the short rate goes up He then puts the 
remaining pool size haction on the short rate lattice (shown as a separate anay in 
Figure 1414) 
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FIGURE 1414 Quicl(IS CMO villuation. The top of the figure shows the short rate lattice Next to 
that is the lattice showing the corresponding pool size fraction These lattices start ilt the top and 
move downward A down move is a move directly downward, and an up move is a move downward 
to the right Below these is the tree of principal due class A, and finally the corresponding tree of 
values for class A 

Quick must keep track 01 the principal owed to class A, Unfortunately, this 
principal is path dependent in the original lattice So he decides that he must use a 
binomial tree rather than a lattice He establishes the initial principal to be 25, since 
class A is entitled to 25% of the total He arranges his tree in the downward flowing 
manner, as shown in Figure 14 14 As an example calculation, the final value in the 
tree is 

J3 725 x I 12 1241 x 960 + 2 x 3 00 

-( 960 941)[13 725 + 50 + 25(1 12)'] = 7551 

In words, the new principal is the old principnl times I plus the intercfit rate on the 
loan (12%), minus the total payment made by the remaining pool, plus the interest 
payments that must go to classes Band C (but not Z), minus the new prepayment 
amounts (which is the change in pool size times the total remaining principal) The 
tree is terminated after 3 years Mr Quick assumes that the remaining small amounts 
01 principal will be paid to class A the following year 

To find the value 01 the class A bond, he uses a tree to callY Ollt backward 
risk-neutral valuation A year 3 node value ifi equal to the year 3 cash flow plus a 
discounted version oj next year's principal and interest The value at an earlier node is 
equal to the cash flow at that node plus the discounted expected value of the successor 
node values For example, the final node value is 

7551 x I 12/1 145 + 1241 x 960 2 x 3 00 

+( 960 - .941)[13 725 + 50 + 25(1 12)'J = 15207 
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The final node in the previous row is 

1241 x 980 - 2 x 300 + (980 960)[19526 + 50 + 25(1 12)'] 

+ 5(15.351 + 15 207)/1 130 = 2L665 

The overall value is 25758, which when normalized to a base of 100 is 4 x 
25758 = 103.032 Mr Quick concludes that the offeIed plice of 10500 may be a bit 
high. 

He then Tuns his spreadsheet program again after adding I percentage point to 
each ot the short lates and finds the value of 101 112 and there/Ole concludes that an 
effective modified duration is D,\/ = 100(103 032- 101 112)/103 032 = I 863 years 
This is in accord with the obsel vation that the class A bond is retired VeIY quickly 

MI Quick decides to investigate other classes, which he believes may offcr 
substantially gicatci financial return and whose analyses are SUie to otfer substantially 
greater intellectual occupation, 

The preceding example shows that the evaluation of CMOs can be quite chal­
lenging If one attempted to carry out the tree methodology of that example, but on 
a monthly basis and for evaluation of the other classes, very large trees would be 
required The main difficulty, of course, is that principal amounts are path dependent 
It is for this leason that, in practice, CMO evaluation techniques are usually based on 
simulation (Monte Cmlo) methods However, it should also be clear from the example 
that the conceptual principles outlined in the past few chapters are appropriate for this 
mea of finance 

14.10 MODElS OF INTEREST RATE DYNAMICS' 

In previous sections the short rate was assigned directly by specifying it at every time 
and state Although this is a good and practical method, an alternative is to specify 
the short rate as a process defined by an Ito equation, similar to the processes used to 
define stock behavior This allows us to wOlk in continuous time 

In this approach we specify that the (instantaneous) short rate 1 (I) satisfies an 
equation of the Ito type, 

dl = 1"(1, I)dr + a(l, I)dz (149) 

where z(n is a standardized Wiener process in the risk-neutral world Given an initial 
condition 1 (0), the equation defines a stochastic process dl) 

Many such models have been proposed as being good approximations to actual 
intclcst rate processes We list n few of the best-known models: 

1. Rendleman and Bartter model 

dl =:: nl1 dt + a1 dz 

This model copies the standard geOl11ctlic BlOwnian motion model used for stock 
dynamics It leads to lognormal distlibutions of future short lutes It is now, how­
ever, rmely advocated as a realistic model ot the short rate process 
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2. Ho--Lee model 

dl = 0 (t) dl + a di' 

This is the continuous-time limit of the Ho-Lee model The function 0(1) is cho­
sen so that the resulting forward r;1te curve matches the current term structure A 
potential difficulty widl the model is that I (I) may be negative for some I 

3. B1ack-Derman-Toy model 

This is virtually identical to the Ho-Lee model, except that the underlying variabJe 
is In I rather than 1 Using Ito's lemma, it can be transtormed to the equivalent 
form 

4. Vasicek model 

dl = a (b - I ) dl + a dz 

The model has the feature of mean reversion in that it tends to be pulled to the 
value b Again, it is possible fm I (I) to be negative, but this is less likely than 
in other models because of the mean-reversion effect Indeed, if there were no 
stochastic term (that is, if a = 0), then 1 would decrease if it were above b and it 
would increase if it were below b This feature of mean reversion is considered to 
be quite important by many researchers and practitioners since it is felt that interest 
lates have a /la/IlIa/ home (of about 6%) and that if rates differ widely from this 
home value, there is a strong tendency to move back to it. 

S. Cox, Ingersoll, and Ross model 

In this model not only does the drift have mean reversion, but the stochastic term 
is multiplied by Jr, implying that the vruiance of the process increases as the rate 
1 itself increases 

6. Hull and White model 

dl = [0(1) (/Ijdl +adz 

This model is essentially the Ho-Lee model with a mean reversion term appended 

7. Black and Karasinsld model 

d In I = (0 a In I) dl + a di 

This is the Black-Derman-Toy model with mean reversion 
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All of these models are reterIed to as single-factor models because they each 
depend on a single Wiener process z There arc other models that are multifactor, 
which depend on two or more underlying Wiener processes 

14.11 CONTINUOUS-TIME SOLUTIONS' 

The three general methods of solution in disclete time each have a continuous-time 
analytic counterpart: (l) the method of backward recursion becomes a generalized 
Black-Scholes partial differential equation, (2) the method of discounted risk-neutral 
evuluation becomes evaluation of an integral, and (3) the tor ward recursion method 
becomes a forward partial differential equation that is dual to the Black-Scholes equa­
tion We shall give some details on the first two of these methods 

The Backward Equation 

The backward equation is perhaps the most useful Suppose the short rate is governed 
by the Ito equation (149) in a risk-neutral world And suppose} (I, I) is a price 
function for an interest rate security with no payments except at the terminal time 
Then it can be shown that I is governed by the generalized Black-Scholes equation 

al a} la 2} , at + a;JL(I, I) + 2: 01' a(J, 1)- 11(1, I) = 0 (14 10) 

The boundary condition is defined at 1 = T and depends on the final poyoff structure 
This equation is analogous to backward recursion 

For example, suppose we denote by P(/, I, T) the price at time 1 at a zero­
coupon bond maturing at time T when the current short rute (at t) is I We define the 
function I (J, I) = P(/, I, T), and the appropriate boundary condition is / (I, T) = I 

In some cases the backward equation (14 10) can be solved analytically, and this 
leads to analytic formulas for valuing interest rate derivative securities, In practice, 
however, numerical solutions are usually required 

Example 14,10 (Constant interest rate) The simplest case is when the short rute 
is governed by dl = 0, implying U1Ut the interest IUte is constant To find the price 
P(1, I, T) 01 a zero-coupon bond, we set / (1, I) = P(/, I, T) However, since I is 
constant, we may suppress the dependence on I and write f (n The backward equation 
reduces to 

This can be written as 

d} (I) 
-- -1/(1) =0 

dl 

d}(1) = I dl 
t(1) 
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01, equivalently, as 

d In j (I) = I dl 

This has solution 

Inf(1) (+11 

where c is a constant The boundary condition gives f(T) = I 01, equivalently, 
In f U) 0 Hence we put c = -I r The final solution is therefore 

P(t,1) = e-dT -') 

which agrees with what we know about bond values when the interest rate is COnstant 

Example 14.11 (A Ho--Lee solution) As a somewhat more complex example of an 
analytic solution consider the special case where the short rate is governed by 

dr = a dl + a d£ 

We will try to find the zero-coupon bond price P(/,I, T) We set i(/, I) = P(/,I, T) 
and solve (14 10) Motivated by the solution to the previous example, we try a solution 
of the form 

f(/,I) = A(t, T)e- dT - n 

Substituting this in the Black-Scholes equation, we find 

dA(t, T) _ (J _ I) A(I, T)a + ~(J - 1)2a' A(t, T) = 0 
ili -

where the common factor e-r(T-tl has been canceled from every term This leads to 
the equation 

din A(t, 1) = [(J - I)a - ~(J - I)'a'] dl 

Accounting for the boundary condition InAU, T) =0, we find 

In A(I, T) = -~(T - 1)2a + t,(T I)la' 

We thus have an explicit formula for P(/, r, I) 

Risk-Neutral Pricing Formula 

The discounted risk-neutral pricing formula also works in the continuous-time case, 
and it can be used to define the value of any interest rate derivative security Suppose 
the security pays a dividend of Y (1, t) at t, and suppose that the short rate is govemed 
by the risk-neutral process 

dl =J1(i,l)dl+a(i,l)dz. 

T hen the value of the security at time zero is 

v(O) = E (I T 
exp [[ -I (.I)d.,] Y(/,l)dlj (14 II) 
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where E denotes expectation with respect to the risk-neutIal pIObability defined by the 
process 2. Of cOlilse, this formula can rarely be evaluated directly It does, however, 
provide a basis tor simulation 

14.12 SUMMARY 

Interest rate securities are extlemely impOitant because almost every investment entails 
interest rate risk Interest rate derivatives, such as bond options, swaps, adjustable-rate 
mortgages, and mortgage-backed securities, can help control that risk Analysis of 
interest late securities requires a model of term structure variations Simple models 
that merely add randomness to a term structure curve are not suitable because they 
may inadvcl tently allow arbitrage opportunities 

An elegant and workable approach is to define a short late lattice spanning 
several time periods The rate listed at each node is the interest rate that would apply 
at that node fOi loan:;; of one period in length Two set:;; oj probabilities, are assigned to 
the arcs of the lattice The first set detilles the leal probabilities, giving the likelihoods 
of various transitions The second :;;et defines the risk-neutral probabilities used for 
evaluation Indeed, only the second set is needed 1"01 pricing interest rate derivatives 

Once the short rate lattice togethel with the ri:;;k-neutral probabilities is con­
structed, a secUlity such as a bond can be valued by discounted risk-neutral pi icing, 
working backward through the lattice The short rate at a node defines the discount 
tacto! to be used os the process passes through that node 

Seemingly complex secUi ities, such as option:;; on bonds, options on bond fu­
ture:;;, and adjustable-rate mortgages, can be evaluated with the discounted Iisk-neutral 
approach In some cases the quantities necessary to determine the cash flow at a node 
are path dependent, in the sen:;;e that the:;;e quantities depend on the path to a node as 
well as on the node itselt In such cases a tlee, rather than a lattice, can be used to 
accurately record the necessary intormation to! the discounted risk-neutral valuation 
process However, this can lead to a large increase in the numbel of nodes There is 
a special method tel med leveling that transtorms an apparently path dependent situ­
ation into one that is not path dependent This method is applicable when the cash 
flow at a node depends on the node itself and is a linear tunction of an underlying 
path-dependent variable Adjustable-rate loans can be evaluated with this method 

An entire term structure can be extracted trom the shOH rate lattice One way to 
do this is to value zero-coupon bonds ot all po:;;sible maturities This method requires 
numerous separate valuation processes A more etficient way to find the term structure 
is to construct a lattice oj elementary prices This can be done with a single forward 
sweep through the original short late lattice 

The short rate lattice must be constructed caIefully in order to give usetul results 
One common strategy is to construct the lattice so that the tel m structure that it implies 
matches the cUlTent tellTI structtlle Often some volatilities me matched as well Two 
of the simplest methods are the Ho-Lee method and the Black-Derman-T oy method 

The short rate lattice also provides a new approach to bond portfolio immu­
nization In this applOach, the portfolio is immunized against initial up and down 
movements in the short rate 
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All important and challenging application of the methodology of interest rate 
derivative valuation is collateralized mortgage obligations (CMOs) These instruments 
CUll have very complex :'itructures, which require careful analysis 1'01 plOper evaluation 
Usually some aspect oj their mathematical representation is path dependent, and hence 
trees or Monte Cmio methods must be employed 

Continuous-time models of the term SO uetUie can be constructed by defining 
a ShOlt lUte Ito plOcess This plOcess is driven by a specified risk-neutral standard­
ized Wiener process Some models 01 this type lead to analytic expressions for their 
associated term structure 

L (A calhlble bondm) Ct1n~UUcl H !'ihOlt rate l(fuke fOI pCliods (yem!'!) 0 through 9 with an 
initial nile of 6% und with sliccessive lates detelrnined by n multiplicative luctor oj eithel 

I 2 or d 9 Assign the risk-neutral probabililies to be 5 

(0) Using lhis IHUice, find the valuc oj a 10-yem 6% bond 
(b) Suppose this bond can bc called by the issuing parly £It nny time aftel 5 yems (When 

lhe bond is t:<lJled, the fl.lce value plu~ the currently due coupon are paid <ll thut time 
und the bond is caIlceled ) Wlwt is lhe fail valuc of this bond? 

2. (GcnL"lal adjustHble fOiOlull.l) Let "AI be the value oj all Lldjuslable-rate Joan initiLued at 
pcliod k and sl<lte ~ with initiaJ plincipHI of 100 The 10Hn is to be fully p<lid .It period 11 

The inlercsl lute chmged eHcll peliod is the sholt late oj lhal period plus a premium p 

The Juan puyment Jor a period is the aOlClUnl tfrat would be required to nOlorlize the loan 
tit lhe charged interesllate equally over the rcnl<linillg periods Write an explicil backward 
recursion fOinlulu 101 "AI as a function of k Lind \ 

3. (Bond lutures option) Explain how you would find the vulue of a bond fUlures option 

4. (AcUustable-late CAP(il) Suppose tlwt the adjustable-rate auto loan of Example 145 is 
nlOdilled by lhe provisioll of a CAP tlWl gULIIHntees the borrower lhal the inteleSl lUte lo 
be applied will never excced II % What is the value or this lonn to the bank"? 

S. (FOIward construction (11) Use the forward equation to find tht.! spot lUte CUlve for the 
lattice constlllcted in Exercise I 

6. (Ho-Lee volatility) Show that rOI the Ho-Lee ll10del the (risk-neuual) standard deviation 
of the one-period lUte is exactly b,j2 

7. (relill ll1atdHI) Usc the BIIll:k-Delllllln-Ioy model with b 
suucture of Example 14 7 

o I to match the term 

8. (Swaps) Considel <I pl<lin vnnilln interest rate swap whele Palty A aglees t(1 make six 
yearly p,lymcnts to party B of a fixed lUte of interest all a notional principal of $10 million 
and in exclwnge party B will make six yeally payments to party A nt the fioating sholt 
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rate on the same notional principal Assume thot the short rute process is described by thl! 
Ilitlice of Example 14 I 

((1) Set up ti lattice that gives the value or the noating rate cash flow stream at every short 
rate node, and thereby determine the initial value of this stream 

(b) Whllt fixed rale of interest would equalize both sides of the swap? (Compare with 
Exercise II. Chapter 10) 

9. (Swaption pricing) A swaption is an option to enter a swap arrangement in thl! future 
Suppose that company B has a debt of SIO million financed over 6 years at u fixed rate 
or interest of 864% Company A orfers to sell company B a swuption to swap the fixed 
rate obligation rOf u flouting rate obligation, with payments equal to the shan rate, with 
the same principal and the same termination date The swaption can be exercised at the 
beginning of year 2 Oust after the payment ror the previous year and when the shon rate for 
the coming year is known) Assuming that the short rme process is thot or Example 14 I, 
how much is this swaption worth? 

10. (Change or variable 0) Suppose a sholt rate process in a risk~neutrul world is defined by 

dl' /L(I', I) dl + cr(r, I) d, 

where :(1) is n. standardized Wiener process A standard way to approximate this equation 
at a point (r, t) over a sma1i interval 6.1 is by the binomial tree shown in FigUle 1415 In 
this approximation, 

,+ r+cr(r,t)5t 

,- = 1 -cr(r,t)5t 

I Il(r,t)5t 
q = :I + 2cr(l, t) 

(a) Show that in general this docs not produce a recombining lattice That is, show that 
an up move followed by a down move is not the same as a down move followed by 
an up move 

(b) Consider the change of variable 

W(I,I) l' 
II 

Use Ito's lemma to write the process satisfied by w(l,r), and show thot its volatility 
term is wnstallt Conclude that the binomial approximation for W(I, t) is recombining 

,+ FIGURE 1415 Approximation method A shon rate process 
can be approximated by a binomial lattice if an appropriate 
ci1<Hlge of variable is used 
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(c) Find the uppropliute chunge of vUliubJe fOI the geometlic process 

dl J-LldI+md~ 

11. (Ho-Lce (elm structure) Reier to Example 14 J 1 Let F (I) be the forward lute from 0 to 
I By the basic dennition of (he torwurd rate, we have the identity 

e-F(l11 P(r, 0, 1) 

Find an explicit formula for F (1) 

12. (Continuou,,> zeroo) Gavin wants to dig deep into piking theolY, so he decides to wOlk 
out an application of Eq (14 J 1) He ~mggcsts to himself thnt u simple model of interest 
rates in the lisk~neutral wOlJd might be 

dr IT d: 
where:: is standard Brownian motion, and where 1 (0) 1(1 He is working out n fOlmuJu 
Jot the value of a zero-coupon bond that pays $1 at time T, bnsed on Equation (14 1 J), 

without using (he Black-Scholes equation Can you? ComplJre with Example 14 II 

For genelal textbook presentations of interest wte delivatives see [1, 2] The forward equation 
was presented in Jamshidian [1] The Ho-Lee model wm; otiginally developed in [4] without 
the benefit of the short rate lattice concept The shOlt rale Jattice was used in the presentation 
of the Black-Demmn-Toy model in IS} A more complex interest rate process, not describable 
as J:l single~factor modeJ, is that ot I-leath, Jarrow, and Morton [6] For an outline of CMOs 
.lnd mortgage~backed securities, see [7} For conti-nuous~time models, see [8-11] Exercise 10 
is based on [14] 
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OPTIMAL PORTFOLIO 
GROWTH 

C
onclusions about multiperiod investment situations are not mere variations of 
single-period conclusions-rather they often tCl'C15e those earlic\ conclusions 
This makes the subject exciting, both intellectually and in practice Once the 

subtleties ot muJtiperiod investment are understood, the reward in tcnTIS of enhanced 
investment performance can be substantial 

Fortunately the concepts and methods of analysis tor multipedod situations build 
on those of earlier chapters Internal rate of return, present value, the comparison 
principle, portfolio design. and lattice and tree valuation all have natural extensions 
to general situations But conclusions such as volatility is "bad" or diversification is 
"good" are no longer universal truths The stmy is much morc interesting 

This chapter begins the story by extending the elementary concept of internal 
rate of return, showing how to design portfolios that have maximal growth The next 
chapteI extends present value analysis 

15.1 THE INVESTMENT WHEEL 

Undelstanding pOll/olio growth requires that one adopt a long-telm viewpoint To 
highlight the importance ot such a viewpoint, consider the investment wheel shown 
in Figure 15 I You ale able to place a bet on any of the thlee sectors of the wheel 
In fact, you may invest different amounts on each ot the sectors independently The 
numbers in the sectOls denote the winnings for that sector aftel the wheet is spun FOl 
example, if the wheel stops with the pointer at the top sectm after a spin, you will 
receive $3 for every $1 you invested on that sectol (which means a net profit of $2) 

The top sectm is very athactive, paying 3 to 1, even though the area of that 
sector is a fuJI one-half or the entile wheel A $1 bet (or investment) will return 
either $0 or $3, each with a probability of one-hall The expected gain is therefore 
t x $3 + ! x $0 $1 $ 50 This is quite favorable 

417 
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F1GURE 15.1 The investment wheeL The numbers shown are the 
payoffs for a one-unil investment on thilt sector The wheel is favor· 
able and can be expected Jo cause capital (0 grow if investments are 
properly managed 

The lower left sector, on the other hand, has unfavOlable odds, since it pays only 
2 to I for an area that is only one-third 01 the tolal A bit better is the lower right 
segment. which pays even odds, since it pays 6 to I and is one-sixth 01 the area 

Suppose now that you start with $100 and have the opportunity to bet part or 
all of your money lepeatedly, reinvesting your winnings on successive spins ot the 
wheel Because of the favorable top segment, you can make your capital grow over the 
long run through judicious investment The question is, just what constitutes judicious 
investment? 

Based on the odds we calculated, it seems appropriate to concentrate your at­
tention (and your capital) on the lOP sector One stralegy would be to invest all of 
your money on that sector Indeed, this strategy is the one that produces the highest 
single-period expected return. An investment of $100 is expected to gain an additional 
$50 on the very lirst spin The problem is that you go broke half of the time and 
cannot continue with other spins Even if you win and continue with this strategy, you 
will again face the risk of lUin at the next spin MOl)l people find this stIategy too 
risky when given the opportunity to play repeatedly 

A second, mOle conservative, strategy would be to invest. say, one-half of your 
money on the top sector each spin, holding back the other hall That way if an 
unfavOlable outcome DeeUlS, you are not out of the game entirely J But it is not clear 
that this is the best that can be done 

Analysis of the Wheel 

To begin a systematic search tor a good strategy, let tiS limit QUI investigation to 
fixed~proportions strategies These are strategies that prescribe plOportions to each 
sector of the wheel, these proportions being used to apportion current wealth among 
the sectors as bets at each spin let tIS numbel the sectors I, 2, and .3, corresponding to 
top, left, and right, 1 espectively A genel al fixed-proportions stlategy for the wheel is 
then described by a set of three numbers (a J, a2, al), whele each at 2: 0, iI, 2, 3, 
and whele aJ +a2+aj :s 1 The at's COl respond to the PlOpOltions bet on the different 

)Tbis wbeel investment problem actunl!y makes a good g,ln)e lor 1\ group, using play mo\)ey or keeping 
records Actual plllY forces people to Inink exactly how they wisb to invest The main point Js thut investmeln 
for the lo))g run is not the saine as investment for a '>inglc '>pin 
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sectors The remaining 1 -al -a2 -aJ is held in reserve, As an example, the strategy 
mentioned carlier of investing one-half ot your capital in the top segment each time 
is (1, 0, 0) 

Each fixed-proportions strategy leads to a serres of multiplicative factors that 
govern the growth of capital For example, suppose you bet $100 using the (t, 0, 0) 
strategy, For one spin there Ure two possibilities: (l) with probability one-hall you 
obtain a favorable outcome and end up with $50 + 3 x $50 $200; and (2) with 
probability one-half you obtain an unfavorable outcome and end up with just $50 
In general, with this strategy yoU! money will be eithel doubled or halved at each 
spin, each possibility occurring with probability one-half The multiplicative iactors 
for one spin are thus 2 and t each with plObability one-half After a long series of 
investments following this st;ategy, your initial $100 will be multiplied by an overall 
multiple that might be of the form <1')(~)(2)d)(2)(2) (2)<*), with about an equul 

number of 2's and ~ts Hence the o~er;1I factor is likely to be about I This means 
that during the course of many spins. yom capital will tend to fluctuate up and down, 
but is unlikely to grow appreciably 

An alternative strategy is to bet one-fourth of your money on the top sector, 
corresponding to the strategy (1, 0, 0) It that top sec to! is the outcome of a spin, your 

money will be multiplied by I 1 + ~ ~ II' that sector is not the outcome, your 

money will be multiplied by I ~ ~ On avetage, two spins provides a factOl of 

(~)(~) *' Hence each single spin provides, on average, a facto! of ft 106066 
With this strategy your money will grow, on average, by over 6% each tum (Exetcise I 
shows that this sttategy is, in a limited sense, optimal) 

15.2 THE LOG UTILITY APPROACH TO GROWTH 

The investment wheel is repJesentative 01 a Imge and important class 01 investment 
situations where a particular strategy leads to a random growth plOcess This e1liSS 

includes investment in common stocks, as shown latel in this section A general 
formulation is that if Xk lepresents capital aftel the kth trial, then 

(15 I) 

for k 1,2, In this equation Rk is a tandom retull1 variable We assume that 
it is a stationary independent process, where all R,s have identical probability 
distributions and are mutually independent 

The investment wheel with the strategy of investing one-half ot one's capital on 
the top segment conesponds to this model with Rk'S that take on either ot the two 
values 2 a or 50, each with probability of one-half The R, variables all have Ibe 
same probability density and are independent of one another (that is, other outcomes 
do not influence the present outcome) 

In the general capital growth process, (he capital at the end of 11 trials is 
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Taking the logarithm of both sides gives 

" 
InX" InXo+ LlnRk 

A little more manipulation produces 

(
X )1/" 

I " n -
Xo 

k=J 

I " 
L lnR, 

11 k=] 

(152) 

Consider the right-hand side of (15 2) as II -+ 00 The variables In Rk are each random 
variables that are independent and have identical probability distributions The law of 
large numbers2 therefore states that 

I " 
Lin Rk -+ E(ln RJl 

11 k=1 

(We can use E In R J in this expression since the expected value is the same for all k,) 
We define III = E(ln R I) Then we have from (15 2), 

In ( ~:) II" -+ III 

This is tl,e fundamental result that we now highlight: 

Logarithmic performance 
geneIGled bv the p'0ce'H 

i~ the Ill1ld011l sequence oj capital value} 

thell 

(
X")I/" In - --+ III 
XII 

(15 3) 

a 5" 11 --+ co, whet e 

(154) 

Taking the antilogarithm ot both sides of (15 3) gives 

G:t -+e'" 

Then, formally (although it is not quite legitimate to do so), we raise both sides to the 
power of 11, and we find 

In other words, for large 11 the capital grows (roughly) exponentially with 11 at a rate III 

2The law of large numbers stutes thut if Yl. Yl. (Ire independent random vnoub]cs with identical distri~ 
butions then (1/11) L~=l Yk -~ E(YI,) A simple example is thllt of flipping a coin and ussigning YI. +1 
if heuds occurs on the kth lrial and -I if tulls occurs The averuge 01 the numbers tends to zero 
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The foregoing analysis reveals the importance of the number 111 defined by (154) 
It governs the rate of glOwth of the investment ovel a long period of lcpeated trials It 
SCems appropriate therelole to select the strategy that leads to the largest value of III 

Log Utility Form 

Note that if we add the constant In Xo to (154) we find 

III + In X" EOn Rtl + In Xo E(ln RIXo) E(ln X tl 

Hence it we define the special utility function U(X) In X, the problem ot maxi­
mizing the growth rate III is equivalent to maximizing the expected utility E[U(X I)) 
and using this SaIne strategy in evcIY trial In other words, by using the logarithm 
as a utility function, We can treat the plOblem as if it were a single-period problem 
We find the optimal glOwth stwtegy by finding the best thing to do on the first tIial, 
using the expected logarithm as OUI criterion This single-step view guarantees the 
maximum growth rate in the long run 

Examples 

Many important and interesting situations fit the framework presented in this section 

Example 15,1 (The Kelly mle of betting) Suppo:;e that you have the opportunity 
to invest in a PlOSpcct that will either double your investment or return nothing The 
probability of the [avOiable outcome is p Suppose that you have an initial capital of 
Xo and you can repeat this investment many times How much should you invest each 
time? 

This situation closely lesembles the game ot blackjdck, played by a player who 
mentally keeps track ot the cards played By adjusting the playing strategy to account 
for the composition of the remaining deck, such a player may have, on average, about 
a 50,15% chance ot winning a hand; that is, p 5075 The player must decide how 
much to bet in such a situation 

Let el be the proportion ot capital invested (or bet) during one play The player 
wishes to find the best value ot el It the playel wins, his or hel capital will grow by 
the factor I el + 2el I + el If he OJ she loses, the tactOJ is I el Hence to find 
the log-optimal value of a, We maximize 

/1/ pln(l +el)+(1 p)ln(l el) 

Setting the derivative with respect to a equal to zero, we have 

This gives the equation 

-p­
I+el 

--p 
el 

o 

p(l el) (I p)(I + el) 0 
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or Cl 2p _1 3 Hence in the blackjack example, a player should bet I 5% of the total 
capital on each hand when p 5075, Professional blackjack players actually do use 
this IUle or a modification of it 

Blackjack may seem to offer an easy living! The growth rate of the Kelly rule 
strategy is 

III pln2p+O p)ln(2-2p) plnp+(I-p)ln(i-p)+ln2 

For the case where p 5075, this gives em ;:e I 0001125, which is a 01125% gain 
To double your capital you must expect to play 72/01125 6,440 hands (remember 
the 72 rule of Chapter 2) This requires about 80 houn; of play, which realistically 
requiJes about 1 month of activity But there are many obstacles in the path of such 
a profession 

Example 15,2 (Volatility pumping) Suppose there are two assets available tor in­
vestment, One is a stock that in each peliod eithel doubles or reduces by one-hulf, 
each with a probability ot 50% The other just retains value-like putting money 
under the mattress Neithel of these investments is very exciting An investment left 
in the stock will have a value that fluctuates a lot but has no overall growth late 
The othel clearly has no glOwth I ate Nevel theless, by using these two investments in 
combination, growth can be achieved 

To see how, suppose that we invest one-half of our capital in each asset each 
period Thus we rebalance at the beginning ot each period by being sure that one-half 
of our capital is in each asset Under a favorable perfonnance, our capital will grow 
by the factor ~ + ~ x 2 { + L Under an unfavorable performance, the factor will 

be ! + ~ x ~ - t +- ± Hen-ce the expected growth rate of this stlategy is 

III tln(t+!l+4In(4+t);:e 059 

Therefore em = I 0607, and the gain on the portfolio is about 60/0 per period 
Figure 15 2 shows one simulation run ot the performance of the 50-50 mix of 

the two assets versus the stock itselL The mixture portfolio outperforms the stock 
The gain is achieved by using the volatility of the stock in a pumping action 

If the stock goes up in a certain period, some of the proceeds are put aside If on the 
other hand the stock goes down, additionul capital is invested in it Capital is pumped 
back and forth between the two assets in Older to achieve glOwth greater than can be 
achieved by either alone, 

Note also that this strategy automatically, on average, follows the dictum of "buy 
low and sell high" by the process of rebalancing In essence, that is why it produces 
growth 

Example 15,3 (Pumping two stOellS) Let us modify Example 15 2 by assuming that 
both assets have the property of either doubling or halving in value each period with 
probability one-half Each asset moves independently of the other. Again we invest 

3The answer impllcilly llssumes p > 5 If p:: 5. tile optimal 0' is 0' = 0 
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FIGURE 15,2 Mixture of two assets. 
Two mediocre slacks Ci:\n be combined 
10 give ellhanced growlh 

one-half of our capital in each asset, rebalancing at each period We find immediately 
that 

111 t In 2 + 11n ~ + ~ In 1 ! In ~ 11 16 

Hence em If 118, which corresponds to an 118% growth rale each period 

The pumping action is greatly enhanced over that ot the previous example Pumping 
between two volatile assets leads to Imge glOwth rates 

Example 15.4 (Large stock portfolios) Suppose that there arc II stocks that have 
returns R

" 
iI, 2, 3, ,n, for anyone period (ot, say, a week) These returns are 

random, but they have the same probability distribution each period The returns 01 
difteJent stocks may be conelated, but the returns of different periods are not cone­
luted We form a portfolio of these stocks by assigning weights WJ, Wl, iLl], , W II 

with Wi 2: 0 for each i and L:'=J Wi 1 The ovelall return on the pOltfolio is 
R L;'=J WiRi_ To obtain the maximum possible glOwth 01 this porUolio, we se­
lect the weights so as to maximize III E(ln R) It we do thiS, the portfolio can be 
expected to grow roughly, on average, according to emk , whelc k is the number ot 
periods 

We shall study this example in greater detrJiI later in this chapler 

Example 15.5 (The investment wheel) Let us comptlte the lull optimlll strategy for 
the investment wheel allowing for thc possibility of investing on all sectors For rJ 
strategy" ("I, "2, "') we find the results as follows: 

L If I occurs, R 1+2"1 "2 '" 

.j Recall that I 2 3 correspond to the top, left. and right with payoffs 3 ') '1I1d 6 respectively 
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2. If 2 occurs, R I -" 1 + "2 "3 

3. If 3 occurs, R "I "2 + 5"3 

To maximize the expected logarithm of this relurn stJucture, we maximize 

IIJ tln(I+2", "2 "3)+~ln(1 "1+"2 "3)+~ln(l "I "2+ 5"3) 

If we assume that the solution has "i > 0 tor each i I, 2, 3, we can find the 
solution by setting the derivatives with respect to each eli equal to zelQ This gives 
the equations 

o 

o 

3(1 "I +"2 "3) + 6(1 -"I "2 +5",) 
o. 

General equations of this form arc difficull to solve analytically However, in this 
case a solution is elJ t. ct2 *. and ct) ~,which can be checked easily (FOI a 
generalization of this problem and its solution see Exelcise 4) This means that one 
should invest in every sector of the wheel, and the proportions bet are equal to the 
probabilities of occurrence 

Substitution ot this optimal strategy in the 01 iginal objective of expected loga­
rithm gives 

We then find that 

em"" I 06991 

Hence the optimal solution achieves a growth rate of about 7%, which compares with 
the approximately 6% achieved by the strategy of investing one-fourth on the top 
segment and nothing on the other two 

The results of one simulation of 50 trials of the investment wheel rue shown 
in Figure IS 3 The figure shows the results tor three strategies: the optimal strategy, 
the simplified su ategy ot belling one-fourth on the top segment, and the poor strategy 
of investing one-half on the top segment Also shown is a curve representing a 7% 
growth rate The simulation has a great deal of volatility, and other runs may look 
quite different from this one The long-tenn etfect shows up when there are hundreds 
ot trials, as thele would be, for example, in the yearly result of daily stock market 
investments 

Notice that the optimal strategy requires an investment on the unfavorable sec­
tor 2, which pays only 2 to I This investment selves as a hedge for the other sectors-it 
wins precisely when the others do not 5 It is like fire insurance on your home, paying 
when other things go wrong, 

'iThe equation:. delining the opJimnl solution arc :lctuully deg~ner:lle for this problcm There is n wllole 
fumily of optimal solutions. nil gfving thc S:lme value for III An .llternate solution is 11'1 = fg. 11'2 = O. 
11') = fR In this soluJion nothing is invested on the unf,l'Iomble sector 
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FIGURE 153 Wheel simulation, Under the optimal strat­
egy, the wheel provides J growth rate of nemly 7'X, 
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15.3 PROPERTIES OF THE LOG-OPTIMAL STRATEGY* 

Although the log-optimal strategy maximizes lhe expected gTOwth rate, the short run 
growth rate may differ We can, howevel, make some definite statemenls about the 
log-oPlimal stJategy that are quite impressive 

Suppose two people stolt with the same initial capital level Xo Suppose further 
that peTson A inveSls using the log-optimal strategy and person B uses some othcl 
strategy (with a lower value of Ill) Denote the resulting capital streams by xt and 
Xp, respectively, for the periods k = 1,2, Then it can be shown that 

E(xPlxt):s I, for all k 

This says thal the ratio of the capital associated with altemalive slrategy B Lo the 
capital associated with the optimal strategy A is expected to be less than I at every 
stage This propelty mgues in faval of using the 10g-opUmal slralegy, and many people 
are indeed persuaded that this is the stflttcgy they should adopt 

15.4 ALTERNATIVE APPROACHES* 

The log-optimal strategy is not necessarily the best stTategy to use in repetilive in­
vestment situations, but it is a good benchmark lo keep in mind when considering 
alternalives We menlion some possible alternatives in lhis section 

Other Utility 

One alLernative is lo use the slandard hamework of maximizing expected ulililY (as 
in the first part 01 Chapte, 9) If there will be exactly f( repetitions, we can define a 
utility function U lor wealth at the end of period f( and, accordingly, seek to maximize 
E[U(X,,)] 
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The use of U (X KJ = In X, is one special case In fact, because of a special 
recursive propelty, maximization of E(ln X ,{) with respect to a fixed strategy is exactly 
equivalent to the log-optimal strategy of maximizing E(ln X,) This tallows from 

K 

R,Xo)] = In Xo + EOn R,) + LEOn Rd 
k=2 

Maximizalion of the left side is equivalent Lo maximizalion of E(ln RJ) since atl 
Rk's are identical random variables This in lurn is equivalent to maximization of 
E(InX,) InXo + E(lnR,) Hence the choice of U(XK) InX, leads us once 
again to the log-optimal strategy 

One interesting class of utility functions is the class of power functions U (X) 

(I/JI)X" for l' :0 I This class includes the logarithm [since Iim,,_o{(ljy)X" -
I/l') In X]; and it includes the linear utility U (X) X 

This class of functions has the same ,ecursive property as the log utility; that is, 
the stlUclure is preserved from petiod to peIiod This is seen hom 

E[U(XK)] 

where the last equality follows flam the fact that the expected value of a product of 
independent random variables is equal to the P,"aduct of the expected values Hence to 
maximize E[U (X K)] with a fixed-p'oportions sllategy it is only necessary to maximize 
E[(R,Xo)"], so again to maximize E[U(Xd] onc need only maximize E[U(X,)] 

If y > 0, the power ulility function is quite aggressive The eXlreme case of 
JI I, corrcsponding to U (X) X (leading to the expccted-value criteriol1), was 
considered earlier when discussing the investment wheel We found that lhe strategy 
that maximizes the expected value bets all capital on Lhe mosL favorable sector­
a stIategy prone to early bankruptcy Il1deed, bankruptcy is likely for any l' with 
I ::: l' > 0 For example, suppose JI * COl1side, two opportunities: (a) capital 
will double with a probability of 90 or it-will go to zero with probability 10, and 
(b) capital will inclease by 25% with certainty Since 9x Ji > .jj25, 0ppOilunity (a) 
is preferred Lo (b) with a square root utiliLY However, in a long sequence of repeated 
trials, an invcstor following opportunity (a) is villually certain to go bankrupt Most 
people prefer (b) when thcy understand thut many trials will be played A similar 
argument applies to any l' in the IOnge I ::: y >- 0 

It is mOle conservaLive Lo use y < 0 However, many people find this Lo be too 
conservative For example, suppose LhaL y - ~ Again considcl Lwo opportunities: 
(a) capital quadruples in value with ce'LUil1ty, a;ld (b) with probability 5 capital le­
mains constant and with probability 5 capital is multiplied by 10 million (or any finite 
number) Since -4-'1' >- - 5 - 5(10,0()(),000)-'/', an investo' with the utility func­
tion V(X) -X-'/' will prefer «(I) This is quite conservative Again, similar argu­
ments apply for any)' < 0, although they become less compelling if l' is close to zero 

Based on the preceding discussion, we conclude that if an investor USes a power 
utility function, it is likely that it will be one with)' < 0, but JI close to 7.ero Such 
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a ulility function is close Lo the logarilhm We can argue lhal similar (although less 
precise) results hold for any broad class of possible utility functions; that is, only 
lhose close to the logarilhm will seem appropriate when lhe long~term consequences 
are examined Therefore, although in principle an investor may choose any utility 
function, supposedly reflecting individual risk lolerance, a repetilive siwation tends to 
hammer the utility into one lhat i/; close to the logarilhm 

Most long-term investors do consider the volalility of porttolio growth as well 
as lhe growlh rale itself This leads to consideralion of lhe variance of the logarilhm 
ot return as well as the expected value of the logarithm of reLUrn, Indeed, if inveslors 
take a long-lclill view, it can be shown lhat (under certain assumptions) these two 
vafues are lhe only values of imporlance, We state this formally us tollows: 

Growth efficieTlcy propositioll All illveHOI who COll5idelS olliv 10llg-tellll pelj{JI­
"WilLe will el'aillate a pOI(fo/io 011 the bmi.\ oj it.\ logmithlll oj J'illgle-pell'od letwll, 
willg olliv the erpected paille alld the \1m iallce oj tlli.\ quall1ify 

This proposition inteilace~ well wilh lhe earlier discussion about power utility 
functions We found that if the utility function U(X,) (lfy)X" were chosen, it is 
likely that J' < 0 and J' '" 0 We can then use the approximation 

.!.(Xl' - I) '" In X + ~J'(In X)2 
]I 2 

This shows lhal uSe of this ulilily function is close to using a weighted combination 
of lhe expected fogUi ilhm of relurn and the variance of thallogarithm In other words, 
lhe expected logadthm and its variance nre lhe two quantities of interest 

In view of lhe growth efficiency proposition, it is natUiaf to trace out an etficient 
frontier of III versus u similar to lhat for the ordinary mean-variance efficient frontier 
but where III and u are, respeclively. the mean and standard deviation of the logmilhm 
of return We shall do this tor stocks whose prices are described by continuous-time 
equalions in the next section 

15.5 CONTINUOUS-TIME GROWTH 

Oplimal pOllfolio growth can be applied wilh any rebalancing period-a year, a month, 
a week, 01 a duy In lhe limit of very 6horl lime periods we consider continuous 
leblliancing 

In facl, lhere is a compelling reason lo consider the limiting situation: the result­
ing equations fOi 0Plimal stralegies turn oullo be much simpler, and as a conSequence 
il is much easier to compule oplimal solulions Hence even if rebalancing is to be 
cHlfied oUl only, say, weekly, il is convenienl lo uSe lhe continuous-time formulation 
to do lhe calcufalions 

The continuous~time version al::;o provides imporlant insight For example, it 
reveals very c1earfy how volatility pumping works 
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Dynamics of Several Stocks 

We firsl eXlend the continuouS-lime model of slack dynamics presented in Chapter I I 
Lo lhe case ot severaf correlaled slocks This model wilf then be used in our anaiysis 
of slack portfolios 

Suppose there are Ii asSelS The price Pi of the ilh nssel. for i 1,2,3. , II, 

is governed by a standmd geomelric Brownian molion equalion 

dpi 
J-Li dt + dZ i 

Pi 

whele ;(:/ denoles a Wiener piOcess, bUl with variance parameler u?, rather Lhan I This 
is equivalenl to the standard model fOi a single slock The new element hele is lhal 
lhe aSsels me correlaled through lhe Wiener plOcess componenls In parlicular, 

coy (dz i , dz;) E(dz i dz j ) u'J dl 

We define lhe covariance matrix S as thal wilh components U/ i' and we uSe lhe 
convenlion a} ail We usually assume lhat S is nonsingular 

FlOm Chapter II, each assel i has a lognormal distribution, and at lime I, 

E [In (!!'!!l)] (/", - 4ul)1 Iii I 
Pi(O) 

and 

VUI [In (!!'!!l)] ull 
p,(O) 

Portfolio Dynamics 

Now suppose lhal a parLtolia ot lhe 11 assetS is construcled using the weighls WI> 

il,2, , II, with "2:';'=1 Wi I Lel V be the value of the portfolio Then because 
lhe inslantaneous rate ot lellllTI of the porlfolio is equal to the weighted sum of lhe 
inslanlaneous rales ot I eturn of the individual assels, we have 

uV 
V 

" L W,I.L, dt + Wi d';::j 

i==l 

The variance of the slochastic lerm is 

E (tW'dZi )' 
/::1 

Hence the value V (1) is lognormal wilh 

" L Wju,jwjdt 
/.;=1 

(155) 
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The variance of In[V(t)IV(O)] is 

" 
u 2 (t) Lw,U1J Wjl 

i j 

Note that 

~E [In V(t)] 
I V(O) 

Hence lJ gives the giOwlh Iale 01 lhe pOlltolio-analogous Lo Ill, used in previous 
seclions, We can conlrol lhis growth rUte by the choice of lhe weighling coefficienlS 

Implications for Growth 

Equation (15 5) explains how volatility can be pumped to obtain increased glOwth As 
11 specific example, suppose lhal the Ii assets are uncolfelaled and all hove lhe Same 
mean and variance A lypical aSSel lherefore has its price governed by the plOcess 

dp, 

Pi 

where now each dz, has variance u 2 dt, The expected growlh rate of each slock 
individually is 1J /.1 - ~u2 Suppose now lhat lhe II stocks are each included in 
a portfolio with a weight of 1/11 Then trom (155) the expected growth rate at the 
portfolio is 

I , 
-rr 
2n 

Pumping reduces the magnitude of the correclion term) lheleby increasing lhe 
growth late In this example, lhe growlh rale has increased over the v ot a single slock 
by 

I (If - I) 2 - -- u 
2 If 

fhe pumping efiecl is obviously mOSl dramalic when the original vmiance is 
high Aflel being convinced ot lhis, you will likely begin lo elljo\' volatility, seeking 
il oul for your inveStmenls rather than shunning it, as you may have after sludying lhe 
,ingle-period theory of Chapters 6 and 7 Volatility is IWI the same a, risk Volatility 
is opportunity 

Example 15.6 (Volatility in action) Suppose that a stock has an expected growth rate 
of 15% a ye", and a volatility (of its logarithm) at 20% These are fairly typical value, 
This meanS that v !1 - tu2 15 and u 20. Hence!1 15 + 04/2 17 By 
combining 10 such stocks -in equal proporlions (and assuming they are uncorrelated) 
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we obtain an overall growth late improvement of (9/20) x 04 I 8%-nice, but not 
dlumalic 

It inslead the individual volatililies were 40%, the improvemenl in growlh late 
would be 72%, which is substantial At volatilities of 60% the improvement would 
be 162%, which is truly impressive Unfortunately it is hard to find 10 uncorrelated 
stocks with this level of volatility, so in praclice one mllsl settle for more modesl 
gains 6 

The Portfolio of Maximum Growth Rate 

We oblain the optimal growth porlfolio by maximizing lhe growlh rate \) Referring Lo 
equation (15 5) we sce that this is accomplished by finding the weights w" W2, , w" 
that solve 

II /I 

maximize LWdL' -! LWiUijWj 

i;:::::.1 /,j"'" I 

subject to t W, 

i=! 

We solve this problem in the neXl Section 

15.6 THE FEASIBLE REGION 

Paralleling the familiar Markowitz concept, portfolios can be plotted on a two-dimen­
sional diagram of v versus u The legion mapped out by all possible portfolios defines 
the feasible region. This is depicted in Figure 154. 

There is, however, an important qualilalive difference belween lhe general Shape 
ot this region and the Markowitz region The new region does not eXlend upward 
indefinitely, bUl inslead there is a maximum value of v, corresponding to the growth 
rate of lhe log~oplimal portfolio There is also, as in the Markowitz case, a poinl of 
minimum u These points me indicated on lhe figure 

The Efficient Frontier 

Again, just as in lhe Markowilz framework, we define the efficient frontier of the 
teasible region to be the uppel left-hand portion at the boundary This frontier is 
etficient in the sense of growth as spelled out by lhe growth efficiency proposition ot 
Sec lion 154 In this caSe we can be quite specific and State that the etficienl flOnlier 
is lhe portion of the boundmy curve lying belween the minimum~variance point and 
the log-optimal point 

60 f cmtrse we must temper OUI elllhu<;i<tsm with lin 3ccounting of the commissions associlltl!d with frequent 
tmding 
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FIGURE 15,4 Feasible region. The feasible re­
gion has a maximum expecled log value and a 
minimum log variance value 

In fact, we obtain a strong velsion of the two~fund theorem. Any point on 
the efficient frontiel can be achieved by a pOltfolio consiSting of a mixture of the 
minimum-villiance pOitfolio and the log-optimal portfolio We now state this faunally 
as a ti1eOlem, We also give a proof using vectOl-matrix notation (The leadel may 
safely skip the plOof) 

The hvo~jillld theorem Any point Oil the eificiellf jioll1ier can be achieved as a mixtwe 
oj any two pOillfS Oil that ji'Ollfiel in pm ticulm the lllillillllllll-log-vmiance pOlt/olio and 
the log-optimal pOl t/o/io call be 115ed 

Proo}.- Assume there are II securities Let u (111,112, ,11/1), and let 
w (WI> W:z, , WI!) be portfolio weights If w is efficient, it must solve 
the following problem for some 5: 

maximize WI u !wTSw 

subject to w'l 

wTSw 

By intlOducing Lagrange multipliers Ie and y /2, we form the Lagrangian 

L w' u - tw'Sw - le(w'l- I) - !y(W'SW - 5) 

T he first-order conditions are 

u Sw Al ySw=O 

Hence the solution has the form 

w (u Al) 

The conStantS A and yare determined so that the solution w satisfies the two 
conslI aints of the original problem 

Setting y = 0 meanS that the second constraint is not active, and hence 
this solution corresponds to the log-optimal portfolio. 

All solutions are linear combinations of the two vectors S-I u and S-Il, 
so any two such solutions can be used to generate all othelS In particular, 
the log-optimal and the minimum-variance solutions can be used • 
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Inclusion of a Risk-Free Asset 

Suppose that there is a risk-free aSSet with constant interest rate If This asset can be 
considered to be a bond whose price po(t) satisfies the equation 

dpo(t) =Ifdt, 

Po 
Assuming that there is no other combination of assets that produces zero vari­

ance, the l'isk-free asset is on the efficient frontier. Indeed, it is the minimum-variance 
point To find the entire efficient frontier it is therefore only necefisruy to find the 
log-optimal point, and we shall do that now 

The log-optimal portfolio is defined by a Set of weights W!, W" , w" for the 
risky assets and a weight Wo = 1- r,J""t Wj for the fisk-free asset The weights for the 
Iisky assets me chosen to maximize the overall growth rate; that is, to solve the problem 

max [(I t.Wj}f+t.(~'Wj ~t.WJU;kWk)] 
Setting the derivative with respect to Wk equallo zero, we obtain the equation for the 
log-optimal portfolio~, ''1 r,;=! uijWj 0, which we highlight: 

The log-optimal porifolio Whe" thele is a fisk-Jlee asset, the log-optimal pOltfolio 
11m weight') for the fiskv lIHel\ that saris/v 

" 
LU/jw} J-Li If (156) 
j=! 

fOl i = I, 2, , " 

Equation (156) is a system of" linear equations that can be solved for the /I 

weights 
The etficient frontier with a Iisk-free asset is shown in Figure 155 It should be 

clear from the figure lhat most inveslors will in fact 1101 wish Lo design their strategies 
Lo correspond to the log-oplimal point This is because a fiIst-ordel decrease in standard 
deviation can be ultaincd with only a second-order sacrifice in expected (log) value 
by moving slightly leftward along the efficienl frontier 

fin 

Log-optimal portfolio Markowilz porlfolio 

sldev In 

FIGURE 15.5 The feasible growth rate re­
gion. The Markowitz portfolio is not efficient 
in the sense of growth 
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The Markowitz strategy can be defined by using the Markowitz portfolio weights 
and rebalancing regularly fhis strategy will be inefficient with respect to the expected 
log-variance criterion 

Example 15.7 (A single risl,y asset) Suppose that there is a single stock with price 
S and a riskless bond wi th price B These prices are governed by the equations 

dS 

S 

dB 

B 

/1dt + "d~ 

where::: is a standard BlOwnian motion process The log-optimal stIategy will have a 
weight for the stock given by (156) In this case that reduces to W (/1- '1)/,,2 
The corresponding optimal growth rate is 

Vopt 

and the corresponding variance is 

Let us considel some numerical values. Suppose that the stock has un expected 
growth rate of 15% and a standard deviation ot 20% Suppose also that the risk-free rate 
is 10%. We know that " .20 and v /1-~'" 15. Thismeansthat/1 17 We 
find that w I 75, which means that we must bonow the risk-free asset to levelage 
the stock holding We also find that the optimal value of v is vopr .10+( 07)'/08 
16 125% This is only a slight improvement over the 15% that is obtained by holding 
the stock alone Furthermore, the new standard deviation is 07/20 35%, which is 
much worse than that at the stock The situation is iIlustlated in Figure 156 

The log-optimal strategy does not give much improvement in the expected value, 
and it worsens the Val iance significantly T his shows that the log-optimal approach is 

\ 
Stock alone 

\ 
Log-optimal 

4 

FIGURE 15.6 Feasible region for one slock 
and a risk-free asseL The log-oplimal strategy 
gives only modest Improvement in growth rate 
over holding the stock alone, at the expense of 
a greally increased standard deviation 
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not too helpful unless there is opportunity to pump between various stocks with high 
volatility, in which case there can be dramatic implOvement. 

Example 15.8 (Three stocks) Suppose there are three risky stocks with prices gov­
erned by the equations 

20dt + dz., 

15dt +dz3 

with the covariance of dz being 

[ ~ 01 

02 
07 
01 

01] 01 
0.3 

The risk-free rate is 10% We can ealculate the eorresponding growth rates: VI 

195%,112 16.5%, and 113 135% 
Refelling to equation (15 6), the log-optimal portfolio weights satisfy the equa-

tions 

09wr + .02W2 + Olw] 14 

02wr + 07W2 Olw] 10 

Olwr 0Iw2+03w] 05 

which have solution 

wr 105 

W2 1 . .38 

w] 178 

It follows that /Lop. is the corresponding weighted sum of the individual /L'S; that is, 

/L"p' 105x 24+138x 20+178x 15+(1 105 138 178)x 10 04742 

and 
3 

U;pt L W/W,Ui., 

i j=l 

09(105)2+ 02(105)(1.38)+ 01(105)(178)+ 02(138)(105) 

+07(138)' 01(138)(178)+ 01(178)(105) 

01 (I 05)( I 38)+ 03( I 78)2 

03742 
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FIGURE 15] Boundary points of three­
stock example, The three originaf stocks to~ 
gether with the risk.free asset define a bound­
ary of points t!lilt <.Ire optimaf with respect to 
fog mean and fog variance 

0+-____ ,-____ ,-____ -, ____ -, ____ -, ____ -, 

00 20 40 60 80 100 1 20 

Hence uOJlI 61 17% The growth rate is 

pop. 110PI !u;pt 28 7 I % 

Figure 157 shows the original three points and a portion of the boundary of the 
feasible region 

15.7 THE LOG-OPTIMAL PRICING FORMULA* 

The log-optimal strategy has an important role as a universal pricing asset, and the 
pricing fonnula is remarkably easy to derive. As before, we assume that there are 11 

tisky assets with prices each governed by geomettic Brownian motion as 

dPi 

Pi 
fli dr + dz" 1,2, ,11 

Since E(dz,) 0 lor all i, the covariances aij are defined by E(dz, dzj ) aij dr There 
is also a risk-tree asset (asset number 0) with rate of retum I f Any set of weights 
Woo WI> Wl. • WI/ with L~'=O Wi I defines a portfolio in the usual way The value 
of this pOl tfolio wiII also be govemed by geometric Brownian motion We denote the 
corresponding covmiances of this process with that of asset i by ai port 

As a special case we denote the log-optimal portfolio by the subscript opt. This 
portfolio has variance denoted by a~pl and covaJiance with asset i denoted by a, upl 

The 11 of any asset can be recovered from the log-optimnl portfolio by evaluating 
the covruiance of the asset with that optimal portfolio This is essentiaIIy a pi icing for­
mula because it shows the relation between drift and uncertainty The pricing formula 
is stated hele (in fOlll different forms): 

Log-opb'111al pricil1g f0111111la (LOPF) 

11, -If 

V, -IJ 

a'Opl (15 70) 

(l57b) 
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Equivalent/v, \fie have 

ILl -If 

III -If 

fJ;.O[1t (fLoPI -If) (I5.Sa) 

(I5Sb) 

Proof: The result follows from the equation for the log-optimal strategy 
(IS 6); namely, 

" 
ILl -If LUljWj 

]=1 

If V is 'he value of tlle log-optimal portfolio, we have 

dV 

V 
tWJ(fl.jdt +dzj ) 
f:=:l 

(159) 

Hence U'.Opl E(dz j dzopt ) 'LJ=l UijW, ILl - I j. where the last step is 

(159) This gives (15 70) 111e version (15 7b) follows from ti, fl., - ~af 
To obtain the altemative expressions we apply the Hrst pricing forTImla 

[equation (1570)] to the log-optimal strategy itseIt, obtaining fl.op' -I f = a~PI· 
Equation (IS So) follows immediately The version (IS Sb) follows directly 
from .he definition of {J, opl ~ 

Accolding to these formulas the covariance of an asset with the log-optimal 
portfolio completely determines the instantaneous expected excess return of that asset 
Equations (15 70) and (IS So), in te.ms of fl. -Ij, are easy to remember because they 
mlmic the CAPM equation These equations expless the excess expected instantaneous 
return as a single covariance or, in the alternate version, as a beta-type fOlffiula 

Example 15.9 (Three stocks again) Cons ide. the three stocks of Example 15 S Let 
us dete.mine fl.. using (15 70) The covariance of S. with the log-optimal portfolio is 
found from 

Therefore, 

fl.. =If+ 14= 24 

which is correct since it coincides with the 11,! originally assumed 

Equations (15 7b) and (15 Sb), in terms of II -Ij, are perhaps the most relevant 
equations since lJ is the actual observed growth rate Consider (J 5 8b), which is VI -

1 f = f31.opta~Pt - ~ai2 For stocks with low volatility (that is, with a; smaIl) the excess 
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FIGURE 15.0 log return versus beta, 

f3 

growth rate is approximately plOponionaI to fJlopt This pmulleis the CAPM jesuIt 
Greate[ tisk leads to greater growth However, fOl large volatility the _!uI

2 term 
comes into play and decreases IJ 

Note in particular that it security i is uncOIrelated with the log-optimal portfolio, 
its growth rate \ViII be le.u than the tisk-free rate This is because its volatility plOvides 
opportunity that a risk-free asset does not 

The volatility term implies that the relation between risk and return is quadratic 
rather than linear as in the CAPM theory To highlight this qundtatic feature, suppose, 
as mayan average be true, that the a of tiny stock is proportional to its f3; that is, 
a y{3, where y is a constant Then we find 

V -If 
2 y'2.f32 

UOPI{J-Z 

A glaph ot this function is shown in FiglJle 158 Note that this cUlve has a diffel­
ent shape than the tladitional beta diagram of the CAPM It is n parabola having a 
maximum value at {JOpl = a~JlI /y.2 

Market Data 

If we were to look at a family of many [eal stocks, we would not expect them to talI 
on a single curve like the one shown in Figure 158 since the Hue relationship has two 
degrees of freedom; namely. {J and a Howevel, according to the theory discussed, 
we would expect a scatter diagram of alI stocks to 1'ali lOughly along such a parabolic 
curve We can check this against the results ot a tamous comprehensive study of 
matket returns which includes many decades of data 7 The data shown in Figures 159 
and 15 10 ale .aken flom that study The figures show annualized re'UI11, as compu.ed 
on a monthly basis, ovel the pe.iod ot 1963-1990 Of coutse the f3 used in the s.udy is 
the normal {J based on the market return, not on the log-optimal portfolio This study 
has been used to "'gue that the traditional lelation predicted by the CAPM does no. 
hold, since the [etum is clearly not proportional to {J We have drawn a dashed prrraboia 
in each figure, which shows that the data do SUppOI t the conclusion that the relation 
between return and {J is roughly quadratic To put this in perspective, we emphasize 

7 Ibis is Ihe Fama and French study cited at the end at the chapter Sl!e tabli! I of thm reterl!l\cl! 
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FIGURE 15.9 Observed return versus {3 for medium­
sized companies. The data support the condusion of the 
LOPr- that return is approximatefy quadratic with respect 
to f3 with !.l pe!.lk at around f3 1 

FIGURE 15.10 Observed return versus {3 for a cross 
section of all securities. The datil support the conclu­
sion of the LOPr- that return is approximately quadratic 
with respect to f3 with a peak at f3 = 1 
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that the LOPF is independent of how investors behave, It is a mathematical identity All 
that a market study could test, therefore, is whether stock prices reaIIy are geomettic 
Brownian motion processes as assumed by the model Since retUl11S are indeed close 
to being lognolmal, the log-optimal pricing model must closely hold as well 

15.8 LOG-OPTIMAL PRICING AND THE BtACK-SCHOLES 
EQUATION* 

The log-optimal pricing formula can be applied to derivative assets, and the tesulting 
formula is precisely the Bluck-Scholes equation, Hence we obtain a new interpretation 
of the important Black-Scholes result and see the power of the LOPF The log-optimal 
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pricing equation is more genelal than the Black-Scholes equation, since Iog-opthnal 
pricing applies more geneially-not just to derivative assetS 

As in the standard Black-Scholes hamewOlk, suppose that the price of an un­
derlying asset is govetned by the geometlic BlOwnian motion process 

dS /lSdt +aSd~ 
whele ;: is a normalized Wicnci plOcess Assume also that there is a constant intelest 
rate 1 Finally, suppose that the plice ot an asset that is a derivative of the stock is 

F (S, t) to! some (unknown) lunction F, 
The price y wiII fluctuate llllldomly accolding to its own Ito ptocess 

tion of this plOcess is given by Ito's lemma as 

(
a F a F I a' F ") a F dv(t) = -f1.S + - + ---,-a-S- dt + -as de as at 2 as- as 

The equa-

(15 10) 

If we divide the left side 01 15 10 by v(t) and the I [ght side by F (S, t), we will have 
an equation tor the instantaneous late of return of the derivative asset The fitst telm on 
the right is then the expected instantaneous ltlte ot retUln We can call this ~ldcliv since 
it is the J1 of the derivative asset Then J1!lcriv - 1 must be equal to the covl.lliance ot 
the instantaneous retUln of the derivative asset with the log-optimal portfolio Writing 
this equation will give the final result Belme we cany this out, let tiS filSt find the 
log-optimal portfolio 

The log-optimal pOlttolio is a combination of the stock and the risk-tree asset 
The detivativc asset cannot enhance the tetUin achieved by these two assets, since it 
is by definition a derivative Therelore the log-optimal pOitlolio is the combination 
found in Example 157 Specifically, it is the combination in which the weight of the 

stock is w = (I' - 1 ) la' 
We can now wlite the log-optimal pricing fOlfllula directly as 

-'- (aF f1. S+ aF +! a'F a's') _I = -'- (aF as) (/1-1) 
F as at 2 iJS' F as a 

The lett-hand side is just J1dcriv - 1 , where J1dcriv is the expected instantaneous letmn 
01 the derivative asset It is lound by just copying the filSt pm t on the right 01 (15 10), 
dividing by F, and subtlacting 1 The tight side is the covm rance of this derivative 
asset with the log-optimal pOilfolio Since both the derivative and the log-optimal 
pmtfolio have pi ices that are landom only through the d~ term, we simply multiply 
the cOlfesponding coetficients of the instantaneous teturn equations to evaluate the 
covaliance The filSt Palt is just a copy of the d~ coelficient in (1510) divided by F 
and the second part is the standard deviation of the log-optimal pOilfolio, as lound in 
Example 157 

The equntion is simplified by multiplying thtough by F and canceling the two 
identical telms containing J1, yielding 

aF iJF I a' F , , 
ar+ as ,S +2aS,a-S-=IF 

which is the Black-Scholes equation 
We now have till ee ditlelent interpretations of the Black-Scholes equation The 

titst is a no-mbitrage intelpretation, based on the obse!vation that a (;ombination ot 
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two risky assets can rcptoduce a tisk-free asset and its rate ot return must be identical 
to the risk-free tate The second is a backward solution process of the risk-neutral 
pricing fOlmula The third is that the Black-Scholes equation is a special case of the 
log-optimal plicing fotmula 

15.9 SUMMARY 

Given the opportunity to invest repeatedly in a selies ot similat prospects (such as 
tepeated bets on Un investment wheel or peliodic rebalancing of a stock portfolio), it 
is wise to compare possible investment strategies telative to their long-telm effects on 
capital Fot this pUi pose, one usetul measure is the expected rate of capital growth 
If the opportunities have identical probabilistic ptoperties, then this measure is equal 
to the expected logarithm of a single return In other wOlds, long-tetm expected cap­
ital growth can be maximized by selecting a stlategy that maximizes the expected 
logarithm of teturn at each trial; this is the log-optimal strategy, 

For bets that payoff either double or nothing, the log-optimal strategy is known 
as the Kelly rule It states tirat you should bet a fraction 2p - I of your wealth if the 
probability p of winning is gleater than 5; otherwise, bet nothing 

For stocks, the log-optimal strategy pumps money between volatile stocks by 
keeping a fixed proportion ot capital in each stock, rebalancing each period This strat­
egy automatically leads, on average, to following the maxim "buy low and sell high" 

For stocks, the log-optimal approach is mathematically more tractable in a 
continuous-time framework than in a discrete-time framework, for in the continuous­
time framewOlk explicit formulas can be derived for the log-optimal strategy and the 
resulting expected growth rate-it is only necessary to solve a quadratic optimiza­
tion plOblem The resulting formula for the expected growth rate clearly shows the 
SOUlce of the pumping effect Basically: growth rate is v = 11- ~a2 When assets are 
combined in plOportions, the resulting 11 is likewise a proportional combination of the 
individual 11 's However, the resulting a 2 is leduced more than propOltionally because 
it combines individual a 2 's with squares of the propOltionality factOls Therefore the 
re~ulting II i~ gleatel than the proportional combination of individual v's Hence v is 
pumped up by the rcduction in the volatility ter m 

The growth efficiency plOposition states that any long-term investol should eval­
uate a strategy only in terms of the mean and variance of the logarithm of return This 
leads to the concept of an efficient frontiel ot points on a diagram that shows ex­
pected log-return versus standmd deviation of log-return GlOwth-efficient investors 
select points on this efficient frontier This tlOntier has two extreme points: the log­
optimal point and the minimum log-valiance point The two-fund themem for this 
framework states that any etflcient point is u combination ot these two extreme-point 
pm tfolios If there is a risk-free asset, it serves as the minimum log-variance point 

The log-optimal portfolio plays another speciallOle as a pricing portfolio Specif­
ically, for any asset i, we find ~li -1 f = al,Op! That is, the expected excess instanta­
neous return ot an asset is equal to the covariance of that asset with the log-optimal 
portfolio This for111ula, the log-optimal pricing formula (LOPF), can be trailS formed 
to VI - 1 f fJl \)p!a(~p! - kal This shows that the growth rate Vi tends to increase 
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with fJ10r! as in the CAPM, but it decreases with al Roughly, this leads to security 
mmket lines that are quadratic rathel than linear Empirical evidence tends lO SUppOlt 

this conclusion 
The power of the log-optimal pricing tormula (LOPF) is made clear by the tact 

that the Black-Scholes paltial differential equation can be derived directly from the 
LOPF However, the LOPF is not limited to the pricing of derivative seclllities-it is 
a general result 

L (Simple wheel strategy) Consider a strategy of the form (}J, 0, 0) Jor lhe investment 
wheel Show that the overall foctor multiplying your money ufter II steps is likely to be 
(I + 2}J )1I/1( I y)II/2 Find the value oj }' that maximizes this foclOr 

2. (How to play the state lottery) In U celtain state lottery, people select eight numbc!s 
in advance of a random dlawing of six numbers If someone's selections indw..le the six 
drnwn, they receive a large prize, but this prize is shared witll other winners ViclOr hus 
discovered that some numbers are "unpopular" in that they are rmely cllosen by lottery 
players He has computed that by selecting these numbers he has one chance ill a million 
of winning $10 million for a $1 lottery ticket He has odds of lO to I in his tavor Victol's 
current wealth is $100,000, and Ile wants to maximize the expected logarithm of wealth 

(0) Should Victor buy a lottery ticket? 
(b) Victor knows that he can buy £\ frnction of a ticket by forming II pool with friends 

What fraction of a ticket would be optimal? 

3. (Easy policy) Silow thilt (I' I) is the optimal policy for Exnmple 152 

4. (A general betting wheel 0) Consider (I wlleel with 11 sectors It the wheel pointer lands 
on sector i, the payoff obtained is r, for every unit bet on tllat sector Tile cllance of landing 

on sector i is PI' i = 1,2, ,II Let 0'1 be tile fraction of one's capital bet on sector i 
We requile L;I=r a, :::: I and 0',2: ° Jor i = 1,2, ,II 

«(I) Silow that the optimal growth strategy is obtLlined by solving 

(b) ASSHnling that 0'1 > ° for all i = I. 2, ,II, sllow that the optimal values must satisfy 

['AlA I' -t Pj J) =0 
IAaA + 1- LI",rO'I i:::d IjCij + 1- LI;:;:ral 

fO! all k = I 2,. ,1/ 

(c,) Assume that 2:1
:::d 1/1 1 = I Show that in this case a solutioll is 0'1 p, Jor i = 

1,2, , II 

(d) For the wlleel given in Example 155, find the optimal solution and detelmine the 
corresponding optimal growth I ate 
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5. (More on the wheel 0) Using the notation of Exercise 4, assume that 'L:,l"" r 1/ rl = I, but 
try to find a solution where one of the a" 's is zero In p:uticular, suppose the segments 
are ordered in such a way that plfr ll < [Ji'l ror all (= 1,2, ,II Then segment II is the 
"worst" segment 

(a) Find a solution with all 0 and all other ai's positive 
(b) Evaluate lIlis solution for the wheel of Example 15 5 

6. (Volntility pumping) Suppose there are 1\ stocks Each ot them hns a price that is governed 
by geometric Brownian motion Ench hns Ii) = 15'10 and Gl = 40% However, these stocks 
are cOiTclated, and for simplicity we assume that all = 08 Jor 1111 ; =1= j What is the value 
of !J for n portfolio having equal portions invested in each of tile stocks? 

7. (The Dow Jones Average puzzle) Tile Dow Jones lnduslrial Average is an avemge of the 
prices oj ]0 industrial stocks with equal weights applied to all 30 stocks (but the sum of the 
weights is greater thnn I) Occasionally (about twice per year) one of the 30 stocks splits 
(usually because its price has reached levels neur $100 per share) When this happens, all 
weights are adjusted lIpw1!fd by adding an amount c to each of them, where f. is chosen 
so that the computed Dow Joues Average is continuous 

Gavin Jones' father, Mr D Jones, uses the following investment suategy over a 
JO-year period At the beginning of the 10 years, Mr Jones buys one share of each of the 
30 stocks in the Dow Jones uverage He puts the slack certificates in a drawer and does 
no more tJ.ading If dividends arrive, he spends them If additional certificates arrive due 
to stock splits, he tosses them in the drawel along with the oLhers At the end of 10 years 
he cashes in all certiJicate~ He then compares his overall leturn, bused on the ratio of the 
final value to ~Ie original cost, with lhe hypothetical return defined as the ratio of the Dow 
Jones Average noW to lO yems ago He is sUlprised to see lhat there is a difference Which 
leturn do you think will be larger? And why? (lgnore transactions costs, and assume that 
all 30 stocks remain in the average over the I O~year period) [The difference, when actually 
meusured, is close to I % per year] 

8, (Power utility) A stock price is governed by 

dS 
S =/ldt+ad: 

where;: is a standardize<t Wiener plocess lnterest is constant at lUte, An investor wishes to 
construct a constantly lebalanced pOitfolio 01 these two assets that maximizes the expected 
valUe 01 his power utility U( X) = O/y) X)', y < I. at all times t 2: 0 Show that the 
proportion tv oj wealth invested in the risky asset is w = <11 - ')/fO - y)a:!] Use the 
following steps 

(a) Show that 

where II is a normal random variable with mean 0 and variunce I 
(h) Use E(e flrr

) = e'I~J:! to show thnt 

(L) Find tv 

E[ U (X(t))] = ..!. el'lrI+Uf(ll-r)I-"'~r1~IJ21·r.l'~1I!'r1;IJ2 
y 
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9. (Discrelc-time, log-oplimal plicing formula) Suppose there are" tlssels Asset i, ; = 
I. 2, ,fl. has rale of relum 'lover a single pedod lhere is ;,llso a risk-free assel wilh 
late of relUin 'f The log-optimal porlfolio over one period has !ale of relum 1o. and we 
define Po = 1/(1 -1-10) 

(a) Derive lhc piking jormulll 

_ cov (I,. Po) 
I·l-'f=-~ 
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GENERAL INVESTMENT 
EVALUATION 

A nalysis of an investment OppOl tunity centers on the evaluation of its cash flow 
stream in present value terms, A proper evaluation, however, must account 

, Jor the uncertainty of the stream and the relation of the stream to other assets 
To structure a general evaluation procedure, therefore, we must have a fIamework for 
representing muJtiperiod stochastic cash flows of several assets. Given this framework, 
the familiar concepts of risk-neutlal valuation and utility maximization can be extended 
to muJtipeIiod situations 

16.1 MULTIPERIOD SECURITIES 

444 

We begin by building a framework for representing securities in a multiperiod setting 
with a finite number of sWtes-u framework that genelaJizes the discussion of Chap­
ler 9 (The reader should be familiar with Chapler 9 before reading lhis chaplet) The 
basic component of thi!l l11ultiperiod framework is a graph (usually a tree or a lattice) 
defining u random process of state transitions, as shown in Figure 16 I The leftmost 
node represents the initial point of the process at time t 0, The process can then 
move to any of its successor nodes at t I A probability is assigned to each of the 
arcs Each probability is greatet than or equal to zero, und the sum of the probabilities 
for arcs emanating from any particulm node must be I 

The nodes of the graph can be thought of as representing various "states ot 
the financial universe." They might be various weathel conditions that would affect 
agriculture and hence the plice of agricultural products They might be conditions of 
unemployment that would affect wages and hence profits Or they might be the various 
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FIGURE 161 State graph Each node represents <I 

different st[l\e The grLlph of this figure is '" trec, but in 
gencrLlI some nodes may combine 

possible prices of gold The graph must have enough branches to fully represent the 
financial problems 01 interest Particular security processes are defined by assigning 
numbers to the nodes, as discussed next 

Assets 

An asset is defined by a cash flow plOcess, which in llIrn is defined by assigning a 
cash flow (or dividend) to each node of the graph Symbolically, such a cash flow or 
dividend process is represented by a series 01 the form 8 = (8",8" , 8,[), where 
each Or is the cash flow at time f The flow 01 is, howevcl, wndom since it depends on 
which of the states at time f actually occurs, so really Or is u symbol for all possible 
values at time f 

Associated with each asset is another plOcess, the price process, which is denoted 
by S = (5", 5" , ST) The price S, represents the price at which the asset would 
trade after receipt of the cash flow ut f Again, each Sr fm f > 0 is random since it 
depends on which node is active at time f 

An example of an usset is a zero-coupon bond, which pays $1 at time J This 
asset has u cush flow process that is zero at eveiY node except those at time T, where 
the value is $1 The conespouding pi ice process decreases as one moves backward 
through the graph, the actual values being lcpresentative of discount lactors 

The state model can be used to represent several assets simultuneously Ditrerent 
Hssets merely correspond to different cash flow and price processes 

The structure of an underlying graph requires some consideration It is always 
salest to make this graph a full tree, with no combined nodes This will assure that 
any derived quantities can also be accommodated We preter a simpler representation 
with a small number 01 nodes, such as a lattice; but a lattice lcpresentation that 
is adequate for an asset may not be adequate for a derived quantity because that 
quantity may be path dependent (An example is the vallie 01 a lookback option 
whose price depends on the maximum price that a stock attains) This phenomenon 
occms in a graph iepresentation ot several assets as well, und hence we must watch 
for path dependencies (which require that nodes be separated) In geneial, it is easiest 
to assume merely that all assets are defined on a common state tree Then we never 
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need to worry about possible path dependencies For computation, on the other hand, 
we aggressively seek opportunities to combine nodes-perhaps discovering a lattice 
1 epresentation Then we struggle to keep the nodes from separating, so that we can 
devise a computationally efficient method of solution 

Portfol io Strategies 

Assume that there arc 11 assets Asset i for i = I, 2, 1 11 has (stochastic) cash 
flow process 8i (O~, 8; 1 ,o~) Asset i also has the stochastic price process Si 
(Sb, s~ 1 1 S~) A trading strategy is a portfolio of these assets whose composition 
may depend on time and on the pmticular nodes visited Conesponding to a trading 
strategy, denoted bye, there is an amount e; of asset i at time f, but e: also may 
depend on the particular state at time f In other words, each ei = (e~, e:, , e~ ) is 
itself a process defined on the underlying graph~the proce!)s ot how much of asset i 
i, held 

A trading strategy defines a new asset, with an associated cash flow process of} 
The ca!)h flows me found from the equation 

" o:J = L [(e:_1 e:)S; + e/_1o:] 
i=] 

where us a convention we put e~1 = 0 for all i The filst term in!)ide the summation 
represents the amount of money received at lime f due to changing the portfolio 
holdings at time f The second term is the total dividend received at time f hom the 
portfolio weights at time t I 

As a simple example, considel the trading policy of just buying an asset at 
time t = 0 for plice S and holding it This will genelate the net ca,h flow stream 
(-S, .I], 8" ,8,) 

Arbitrage 

It may be possible to find a strategy that is guaranteed to make money with no cost 
Such a strategy is an arbitrage. Formally, a lIading stIategy e is an arbitwge if of} 2.: 0 
and of} is not identically zero In other words, 0 is an arbitrage if it generates a dividend 
process that has at least one positive telln and no negative terms It is easy to imagine 
an arbitrage, since we have seen many examples in earlier chapters 

Short-Term Risk-Free Rates 

An asset is short-term risk free at time f if its dividend at time f + I is 01+1 = I and 
zero everywhele else Its price SI at time f gives the discount factor dl = Sf Purchase 
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of this secUlily at lime t yields the cash flow process (0,0, ,-5" 1,0, ,0) If 
there is no such underlying asset, it may be possible to construct one synthetically with 
a trading strategy In either case, we say that short-tclm risk-free borrowing exists 
We define lhe risk-free return as R, ,+1 = lid" 

Suppose now that short-term risk-free borrowing exists for all f,O .:s f :s. J 

Then we define the forward return as 

forS>f 
The variable Rl.'f is the amount to which $l loaned at time f will grow at time s 

if it earns interest at the prevailing short rate each period from f to s The quantity R,\ 
is, of course, random If f is fixed, then at time j its specific value depends on the node 
at s It is a conceptually attractive quantity, as we shall see, but it is computationally 
unattractive It is unattractive because for 5 f > I its description can require a full 
tree representation, even if the underlying short rate process is defined on a lattice, 
because the overall return between two periods is path dependent (See Exercise 2 ) 

16.2 RISK-NEUTRAL PRICING 

We now tum to one of the main themes emphasized throughout the book: risk-neutIal 
pricing We assume throughout this section that short-term fisk-free bOlTowing exists 
for all periods, as described in the previous section Hence there is a short rate defined 
for every node in the tree 

Assume again that there are 11 assets defined on the underlying state process 
graph From these assets, new assets can be constructed by using trading strategies 
We say that risk-neutral probabilities exist if a set of risk-neutral probabilities can be 
assigned to the arcs of the graph such that the price of any asset or any trading policy 
satisfies 

I , 
Sr = Rr r+1 Er(Sr+1 + or+d (16 I) 

for every f = 0, 1,2, ,J I and whele Er denotes expectation at time f with 
respect to the risk-neutral probabilities 

This definition applies only one period at a time, and it is explessed in a backward 
fashion It gives Sr as a function of the reachable values of Sr+1 and Or+1 

We cannot assume that risk-neutral probabilities exist for the particular set of 
assets in OUI collection After all, the actual prices of the assets may not be related in 
a systematic fashion However, as one might suspect, we can guarantee the existence 
of risk-neutral probabilities when the prices of the original assets are consistent in a 
way that makes aIbitrage impossible This is the content of lhe following theorem, 
which follows immediately from our earliel result in Chapter 9 on risk-neutral pI icing 
because the risk-neutral pricing formula (16 I) is a single-period formula 
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Existence of risk-Ileutral probabilities Suppm'e a ~ef of 11 assets h; defined all a stafe 

p,oce\~ Suppme that flOlIl fhe~e ane'';, 'iIrOif-fel1ll r;'Ik-free bOl1owil1g is pOHible at 
every time f Then fhele are risk-l1ellfw/ probabilities 51iCIt fltat tire price5 of trading 
'l(rofegie'l with le'lpecf fa flte'ie onefs ale given by the rh-k-Ilellfral pricing formula 

S, = _1_E,(S,+r +8,+r) 
Ru -H 

{f alU/ onlv if 110 arbitrage i'i ponible 

Proof: We already h,lVe all the elements It is clear that risk-neutral pricing 
implies that no arbitrage is possible This was shown in Section 14"3 for a 
short rate lattice, and the proof carries over almost exactly 

It lemains to be shown that if no arbitrage is possible, then there are risk­
neutral probabilities Howevel, if no arbitrage is possible over the T periods, 
certainly no arbitrage is possible over the single period at f, starting at a given 
node It was shown in Chapter 9 that this implies that risk-neutral probabilities 
exist for the arcs emanating from that node Since this is true for all nodes at 
all times t, we obtain a full set of risk-neutral probabilities H 

The !isk-neutral pricing formula (16 I) can be wlitten in a nonrecursive form as 

(162) 

where now Ef denotes expectation of all future quantities starting at the known state at 
time f, This formula expresses Sf as a discounted risk-neutral evaluation of the entire 
remaining cash flow stream It has the nice interpretation of generalizing the familiar 
present value formula used ror detenninistic cash flow streams However, this form is 
not convenient for calculation because the quantity Rfl generally requires a full tree 
replesentation (See Exercise 2) There are cases where the result simplifies, of course, 
such as when interest rates are deterministic 

The preceding result is just a slight generalization of concepts developed in 
earlier chapters We have already seen many examples of the application of the risk­
neutral pricing equation Binomial option pricing was the simplest and earliest ex­
ample More complex examples, involving interest rate derivatives, were discussed in 
Chapter 14 We will look at additional examples in this chapter that exploit the general 
formula, but first we need a bit more theory 

16.3 OPTIMAL PRICING 

According to the definition, risk-neutral probabilities exist if there is no opportunity for 
atbitrage among the available assets, The theorem does not say that these plObabilities 
are unique, and, in general, they are not 
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If the assets span the degrees 01 freedom in the underlying graph, as is the case 
of two assets on a binomial lattice, then the 1 isk-neutlul prices are unique If they do 
not span, as in the case of two assets on a trinomial lattice, there will be additional 
degrees of freedom, and the risk-neutral probabilities are not unique 

When there are extla degrees of freedom, a specific set of tisk-neutIal probabil­
ities can be defined by introducing a utility lunction U, measuring the utility of tlle 
final wealth level, and finding the trading policy tllat maximizes the expected value of 
U (X r) This optimal tIading policy will imply a set of lisk-neutral plices in a manner 
similar to that fot the single-period case discussed in Chaptel 9 

We shall limit our consideration to utility functions thut have a separation prop­
erty (as was done in Chapter IS) To review, suppose that we begin with a wealth 
level Xu Aftel the filSl petiod, OUI wealth will be X t agu x Xo, where ago is 
a random return factor that depends on the hading policy vruiables at period zero 
Continuing in this fashion we see that X I := ago x afl x x ai.=: x XO, If we 

select U(X,) = In x" then U(X,) = Inag" + Ina~' + + Ina~!::: + In Xo Hence 

we maximize EoIU(Xr)] by maximizing Edln(a;")] for eneh t, where E, denotes 
expected value as seen at time f This maximization is equivalent to maximization 
of E, [In(a;)' X,)] = E, [U(X,+,)] with respect to e, This is the separation property 
Maximization of the expected final utility is obtained by maximizing the same utility 
function at each step of the process 

The separation property holds for the logarithm, and it also holds for the power 
utility function U (X 1) = (I /y)X ~ When the separation property holds, the multi­
period case reduces to a series of single-period plOblems, all having the same form of 
utility function This greatly simplifies the necessary calculations (although most of 
the general conclusions hold lor other utility functions) 

The Single-Period Problem 

Recall that there are 11 assets The single-period problem at time f, and at a specific 
node at that time, is to select amounts ej 101 i = I, 2, ,11 of the 11 assets, lorming 
a portfolio We wish to maximize the expected utility of the value of this portfolio at 
t + I subject to the conditiou that the total cost of the portfolio at time t is I Hence 
we seek ej' s to solve 

maximize 
II, 

subject to " Le:s; = I 
i=1 

" Le;(S:+1 + 8:+1) = Xt+1 
1'=1 

(16.3) 

(164) 

(165) 

The expectation is taken with respect to the actual probabilities 01 sllccessor 
nodes It there ale K such nodes, we denote these probabilities by PI, P'2, , PK 
Given amounts e:, i = 1,2, ,11, the value 01 next-period wealth Xt +1 depends on 



450 Chapter 16 GENERAL INVESTMENT EVALUATION 

the partie-ulal' successor node k that occurs, The objective function can be written as 
rL, PkU(XH-,h, where U(X'-I-,h denotes the value of U(X,+,) at node k 

Using the results of Chapter 9, a set olrisk-neutral probabilities ean be found 
from the solution Specifieally, the risk-neutral probabilities are 

p,U'(X:+,h 
(166) 

where X:+, is the optimal (landom) value of next-period wealth If the utility function 
U is increasing, U'( X:+,h will be positive, and honee all the q,'s will be positive 

These tisk-ncuttal probabilities can be used to price any asset using the general 
tormula 

which takes the specific form 

Applications 

If this method is used to find a set of risk-neutIal probabilities when there arc more 
states than basic assets, the risk-neutral probabilities will depend on the choiee of utility 
function The Vat fations in the risk-neutral probabilities will not affect the prices of the 
original assets, but will lead to variations in the prices assigned to other (new) assets 
The price assigned to a new asset this way is such that an individual with the given 
utility lunction will not choose to include that asset in the optimal portfolio (either 
long or short) 

Example 16.1 (Log-optimal pricing of an option) The optimal pricing method 
provides the toundation fOi a new latlic-e procedure for pIking a call option Suppose 
that we plan to use moderately large period lengths in our lattice, but to maintain 
accuracy we decide to use a multinomial (rathel than binomial) lattice We assign 
(real) probabilities to the arcs of this lattice to closely mateh the actual characteristics 
of the stock 

In this situation, !isk-neutral probabilities are not uniquely specified, but we can 
infer one set of such probabilities by using a utility runction, say, the logarithmic 
utility function U (X) = In X Once the risk-neutral probabilities are found, we can 
price the call option by the usual backward computational plocess 

What does the resulting price assigned to the call option represent? It is the 
price of the call that would cause someone with a logarithmic utility to be indifferent 
about including it in his or her portfolio Specifically, this person could first form 
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a log-optimal portfolio (rebalanced every period) of the stock and the risk-free asset 
Then if the call were offered at the derived price, this person would find that inclusion 
of the call, either short or long, would not increase utility Hence it would not be 
added to the portfolio In other words, the utility-based price is the price that leads to 
a zero level of demand 

Example 16,2 (A 5-month call) As a specific example let us consider the 5-month 
call option studied in Example 123 The underlying stock had S(O) = $62, J1 = 12, 
and a = 20 T he risk-free rate is 1 = 10% per annum, and the strike plice of the 
option is K = $60. 

We use a trinomial lattice with I-month periods To match the parameters of 
the stock, we decide on the trinomial parameters 1/ = I I, d = 1/1/, and the middle 
branch has a multiplicative factor of I To find the real probabilities we must solve 
the equations that correspond to: (I) having the probabilities sum to I, (2) matching 
the mean, and (3) matching the variance These equations, first given in Section 137, 
are 

Pr + 1'2 + 1'3 = I 
UPI + P2 + ~P3 = 1;- /1 I:1f 'J 

1/
2pr + 1'2 + d-p3 = ,,-6.1 +(1 +J16.I)-

They have solution Pr = 228, 1'2 = 632, and 1'3 = 140 
Now that the lattice parameters are fixed, we must solve one step of the Iog­

optimal portfolio problem Hence we solve the problem 

n,;x Elln[O'R + (I - 0') Roll 

where R is the random return of the stock Dvel one pedod and Ro is the fisk-flee 
return Written out in detail this is 

max (prln[O'I/ + (I - O')RoJ + 1'2 In[O' + (1 - O')RoJ + 1'3 In[O'd + (I - 0') Roll 

This has optimal solution a:= 505 The corresponding risk-neutral plObubililies are 
then readily found from (16.6) to be 

Pr 
c (167) qr = 

0'1/+(1 -O')Ro 

'I' = 0'+ 
(168) 

1'3 
c (169) '/3 = ad + (1-0')//0 

where c is the normalizing constant When normalized the values me q] = 218, q2 = 
635, and q3 = .I 48 

With these values in hand it is possible to proceed through the lattice in the 
normal backward solution method The results are shown in Figure l62 The price 
obtained is $5 8059, which is very close to the the Black-Scholes value of $5.80 
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9985 
Slock PI ice laUice 9077 9077 
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00 00 00 
00 00 

00 

16.4 THE DOUBLE LATTICE 

FIGURE 16.2 Log·optimal priCing of a 
5-month call option using a trinomial lattice, 
The upper lattice contains the possible stock 
prices. The lower l[lllke is found by risk~neutral 
valuation using inferred probabilities 

The stmting point for genelal investment analysis as presented in this chapter is a 
glaph that represents a family of asset processes How can we construct such a graph 
to embody the characteristics of each asset and the relations between assets? Clearly, 
this construction may be quite complex 

This section shows how a graph for two lisky assets can be constructed by com­
bining the sepruate replesentations tor each asset Specifically, two binomial lattices 
are combined to ploduce a double lattice that faithfully represents both assets, 

Suppose that we have two assets A and B, each represented by a binomial lattice 
Each has up and down factors and plObabilities, but movements in the two may be 
conelated A replesentation of one time period is shown in Figure 16,3 

The combination of these two lattices is really a lattice with fOlir branches at each 
time step It is most convenient to use double indexing for this new combined lattice; 
call the nodes II, 12, 21, and 22 The first index refers to the first lattice and the second 

FlGURE 16 3 One step of two separate lattices Their 
movemenls may be correlated 
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12 22 

X 
FIGURE 16,4 Nodes of the combination, There are four possible 
successor nodes from the centrell node 

11 21 

to the second We define the twnsition probabilities as PI!, PI']., P21. and 1122, respec­
tively A pictUle of the combined lattice is shown in Figme 164 Here lhe cenler node 
is the node at an initial time, and the four outer nodes are the four possible successors 

Suppose the lattice for stock A has node factors u A and ciA with probabilities 
p~ and p~, respectively; and the lattice fOI stock B has node factors uB and d U with 
probabilities p? and p~ If the covariance of the logarithm ot the two retUln factors 
aM is known, we may select the probabilities of the double latlice to satisfy' 

PI! + PI2 = p~ 

P21 + P22 = p~\ 

PI! +P2I = pi' 
(PI! - p~p?) u'u" + (PI2 - p~p~) U'D" 

+ (P2I p~ pn D'U" + (P22 p~ p~) D'D" = a," 
where U A = Inu', D' = Ind', U" = Inu", and D" = Ind" 

A special case is when the covariance is zero, corresponding to independence 
of the two asset returns In that case it follows thai the appwpriate lattice probabilities 
are PI] p~pll, Pl2 = p~p~, P2! = p~pT. and P22 = p~p~ 

Example 16.3 (Two nice stocI<s) Consider lwo stocks with identical binomial lattice 
replesentations of Ii = I 3, d = 9, and Pit = 6, Ptf = 4 Assume also that they have 
a correlation coefficient of p = "3 Let us find the double lattice representation 

Let S/\ and So be the tandom values of the two stocks after one period when 
initiated at unity We have 

E(lnS,) =E(lnSB) = 6 x In13+ 4 x In 9 = 11527 

a' = var(lnS,) = vm(lnSB) = 6(1n 13)' + 4(1n 9)' 11527' = 03245 

COVA" = 3a2 = 009736 

I Summing the first l\Vo cqulltions gives PI_ -I- PI! + P21 + PU = p;\ + P~ 1, so lhe probllbilitics sum ]0 

1 Also stlbtrncting the third equlllion from this :lbove equation gives PI! + P2J == I - PP = P~ Note !llso 

that the lust cqu:ltioll can be written PIIU'\U n -I- PI2UADIl + P21DAUIl + puDADu = (lAIl + (p;\U A + 
p;'DA)(ppU n + pfDu) 
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Therefore we must solve 

PI! + P!2 = 

P21 + P22 = 4 

PII + P21 = 

PI! (In I 3)2 + PI2(1n I 3)(ln 9) + P2I (In I 3)(ln .9) + p,,(ln 9)2 

.009736 + (.11527)2 = 023023 

This has solution 

PII = 432 

P!2 = 168 

P2I 168 

P22 232 

16.5 PRICING IN A DOUBLE LATTICE 

The double lattice construction does provide a valid lepresentation of the two assets, 
but there is a problem When a risk-flee asset is adjoined, we have four nodes, but 
only (fHee assets: the two risky assets and the risk-free asset There is an extra degree 
of freedom Therefore the risk-neutral probabilities are not completely specified !IS 

they are in the two original small lattices, We must find a way to pin down that extra 
degree of freedom in the definition of thc I isk-neutral probabilities 

One way to specify zisk-neutral plobabilities is to introduce a utility function, 
as in the plevious section Different utility functions may lead to different risk-neutral 
probabilities, but it turns out that under certain conditions a fourth relation holds 
independently of the particular utility function 

Let us introduce a utility function U, We detelmine the I isk-neutral plObabilities 
by maximizing expected utility Denote the optimal value of wealth at the next time 
point. at node ij. by X7j ; and, conespondingly. define U:j = U'(Xi

j
) Then the lisk­

neutlal plObabilities are, from (166), 

(16.10) 

fm i. i = 1.2 If thc utility function U is strictly increasing, then the lisk-neullal 
probabilities me stIictly positive 

In certain special cases thele will be a relation among the qll's that will supply 
the additional relation needed to make them unique Two of those cases are spelled 
out in the following theorem: 
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Supp05e tbe qt) '.\ me detel1llined bv (1610) Tllen tile ,elatioH 

q!!qn = P!!Pn 

q12q2! PI2P"!.! 

floldJ if eithel oj tile fol/owing two cOllditio1l.\ i.\ .\{/ti.\jied 

(a) Olle oj tile O1iginol (f5.\el.\ appeau at ::.elO lel'el ill tfle optimal fJ01t/olio 

(/J) Tlle time I:!.t between {Je1iod.~ i~ vtl1li.\hinglv .wwl/ 

Proof: We shall pIOve that undcI eithel condition U[l U;2 = U:2U~1 This 
fact will then lead to the final conclusion 

(a) Suppose that asset A has zelO level in the optimal pOltfolio Then changes 
in asset A do not influence VI Hence U: I = U~l and U;2 = U~2 ThcIe­
fOle U:IU~2 = U:2U~1 Clemly, the same result holds if asset B has zelo 
level in the optimal pOltfolio 

(h) Now, as a second case, assume that /;/ is small At the optimal pOltiolio 
we may wlite Xi} = (1/;' + iil + iio)X" where the telms ii;', iil, and 

j?o are the returns in the portfolio that conespond to the Iisky asset A, 
the lisky asset B, and the lisk-free asset, lespectively FOl small /;/ the 
return over one peIiod must be close to I Hence, 

Ri' + Rj" + RO = I + I;' + ,1 + 1° 

'" (I + I i')(1 + '1)(1 + I 0) 

where 1 f, 1 y, and 1 0 are small This applOximatron calTies over to VI as 
well, giving 

where 

U,~ = U'[(1 + I;' + '1 + 10)X,] 

'" U'(X,) + U"(X,)(I[' + I j" + 10)X, 

'" U'(X,)(1 + )'1;')(1 + ),11)(1 + )'10) 

U"(X,)X, 
)' = U'(X,) 

This product form for V/j implies that 

V;!V~2 = V;lV~! 

Under condition (0) or (h) we have V;!V~1 = V;lV~! We then compute 

q))ql1 p!!V;!pl1V~1 = P!!P12 

qr:JI1! 

An important special case of the two lattice consltllction is where the two ozrgrnal 

lattices are independent In that case P!! = pi\ p?, p!:? = p~ P~' p2! = p~ p?, and 
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{J22 = p~ p~ It tollows by diIect substitution that 

I'll 1'21 = I 
{J!2P2! 

Then if eilher of the condhions of the ratio theorem rs satisfied. 

qllqn = 1 
q12q2! 

and from this it can be shown that the original two lattices are independent with respect 
to lhe risk-neuual probabilitres as well as wilh respect to the origrnal probabiHties 
That is, independence whh respect to 01 rginal probubfJitics rmplies independence with 
respect to risk-neutral probabflhies 2 

Now let us return to our Oliginal problem In the double lattice we have four 
successor nodes but only three assets For smal1 I:!.t, the ratio formula gives the fourlh 
relation required to determine a set of fOUl risk-neutral probabflities 

An impOl tnnt special case of the two-lattice situation is lhat where one of the 
lattkes is a short late lattice for interest rates This case can be treated by the same 
technique, as illustrated by the SimpHco gold mine example that follows 

Example 16.4 (Double stochastic Simplico gold mine) Constder a 10-year lease 
on the Simplico mine In evaluating lhis lease we lecognize that the price of gold and 
the interest rate are both stochastic. but we will aSSlm1e that they are independent 

Recall that up to 10,000 ounces of gold can be extracted tram this mine each 
year at a cost of $200 per ounce Tire price of gold ts initially $400 per ounce and 
fluctuates according to a binomial lattice that has an up iactOl of II I 2 and a down 
factor of d = 9 The price obtained for sale of the gold produced in a year ts assumed 
to be the gold price at the beginning of the year, but the cash flow ocems at the end 
of the year 

In this version of the problem we assume lhat the telm structure of interest 
lates rs govezned by a short rate lattice The initial short rate rs 4%. and lhe lattice 
is a simple up-down model with u' = I I and d' = 9 The risk-neutral probabtltties 
are given as 5 We shall use the small I:!.t applOximatron to asselt that the lesult of 
the ratio lheorem applies Then since lhe gold price fluctuations and the short rate 
fluctuations are independent of each other, we conclude that the risk-neutral proba­
bilities are also independent Hence lhe actual probabilities are irrelevant tor pricing 
purposes 

We solve thts problem by constructing a double lattice Each node of this lattice 
leplesents a combination (g, 1) of gold price g and sholt rate 1 Each of lhese nodes 
is connected to four neighbor nodes with values (Ug,U',), (ug"h), (dg,u'I), and 
(dg, d'l) The risk-neutral probabiltties of these arcs are just the product of the risk-

2Brielly: Let Q be the 2 x 2 matrix with components If/I) J Then the invariauce condition SHy!' that Q is 
singular. which means Q = a b1' for some 2 x I vectors a, h, Normalizution mnkes both of these vectors 
have components that slim to I; llnd these dc/inc the individual probabilities 
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neutral probabilities for movement in the two elementary lattices For interest rates, 
tllesc are euch 5 For gold, the probability 01 an up move is 'I" = (I +1 -el)/(II -el), 
where 1 is the (cunent) shOlt late Hence the four plObabilities tor the double lattice, 
corresponding to arcs leading to the nodes Hsted, are qll = .5qu, ql'2 = Sq/I> (/).1 = 

5(1 - 'I,,), and 'I" = 5(1 'I,,) 
The double lattice can be set up as a seIies of 10 two-dimensional anays Each 

array contarns the possible (g, I) pairs tor that pelrod The arrays are then linked by 
the risk-neutral pricing formula Thrs formula simply multiplies the values at each or 
the tour successor nodes by lheir risk-neutral probabilities, adds those plus the cash 
flow for the end of the year, and drscounls the sum using the current short rute The 
values at time JO are all zelO Figure 165 shows the values at the nodes for time 
perrods 9 and 8 

The first column shows the possible g values and the filst row shows the possible 
1 values The entries rn the main .mays are the corresponding values (rn milHons of 
dollars) of the lease A node in the period 8 array rs found from four nodes in the 
period 9 array, as fIIustrated in the ligure 

Working backward this way we find an mray whh just one node at period zelO, 
having a value 01 $222551 million dollars 

Perrod 9 

00189 00231 00283 00346 00423 00517 00631 00772 00943 I 

18293 18217 18126 18016 17 883 17724 17 532 17 304 17 033 
13229 13 174 13 108 13029 12933 12817 12679 12514 12318 
9431 9392 9345 9288 9220 9 137 9039 8921 8781 
6582 6555 6523 6483 6435 6378 6309 6227 6129 
4446 4428 4406 4379 4347 4308 4261 4206 4 140 
2844 2.832 UI8 2801 2nO 2755 2726 2690 2648 
1642 1.635 1.627 1617 1605 I 591 I 574 I 553 I 529 
0741 0.738 0.734 07.30 0724 0718 0710 0701 0690 
0065 0065 0064 0064 0064 0063 0062 0061 0061 

0 0 0 0 0 0 0 0 0 

Period 8 

00210 00257 00314 00384 00470 00574 00702 00857 1 

29812 29685 29531 29345 29121 28852 28529 28144 
21390 21 301 21 194 21 064 20907 20719 20493 20224 
15073 15013 14941 14853 14747 14619 14466 14283 
10 336 10297 10251 10 194 10126 10044 9946 9828 
6782 6760 6733 6701 6661 6613 6555 6486 
4 118 4.107 4095 4080 4062 4040 40J3 3980 
2119 2.11S 2 117 2115 2 113 2110 2 106 2100 
0620 0626 0633 0641 0651 0662 0675 0690 
0026 0026 o ()27 0028 0030 O()31 O(m 0035 

FIGURE 16 5 Arrays for two periods of the Simplico gold mine Each node ;11 period k has four successor nodes at 
period f.,; + 1 J as Indicilted by the cOflcsponding shaded areC15 Values C1re in millions of dollars 
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16.6 INVESTMENTS WITH PRIVATE UNCERTAINTY 

Suppose a project requires an initial cash outlay and will produce an uncertain cash 
flow at the end of one year Suppose also that the uncertainty consists of both private 
uncertainty and market uncertainty Basically, market uncertainty can be replicated 
with mazket participation, whereas private uncertainty cannot For example, the cash 
flow of a gold mine lease depends both on the market uncertainty of gold prices and 
on the private unceltainty of how much gold is in the yet unexplored veins 

One way to assign a value to such a pI~ject is to make believe that the project 
value is a price, and then set the price so that you would be indifferent between either 
purchasing a small pOltion of the plOject or not This is termed zcro~levcl pricing 
since you will pUlchase the project at Zero level Of COUIse, it is assumed that you 
have the option to purchase othel' assets, including at least a risk-free secuIity with 
total return R, 

If there is only private unceltainty lhe zero-level price is just the discounted 
expected value of tile project (using actual probabilities) It cannot be priced any 
lowel, for then you would want to purchase a small amount of it. likewise, it cannot 
be priced any highel, or you would want to sell (short) some of it The value is 
therefole 

1 
V = Co + liE(el) 

where Co and c! are the initial and final cash flows, respectively 
Notice that lhis is somewhat different than the formula for the price of market 

assets Market assets already have prices, and you will likely want to include them in 
your portfolio at a nonzero level (either long or shOlt) 

Example 16.5 (When to cut a tree) Suppose that we can grow trees (for lumber) 
The trees grow randomly, and the cash flows associated with haz vest after I year or 
aftel 2 years are shown by the (diaglam) tree on the left side of Figllle 166 Each arc 
of the tree has a probability 01 5 The uncertainty is pIivate because the tree growth 
depends only on local weather conditions and is not related to market variables 

The initial cash flow at -I must be paid to cany out the project The cash flow 
figures shown at the end of the period are those that will be received if the trees are cut 
aftel I year Likewise, the final values shown me the cash flows that will be leceived 

_10~2 :: 
11 

10 
1 0 

52 

236 

No cut 

Cut 

10 

3 0 FIGURE 16.6 When to cut a tree, ia) Cash flow 
generaleu al a node if lhc lrees are cuI al thaI poinl 
ib) Value al a node and besl policy 

22 

11 

1 0 

(a) Possible cash flows (b) Values 
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it the trees me not cut until after 2 years We wish to evaluate this project, assuming 
that the interest Jate is constant at 10% To do so we wi11 need to determine the best 
str ategy fOI cLItting the lJees 

We use the zelO~levcl pricing method, and since there is more than one period, 
we work backward in the usual tashion The expected value of the top two nodes at 
the last time period is 26 Discounted by 10% this is a value of 236 Since this is 
higher lhan 2 2, this is lhe best value that cun be attained if we arrive at lhe upper node 
after I year We record Ulis optimal value on the values diagram in Figure 166(b) 
We also pJace a notation nem that node lhat we should not cut the trees if we naive 
lhere Likewise, the expected value of the bottom two nodes at the last time period is 
I 05c Discounted, Ulis is 95, which is IC5~ Ulan I 0, so we would assign I 0 at the next 
backward node in the values diagwlTI. and place a notation there that we should cut 
the trees it we arTive at that node The expected value ot these two optimal one~period 
values is 5(236 + I 0) = I 68, which discounted is I 52 Hence the overall value 
is ,52 

General Approach 

The preceding result concezning zero-level pricing of pr~jects with private uncertainty 
can be generalized to pr~jects that are characterized as having both private unceltuinty 
and mmket uncertainty fhe plivute uncertainties include such things as unknown 
production efficiency (due to new production processes). uncertainty in resources (such 
as the amount ot oil in un oil field). uncertainty of outcome (as in a research and 
development project). and a component ot the pI ice uncertainty of commodities fOJ 
which U,ere is no liquid market (such as the future price at an isolated piece of landi 
Market uncertainties are lhose associated with pI ices of traded commodities and other 
assets 

Formally, suppose that Ule states at U,e world are factored into two parts: a 
market component and a nonmmket (pI ivate) component A general state (or node 
in the state gJaph) thelelOle can be written as (J;n .... n conesponding to the market 
and nonmarket components ilt time t For simplicity (although it is not necessary) we 
assume lhat these two components are statistical1y independent 

From a given state there are varrous slIccessor states In the lattice flamework 
we index lhe successOl market states (which are nodes in the lattice) by i and the 
nonmarket nodes by j The plObabillty at thc iUl market node is Pi" and tlle probability 
of the jth nonmarket node is pi Since the two components are independent. the 
probability of i and j togelher is PtJ pin Pjt We are now in the situation of a double 
tree 01 double It1ttice 

We also assllme that the market pOl tion of the system is complete in the sense 
that lhere is a set of securities that spans all market states In this case we know that 
lhere me unique risk-neutral plObabilities qi for the market states 

It the prices are such that the project itself enters the optimal porttolio at zero 
level. U/) is independent ot the index j. and by the ratio theorem of the previous 
section. the risk-nellLIal probahilities qt) ~lre independent Hence (Ii) 11<.IS the form 
qlj qlll p]. where qt is the 11sk-neutral probability fOl the mmket state. and Pi' is 
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TABLE 16,1 
Oil Production Possibilities for the Initial 
5 Years of Operation (in Thousands of 
Barrels per 5-YC!ar Period)o 

00 produced 0 20 40 60 100 
Probability 3 I 3 I 

the probability [01 the nonmnrket state' (which is also the risk-neutral plobabtJity for 
that stute) 

Note that if there is no market component to a project, the pI oject price (or value) 
is determined by its ordilHuy probabilities: that is, as the discounted expected value 
ot its cash flows At the othel extreme, if the project has no private component, its 
plice is determined by the risk-neutral mmkct probabilities; that is, as the discounted 
risk-neutral expected value ot its cash flows 

Here is a comprehensive example illustTUting how these ideas can be used to 
evaluate a complex project This example incorporates many ot the concepts of this 
book and is worthy of careful study as an integrated review 

Example 16.6 (Rapido: a rapidly declining oil well) You are consideling the pos­
sibility of investing in an oil well ventUTe, If successtul. the well life is likely to be 
about 25 years The geological formations and other data indicate that this might be 
a favorable site BetOie any initial dTilling, the best estimate of the initial flow trom 
the well if it is dr illed is expressed as a list at possibilities and their plObabilities. as 
shown in Table 16 I We shall take a pCliod length at 5 yems in our analysis (to keep 
the problem size small enough to fit across a page) There are five possible levels of 
oil flows for the filst 5 yeaTS ot opelation, which are shown in the table 

The initial drilling cost is $220.000 After drilling, the inittal flow can be es­
timated quite accurately, and a decision is then made as to whether to complete the 
well, making it ready for production The completion cost is $500,000 If the well 
is completed, the oil flow will decline as the reservoir is depleted This decline can 
be expressed as a landom chance that at the end of each 5-year period the flow will 
tull to the next lowel category with a probability of 30% This is a very rapid rate at 
decline fOi an oil well, and hence the name "Rapido" 

It the well is ope1llted, the 5-year operating cost is $400,000 at fixed cost plus 
$5 per ballel in variable cost All oil pumped hom the well can be sold at the market 
price for crude oil, which is cUllently $16 per ballel We wish to find a fair price for 
this oil well venture, which has mmket risk associated with the future price of oil and 
technical (private) risk associated with the uncertainty of oil pTOduction 

The technical uncertainty regarding pTOduction possibilities is summarized by 
the lattice shown in Figure l67 

Next we must specify the market stlUcture FOI simplicity, we assume that the 
inteTest lute is constant at 7% pel yem 01, equivalently, 40% for each 5-yem period It 

3The independence argument applies even il there arc marc than two states in each part of the double tree 
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.7 .7 .7 FIGURE 16,7 Technology of an oil well. There are 
five possible levels of initial now, which cOIrespond 

.3 10 the five nodes that are successOls to the initial 

.7 .7 .7 
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remains to specify the relevant aspects al the oil market POi this purpose we would 
filst like an estimate of the volatility of oil prices, Such an estimate can be delived 
from a history ot oil spot prices, but it is also possible to estimate the volatility directly 
from a single day's record of option prices There are no options for spot oil, but we 
can use options on oil tutures as a good substitute A listing of these options is shown 
in the lett table at Figure 168 

It we study the call options lor August with slIike prices 01 1600 and 1700, we 
can use the Black-Scholes formula to solve tor the implied volatility and the implied 
current tutures price This leads to an estimate of a = 2l % (see Exercise 7). and we 
may assume that this is also the volatility at spot oil It we use the standard binomial 
lattice approximation, we then set the up factor tor oil at II ea..,r;s:i e :!I.J5 l 60 
and the down factor dill 60 .625 (It is a great slIetch at imagination to 

OIL METALS AND PETROLEUM 

CRUDE OIL (NYM) lifetime Open 
1,000 BBtS., $ PER BBL. Open High Low Settle Chg High Low Interc:;1 

Strike Ci!II.~-Settle Pul:,-Seltk' CRUDE OIL, LIght Sweet (NYM) t,()()() bbls.; $ per hbL 

Price Jun Jly Aug Jun Jly Aug Jun 1684 1730 1678 1729 + 43 21 35 1402 12-1.032 

1600 IJJ 121 129 004 021 042 July 1702 1660 1700 + 35 2078 t415 7J 360 

1650 086 086 097 OtO 036 059 Aug nu 1690 1656 1688 + 30 2078 14 15 34123 

17tJO 05) () 58 070 (l22 o 6() 082 Sept ml 168t 1657 1683 + 27 2078 14 50 28809 

t750 025 040 050 046 090 Dec 1657 1680 1655 1680 + 23 2125 1493 28690 

18tH) 011 025 034 082 125 Jun 1690 1687 1687 1696 + 18 2121 157) )7 )96 

1850 004 016 024 Dec 1718 + 16 2080 1650 10791 

Est vol 3 794 Wcd 18,173 calls 8,785 put:; Jun 1740 1758 1740 1741 + 14 1(} 26 17 22 14698 

Op int Wed 211.586 calls 170.88) pUIS Dec )77J + 1.1 2040 1753 19072 

FIGURE 16.8 Quotes of oil future options and oil futures, May 6/ 1994. Volatility can be estimated from option 
prices Risk~neutral probabilities can be detelmined directly from futures market prices Source: Wall 5treel Journal, 
May 6, 1994 
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consider I:!.t 5 as "small"; however, we me treating this as a PlOtotype model A 
more complete model would use a smaller [;/,) 

Now, usually, the next step would be to calculate the risk-neutral probabilities 
for this lallice using the tormula 'I" (R - d)/(1I - d), giving 'I" 80, but this is /la/ 

appropriate here Oil has a significant storage cost; hence replication using oil would 
require paying storage costs This will change the formula fOi risk-neutral probabilities 
(See Section 139) In fact, oil is generally not held as an investment, even though oil 
storage is possible, because the expected rate of return fOl doing so is not high enough 
to overcome the high storage costs This tightness of the oilmarkct is verified by the 
right side ot Figure l6 8, which shows that the prices ot oil futures contracts do not 
increase even as fast as the compounding of interest, as they would if markets were 
not tight (See Section 103 ) Indeed, we note that increasing the settlement date by 
2~ years only increases the futures price by a factor of 1773/1729 1025 This is 
equivalent to about I % per yem 

We can, however, use the futures price information to determine appropriate 
risk-neutral plObabilities Given a Spot plice of Sf next period the price will be ei­
ther Sf{ or Sd according to our model The current futures price for a contract that 
expires in 5 years will be about F I 05 S Since the cunent value of a futures 
contract is zero, and the payoff in 5 years will be either SII - F 01 Sd F, we must 
have 

o q"S(l6 105) + q"S( 62 1.05) 

This yields 

44, qd 56, 

These are the values that we can lise tor the risk~nelltral probabilities tor oil plice 
states 

We are now ready to carry out the backward recUlsion to determine the zero­
level pI ice of the oil venture At the final peliod, from t 20 to / 25, there 
are 25 possible states, COl responding to five oil flow components and five oil plice 
components at that time We think of these as being lard out in a 5 by 5 anay 
At the previous period there are the same five oil flow components and four oil 
price components, forming a 5 by 4 rectangle This pattern progresses backward 
to period zero, just aftel completion of the well, where there is a 5 by I rectan­
gle of states Then, also at year 0, but before initial dIiHing, thele is only a single 
node 

All 01 this is shown in Figure 169 To construct this figure the possible oil plices 
were first generated with a binomial lattice in the usual fashion, and these prices were 
laid Ollt aClOSS the top row of the array according to the year in which they may occur 
The possible flows were laid out down the last column of the allay 

The backward calculation is a straightforward discounted expectation of cash 
now and value We assume for simplicity that all cash flow in a 5-year period occurs 
at the beginning of that period Note that the final array consists only of profits from 
plOduction in the last peliod Earlier periods add current profit to a discounted Iisk­
neutral expected value of the next peliod's value For example, the top right-hand 
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1=0 1=5 1= 10 1= 15 1 2() 

Pric/,! 16 10 25.6 6.25 16 .1 3.91 10 25.6 65.5 2.-1-1 6.25 16 .1 105 Flow 

1938 5I7 3994 67 1523 6713 0 279 1156 9395 0 0 700 3196 9586 100 
860 167 2061 J-l2 651 3735 0 61 1398 54J8 0 0 260 1758 559J 60 
288 .69 1000 J9·1 203 :1 085 (I 8H 69-1 3292 0 0 40 1038 359-1 40 

lola] 3-18 398 153 0 181 6J8 (I 0 822 125J 0 0 0 319 J 597 '0 
317 0 II 0 0 (I 0 0 0 (I 0 (I 0 0 0 0 0 

FIGURE 16,9 Rapido oil well evaluation. The possible oil prices shown in Ihe second row were generaled by a 
binomial lauice, so Ihe number of enlries increases by one each period There Me five oil~flow possibilities each 
period Backward evaluation is straighlforvvard, once the proper lisk-neutral probllbililies are determined 

comer element in the anay at t l5 is 

I 
flow x oil price - cost + R (risk-neutral value at next period) 

100 x 655 400 5 x 100 + 44 x 7 x 9586 + 44 x 3 x 5591 

+56 x 7 x 3\96+.56 x 3 x \758) 

9395 (accounting fOi rounding etrors) 

The ovetall zero-level price accounts for the option to eithel complete the well or not 
The zero-level price is $31,700 Note how this rathel complex problem is solved by 
a simple spteadsheet analysis-an analysis which, howevel, embodies a good deal of 
theoty 

16.7 BUYING PRICE ANALYSIS 

Frequently project opportunities arise in which investment must be either at u fixed 
positive level 01 at zero level, with nothing in between An example is the opportunity 
to participate in a joint venture where each participant must subscribe to a fixed 
fraction at the project Another is the prospect of taking on a project alone, such as 
the purchase of investment real estate In such situations the zero-level price may not 
be the appropriate value, since the cash outlay requiled may represent a significant 
portion of one's investment capital 

A better concept ot value in such situations is the buying price. The buying price 
is defined as the pIice that the investor would be willing to pay for participation in 
the project at the specified level Ihis price 110 is best undelstood in temlS at expected 
utility We first calculate the expected utility that would be achieved without participa­
tion in the project Then we calculate the expected utility that would be achieved with 
pmticipation, including an additional initial payment of an amount vn The value of Va 

that makes these two expected utility values equal is the buying price. In other words, 
if Vo is the price to be paid for the project, the investor is indifferent between having 
the prqject or not This price is different than the zero-level price, which makes the 
investor indifferent between no participlltion and participation at a very small level 
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Certainty Equivalent and Exponential Utility 

The buying price of a project can be computed easily it it is assumed that the investor's 
utility function is of exponential form, U(x) _e-(Ir for some a> 0 The computing 
procedure uses certainty equivalenls rather than expected values 

let us briefly review the certainty equivalent concept Suppose lhat an investor 
has a utility function U Suppose that X is a random variable describing the investor's 
wealth at the terminal point. Then the expected utility of thrs wealth is E[U(X)] The 
certainty equivalent is the (nonrandom) amount x such that UCX) = E[U(X)]. We 
often write CE( X) for the certainty equivalent of X 

As a specific case suppose that U (X) -e-" < and suppose that the random 
variable X has two possible outcomes X I and X2 occurring with probabilities PI and 
p" respectively The expected utility is 

E[U(X)] prU(Xr)+ p,U(X,) -pr e-"<' - p,e-ax, 

To find the certainty equiVtllent x we solve 

T aki ng the logar ithm of both sides, we obtain 

CE(X) x -':'Inlpre-"X' + p,e-""), 
a 

This may look complicated, but it has a very special and important property 

(16 II) 

The special property of this form is thut il a constant, say t;, is added to a random 
variable, the certainty equivnlent incleases by this same constant This property is often 
referred to as the delta property. Formally, 

tor any random variable X and any constant t; This property can be checked easily 
for the two-outcome case by referenci ng (16 II) 

Here is u general proof COl exponential utility We have 

Theretore, 

Thi s says that 

CE(X + t;) = CE(X) + t; 

This delta property only holds for utility functions that are exponential or linear 

Delta property A {{tilitv jUllction i~ liueOl 01 e.\ponentia/ ~f and only if jOt all random 
va1i({ble~' X ami all COIl\'tallH I:!. , tbe celtaintv equivalent ~·llti~fie\· 
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FIGURE 16,10 Simple project. This project has initial cash flow C(), followed 
ill the end of the period by a cash flow of villue either Cl or C1 

Sequential Calculation of CE 

Consider a one-period project having an initial known cash flow [0 lo11owed at the 
end ot the period by a random cash flow that takes one of the values q 01 (2 with 
probabilities PI and P2. respectively There is also a risk-free asset with return R This 
project is illusu'ated in Figure 16 10. 

Assume that the investor has initial wealth X 0 and uses an exponential utility on 
final wealth Risk-free borrowing OJ lending is used to transfer any cash flow at the 
initial time to a cash flow at the final time II the plOject is not taken, then the final 
utility value will be U (R Xo) since the initial wealth is ttansformed by the risk-free 
return 

If the project is taken at a price vo, the expected utility of final wealth will be 

p,U{[C, + R(Xo + Co - vo)l) + (J,UI[c, + R(Xo + Co - vo)l) 

When the price tio is set correctly, the expected utility with the project will equal the 
value without the project; namely, U(RX o). Setting 'he certainty equivalents of these 
two equal to each other, we obtain-I 

CE[c, + R(xo + Co - vol, c, + R(xo + Co vo)l RXo 

Note that both terms on the left con'ain R(Xo + Co - vol This is " constan', and by 
the delta property it can be taken au' at the CE expression We therefore obtain 

CE[CI, c,l + R(Xo + Co - vol RXo 

Solving tOl VQ, we obtain an expression tor the buying price, 

Va (/6 12) 

Note that this equation looks just like a net present value formula The certainty 
equivalent is used to summarize the cash flow at the end of the period 

Multiperiod Case 

The preceding technique extends to cash flow processes defined ovel several pellods, 
but the risk aversion coefficient of the utility function must be adjusted each period 

-l As a shorthand notation if (I and (2 arc cash flows in two final sttltes, we write CE[r, I. ql for the 
corresponding certainty equivalent 
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-10 

P, 

p, 

P3 

p" 

c: J FIGURE 16.11 Two~per1od project. The buying price can 
be found by evaluating the cerlainty equivalent by a back· 
ward process 

Specifically, the risk aversion coefficient used to evaluate the certainty equivalent at 
time I must be aR T-, instead of the original a, This reflects the fact that the effective 
utility function for money X received at time I is U(RT-, X) rather than U(X) because 
X will be transformed '0 R T -, X at time f-

As an example of the full calculation, consider the two-period project shown in 
Figure 1611 To evalua,e this project we work backward in the usual fashion, First 
we calculate VI at the node where CI occurs by using the formula for the one-period 
case; namely, v, c, + (ljR)CE,[c3, c,), where the subscript on CE denotes that the 
appropriate risk aversion cocfJicient at t 2 (which is a) is used Next V2 is computed 
at the c, node in an analogous fashion as v, c,+ (ljR)CE,[c5, c6l Finally, we find 

(1613) 

This final certainty equivalent is computed with the risk aversion coefficient magni­
fied by one period of interest, and with the probabilities PI and P2 for VI and V2. 

Icspectively 

Example 16,7 (When to cut a tree) Consider again the tree-cutting example treated 
in the last section, but this time suppose that we are planning to purchase this plOject 
ourselves We must buy the full project 01 none at it The project cash flow possibilities 
are shown in Figure 16 12(a) Recall that the figures at the intermediate nodes are the 
cash flows that would be attained if the trees were cut there and the plOcess terminated 
Also, all arcs have probability 5 

10 <2
2 30 

22 

11 

10 
10 

22 

Cut 

Cut 

10 

30 

22 

11 

10 

FIGURE 16.12 Buying price for tree farm" (a) 
Cash flow generated at a node if the trees are cut 
at that paint (b) Cerlainty eqUivalent at a node and 
best policy 

(a) Possible cash flows (bl Buying prices 
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Assume that our utility function is Vex) _e-31 and the interest rate is 10% 
per year, as in the earlier example The first step is to calculate the certainty equivalent 
of the last two upper nodes This certainty equivalent is 

-~ In[ 5e-3x3
" + ,5e-3x22J 24, 

3 

When discounted one petiod, this becomes 218 Since this is less than the 22 value 
that would be achieved by cutting the trees at that point, we decide to cut, and we 
assign the buying price of 2,2 to that node, The node below that also retains the value 
of 1 0, since it is clear that the discounted certainty equivalent of the lower last phase 
is less than 1 

Finally, we calculate the buying price at the first node, To calculate the certainty 
equivalent, we must change the fisk aversion coefficient from a to a R) or in this 
case from 3 to 3 3 Accordingly, the plOper utility function for this period is U (x) 
_e-33.\" Hence the certainty equivalent of the middle two nodes is 

-~In[ 5e-33x22 + 5e-33xl oJ 1.21 
33 

Discounting this nnd accounting for the original cash flow, we find Vo 10 This is 
quite a bit lowel than the zero-level price of .52 found in the last section The price 
must be lower to induce us to purchase the entire project rather than just a small 
fraction of it 

General Approach 

Suppose now that states ot the world can be factored into independent market and 
nonmar ket components A general state at time t is written as in the last section as 
(.'1;11, jn, corresponding to the market and non market components We also assume 
that the market portion of the system is complete; that is, there is a complete set ot 
assets that span all dimensions oj the mar'ket In that case we know that thef'e are 
unique risk-neutral probabilities qi for the market states 

We assume that the investor has an exponential utility function for nnal wealth 
The project has cash flows specified at each lIode 

To find the buying price, we proceed recursively, starting at the final time At 
the final time the buying price at any node is equal to the cash flow at that node, At 
any other (previous) node (.\;11,5;1) of the backward process, two calculation steps are 
required First, for each fixed market successor i, we compute the certainty equivalent 
with respect to the nonmarket components j That is, we find the certainty equivalent 
CE, such that U(R 7

- ' CE,) = Lj pJU(R ' - l v'J)' where Vlj is the buying price of the 
successor node i r Then we nnd the new buying price from 

In other words, we use cettainty equivalent calculation on the nontllarket component 
nnd risk-neutral pricing on the market component 



468 Chapter 16 GENERAL INVESTMENT EVALUATION 

t=O 

Price '6 
t.900 

8-\9 
281 

Tntal 345 
-5 0 

Example 16.8 (Rapido oil well) We can analyze the Rapido oil well using a certainty 
equivalent analysis Only a few modifications to the earlier zero-level price analysis are 
required We assume that a single investor is planning to finance the entire project 
This inveslor has a utility function VeX) _e-X/IO.000, where X. is in thousands 
01 dollars This is realistic tor an investor having a net worth of about $10 million 
(20 years from now) 

In order to find Ore buying price, we simply change the risk-neutral discounting 
formula to one that is a mixture of risk-neutral pricing of the market state (the oil 
price) and a certainty equivalent of the technical factors (the flow level) We must 
remember to update the effective utility function by the factor of R = I 4 in the 
exponent each period The results UTe shown in Figure 16 13 

The final array, a( I 20, is identical to that of the earlier example, since that 
array contains final cash flows The upper right-hand comer element of the auay at 
t i5 is evaluated as 

flow x oil price cost 

I +R [q"CE(9586, 5591) + CJdCE(.3196, 1758)] 

We have 

CE(9586,5591) -10,000 x III [ 7e- 9586 + 3e- 5591
] = 8211 

CE (3196, 1758) -10,000 x In [ 7e- 3196 + 3e- 1158] = 2742 

Then using qll 44, and qd 56 from the earlier example, we obtain 

100 x 65 5 400 5 100 + 44 x 821 I + .56 x 2742 
14 

9331 

Note that the initial buying price is negative, which indicates that the project 
is too big for this investor to take on alone It is a good project, as shown by the 
zeroMlevel analysis, but only when a smaller share is taken or a smaller risk aversion 
coefficient is used 

t= 5 t=ro~ t= 15 t=:W 

10 25.6 6.25 16 13.91 10 25.6 65.5 2.4-4 6.25 '6 " 105 Flow 

511 3.916 668 /514 6.61<1 0 278 1.748 9.331 Il 0 701l 3./96 9.586 toll 
165 2JWI 141 (H9 3.710 0 61lS 1.3% 5..J.02 0 0 160 1.758 5.591 60 
,67 985 .'" 101 2.(163 0 1179 692 3.276 0 Il 40 1038 3.59.J. ,0 

3" 150 0 ". 6to Il 0 819 1.1.12 0 0 0 3/9 1.597 20 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

FIGURE 16 13 Certilinty equivillent ilnillysis of Rilpido oil well. A complex problem is Ireilled by a single spreadsheel 
model Verlical pairs are combined by cerlainly equivalenls, and horizonlill pairs of Ihese are combined by risk~neulfill 
probabilities 
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16.8 CONTI N UOUS-TIME EVALUA TlON* 

The principles of evaluation discussed in this chapter can be applied to problems 
formulated in continuous time as well as In discrete time The evaluation equations are 
more compact and the results are neater in continuous time However, implementation 
in a form for actual computation is lIkely to involve approximation The underlying 
framework is analogous to the description of an underlying state grnph used in discrete 
time, as described in Section 16 t, but involves rather advanced probability theory 
With only a slight loss of rigor we can present the maIn results 

The Risk-Neutral World 

As a simple case consider a single stock whose price is governed by the Ito equation 

dS 11(5, I) dl + ,,(S, I) de 

where.: is a standardized Wiener process Suppose also that there is a constant interest 
rate I Io price a security that is a derivative of the stock price it is useful to have the 
risk-neutral probability structure, Ihis is given by 

dS J5 dl + ,,(5, I)dc 

where Z is again a standardized Wienel process In other words, we just change the 
factor I1(S, I) to J5 This result was proved for the case ,,(5, I) ,,5 in Section 13 4 

This singleMasset result extends nicely to the case at several asset price processes 
For notational simplicity we stllte the result tor just two underlying assets 

Gelleral risk~lleutral world result Suppo:o.e two auel.\ have plice,\ 51 alld 52 gavel ned 
bv 

dSI = 111(51,S"I)dl +"'I(SI, S"I)dzl + "dSI , 5"I)d~, 

dS, = /1,(51,5" I) dl + "21 (S" S" I) dZI + "22(5" S" I) dc, 

(1614) 

(1615) 

whele:t and Z:; ale il/dependwt .Halldwdhed WieneJ fJJoces:o.e:o. SllppO\e the Ihk-flee 
wte i!J I !'llell the I h,k-Ileutl al \\'0/ Id geneJ ated bv the.w a.\)eH h defined by 

whele agaill f.1 and:2 QJe illdepelldellt \tandmdi:ed Wiellel pIOCe\\e~ 

(1616) 

(16 17) 

Suppo:-.e that 5 i\ the pliee rd allY delivati\'e oj the two CHsets; alld ,HIPI)(}5e that 
this del h'ative hm emh flow proce:o. s 8(SI, 52. t) and final value S(51. 52. J) Theil the 
plice oj the deJil'atil'e aSjet at anv time t < T'i.\ 

whele E, denotes expectation with lespect to the 1i.\kMlleUll'a1 \I'Olld (B \eell at time I 
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Proof: In essence, this result says that set) is equal to the discounted risk­
neutral expected value of all future cash flows. It is a powerful result because 
(in its generaltzation to II underlying assets) it applies broadly to any set 
of underlying securities It is a general pricing result in the continuousMtime 
framework 

The result can be inferred directly from the results concerning double 
lattices Roughly, the proof is this: If 0"12 and a21 are both zero, the two 
original processes are independent Then we know (by taking 6.1 -+ 0 in a 
double lattice) that the resulting riskMncutral processes are also independent 
Hence we just apply the result for a single process twice If al2 = all are 
not zero, then a linear change of vmiables can be found so that the two 
new processes, say S; and S;, are independent We apply the result to these 
two independent plOcesses The drift coefficient for both of these will be r 
in the risk-neutral world Then we uansform back to the original vmiables 
These original variables will also have drift coefficient I because both of the 
transforlhed variables have this coefficient D 

In other words, as in the case of a single security, we just change the drift terms 
from J1.i(SI, S2, 1) to I Si The result generalizes in the obvious way to many assets 

I nterest Rate Processes 

The preceding result can be extended to the case where Interest Intes are themselves 
stochastic Suppose, in parlicular, lhat pricing of interest rate derivatives is based on 
the risk-neutl ul short rate process 

(16 18) 

where £0 is a standardized Wiener process, which is independent of the processes 
in (16 14) Then the risk-neutral world is found by simply appending (16 18) to the 
system (16 16) using the plOcess I as the interest rate in the security price equations 

For a security that is derivative to Sh Sl, and r the pricing equation is as follows: 

Gelleral pricillg equatioll A del ivative <;ecllI itv with ca 5h /fa\\! pi oce~~' 8 and final 
value SeT) ita 5 a value detellllilled b-y the li\'k-lleUlIal pricing equation 

S(t)=b, [.I' eXP [{-,(II)dll]8dl+exp [!' -I (lI)dll] S(S"Sz, T)) 

Example 16.9 (The Continuco gold mine) The Continuco gold mine is operated 
conlinuously It can extracl gold at a rate of up to 10,000 ounces per year with an 
operating cost of $200 per ounce The price of gold is governed by the standard 
geometric Brownian motion pJOcess 

dg 14g dt + 25g dz 
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with initial value go :::::::: $400 Interest rates are detelmined by a lisk-neutral plOcess 
fOI the shalt 1 ate, which has the Ho--Lee f01111 

dl = 005 dt + 0 I dZD 

with inilial value to:::::::: 04 Intelest rate fluctuations are independent ot gold price 
fluctualions What is the value of a IO-ycm lease ot the Continueo mine? 

One way to solve this problem is by simulation, using the pIOcesscs oj the 
tisk-neuttal wmld We would simulate the equations 

dg I g dt + 25 g d~ 

dl 005 dt + 01 dZD 

with go 400 and 10 04, using two independent random numbcI genetatms tot 
6.2. and 6.2.0 

AJtel a tOIwatd I un ot a particular simulation, the corresponding cash flow 
stream is evaluated by a bad'lI'Qul simulation (which, howevCi, is not stochastic) The 
appIopriate backwfu d simulation is 

dS ISdt-edt (16 19) 

with S( T) 0 The cash flow c is 

max (g - 200, 0) x 10,000 

The diffelential equation (l6c 19) is solved backward using the time paths of g and t 

found in the fOIward simulation Illn The value of S(O) obtained is one estimate of 
the value of the mine A good overall estimale of the value is obtained by averaging 
many paIticulat values tound on diffclcnt IUns 

Note that the simulation equation (16 19) is equivalent to 

S(t) = /' exp ([ -I" dll) cdcl 

Anothel way to solve the problem is to set up a lattice and use backward risk­
neullal valuation (See Exercise 10) 

16.9 SUMMARY 

Evaluation of an investment opportunity reduces to the evaluation of its cash flow 
stream, but account must be made of the impact ot this stream on an overall optimal 
portfolio As a fir~t step oj anulysis, a model oj the cash flow process oj the investment 
and its Iclation to other relevant assets must be developed One general model is a 
graph with a number oj stutes (01 nodes) at each time point There must be enough 
nodes to represent all imporlant states 

Once this graph is established, it is possible to determine an optimal portfolio, 
which maximizes the expected utility of final wealth This optimal portfolio implies 
a set of risk-neutwl probabilities that can be used to value u new asset whose cash 



472 Chapter 16 GENERAL INVESTMENT EVALUATION 

EXERCISES 

H II Hg 

flow stream can be represented within the same graph The price obtained this way 
is the plice at which an investor with the given utility function would be indifferent 
between including the asset or not It is a zero-level price 

The construction of a graph to represent a group of assets can be u challenge 
One approach is to start with binomial lattice representations of each asset separately, 
and combine them into a double, triple, or multi lattice in such a way as to capture the 
covariance stlucture of the assets, This method is straightforward and has some useful 
theoretical properties, but it can lead to high-dimensional structures, At every period, 
the combined lattice will have more states than there are securities, so risk-neutral 
probabilities are generally not unique Those probabilities are unique, however, if 6.1 
is small Once the risk-neutral probabilities are determined, the price of a security can 
be found by the backward pIOcess of discounted risk-neutral valuation 

PIivate uncertainty is treated differently from market uncertainty because there 
are no associated market prices Usually this means that the actual private probabilities 
should be used just like risk-neuttal probabilities to determine the zero-level price of 
an asset 

The buying price of a project or asset is the price that an investor would pay 
to accept the project or asset in [uli (01 a specified pOllion of it) This price depends 
on the investor's utility function and is usually lower than the zero-level price It the 
utility function for final wealth is exponential, a backward evaluation process can be 
used to find the buying price This procedure uses certainty equivalents to evaluate 
private uncertainty and lisk-neuual prices to evaluate mmket uncertainties This is 
because the private uncertainty cannot be hedged, but the market uncertainty can 

Almost all of these valuation ideas can be applied to continuous-time models, and 
the formulation is more compact However, computational techniques usually involve 
approximation by discrete-time models 

L (A state tree) A cenain underlying stale graph is a tree where each node has three succes­
sor nodes, indexed (1, 11, (. There are two assets defined on this tree which pay no dividends 
except at the terminal time T At a certain period it is known that the prices of the two 
assets tlre muhiplied by fm:lOrs, depending on the successor node These factors nre shown 
in Table 162 

TABLE 16.2 

Security 

b 

12 10 08 
I 2 I 3 14 

(a) Is there !l short-term riskless asset tor this period? 
(b) Is it possible to construct an arbitrage? 
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2. (Node separation) Consider a shorl late binomial Juuice where the risk-free rale I1t t = 0 
is JO"/o At t = I lhe rate rs ehher 10% (tor the upper node) or OC'!o (for the lower node) 
Jmce out lhe growth of $1 invested risk free al t = 0 and rolled over at t = I for one 
more period The values obtained al t = I Hnd t = 2 correspond to ROI Ilnd R02 Show lhm 
these factors cannol be represented on a binomhll Junice. bm ralher a full tree is required 
Draw the tree 

3" (Bond valuation) Assuming lhe shon rale process of Exercise 2 and risk-neutral proba­
bilities of 5, consider tl zero~coupon bond lhat pays $1 at time t = 2 Find the value al 
lime t 0 of this bond in two ways: 

((1) Using the short Hue JUllice and equation (16 I) 
(I») Using the lree for ROI ilnd equillion (162) 

4. (Optimal option vllluulionm) Find the values of the: 5-month call option of Example 162 
using the same trinomial IllUice used in that example but employing the ulility tunction 
U(x) = vx Whal is a? 

5. (Gold correlation) Suppose that in the double stochastic Simplico gold mine extlOlple the 
real probabilily of an up move in gold is 6 and the real probability at an up move in the 
short HUe is 7 Suppose also that gold price and shan rule fluctuations have .1 correlation 
coefficienl at - 4 Find the approprhue qlj'S 

6. (CompJcxico minem) Use the information about the Complexico mine of Example 128, 
Chapter 12, bUl assume that gold prices and inlerest rutes are governed by the models of 
Example 164 Find the value at the Complexico lease 

7" (Simultaneous solulion) Calculate the volatility and the current price of oil tUlUres implied 
by 'he call 1600 Augus' lind 'he call 1700 Augus' of Figure 168 by using 'he Black-Scholes 
tormula with I = 25 

8. (Defauh nskGl) A comptmy issues a 10('/0 coupon bond lh.u malUres in 5 years However, 
this company is in trouble, and it is estimated that each year lhere is il probability of I 
lhm il will defauh that year (Once it detauhs, no further coupons or principul are paid) 
Whal is the value 01 the bond? 

(a) Assume the lerm struclure of interest is flUl al 10% 
(b) Assume that the shan nHe is currenliy 10% and the the shan rate is mulliplied by ehher 

I 2 or 9 each year wilh risk-neutral probabililies of 5 Defiluh risk is independent oj 
the iHlerest HUe 

9. (Automobile choice) Mr Smilh wants lo buy a car and is deciding between bmnds A 
and B Car A costs $20,000, llnd Mr Smith estimales that .u the rute he drives he will sell 
il after 2 years and buy another of the saIne type tor the same price The res,lle price will 
be eilher $10,000 or $5,000, each with probabilily 5, at the end at each 2-yeur period 
COlr B costs $35,O()0 and will be sold ,1ller 4 yeilfs whh au estimated resale price of either 
$12,000 or $8,000, each with probability 5 [he yearly Inllimenance costs oj the two cars 
are constant each yenr and identical for the two curs Mr Smith has an exponential utility 
Junction with risk uversion coefficient of about {/ = 1/$1,000 now Real interest is constant 
at 5% Which car shOUld he decide is bener from an economic perspective over a 4~year 
period, and what is the certainty equivalent ot the ditterence? 
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10. (Conlinuco lnine simuhllion Gl) Evaluate lhe Contrnuco gold mine lease by simullUion, 

using 61 = 25 

11, (Gavin's final) Mr Jones was considering a new gmpcfmil venLUre lhal would generate a 
random sequence of yearly cash flows He asked his son, Gavin, "People tell me 1 should 
use 11 cost of capital figure to discounllhe stream They suy il's based on the CAPM Have 
you given up on that? 1 haven'. heard you talk about it for awhile" 

Gavin replied, "Special conditions are required to justify it for more than one period 
We had a complicated final exam question on it " 
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is 
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Appendix A 

BASIC PROBABILITY THEORY 

A.l GENERAL CONCEPTS 

As discussed in Chapter 6, "random vmiable x is described by its probability density 
function. If r call take on only a finite number of values, say, tl. \:2. . till' then 
the density function gives the probability of each of those outcome values We may 
express the probability density junction ns 1'(1;), and it has nonzero values only at 
values of ~ equal to "tl. X::!.' • XIII Specifically, 

p(t,) prob(t;); 

that is, p(x;) is the probability that x takes on the value t, We always have 1'(1;) 2:: 0 
jor nil r Also, L, 1'( r,) I 

If the random variable l can take on a continuum of values, such as all real 
numbers, then the probability density function 1'(1;) is also defined lor all these values 
The interpretation in this case is. roughly, that 

p(~) dl; prob(l;:s x :s I; + dl;) 

The probability distribution 01 the random variable r is the junction F (I;) 
defined as 

F (1;) plOb(x:s 1;) 

It jollows that F (-00) 0 wld F (00) I In the case oj a continuum of values, if 
F is ditferentiable at 1;, then dE (~)/dl; 1'(1;) 

Two random variables t and y ate described by theit joint probability density 
or joint probability distribution, The joint distribution is the lunction F defined as 

F (I; , 'il prob(x:s 1;, \' :s 'I) 

The joint density is defined in terms of derivatives, or if there are only a finite number 
of possible outcomes, the joint density at a pair til Vj is P(ti. \)) equal to the proba­
bility of that pair occUlTing In general, 11 random variables are defined by their joint 
probability distribution defined with respect to IT variables. 

475 



476 Appendix A BASIC PROBABILITY THEORY 

From a joint distribution the distribution of anyone of the random variables 
can be easily recovered For example, given the distribution F(I;, ry) of y and )', the 
distribution of .\ is 

F,(t;) F(I;,oo) 

The random variables x and )1 are independent if the density function factors 
into the form 

This is the case fOl the pair of random variables defined as the outcomes on two fair 
tosses of a die For example, the probability 01 obtaining the pair (3, 5) is k x t, 

The expected value of a random variable t with density function p is 

E(x) L: I; p(t;)dl; 

If E(x) is denoted by t, the variance of x is 

var(x) L: (I; Xl' p(l;) dl; 

Likewise the covariance of x and y is 

cov(x,)') L:L:(I; t)(ry y)p(I;,I))dl;dry 

It is easy to show that if .t and V are independent, then they have zero covariance 

A.2 NORMAL RANDOM VARIABLES 

A random variable x is said to be normal or Gaussian if its probability density 
function is of the [OIm 

p(l;) _1_e-~(~-I1}~ 

.J2ii" 
In this case the expected value of .t is x 1.1- and the variance of x is a 2 This density 
function is the characteristic "beII-shaped" curve, illustrated in Figure A I 

A normal random vmiable is normalized or standard if x 0 and a 2 

Thus a standard nonnal random variable has the density function (written in terms of 
the VUl iablc .\) 

p(r) 

The corresponding standard distribution is denoted by N and given by the expression 

N(x) -1-1' e-;,odl; 
.J2ii -00 

There is no analytic expression for N (x), but because of its imporlance, tables of its 
values and analytic approximations are available 
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FIGURE A.1 Normal distribution, The expected vulue is IL 
and the variilnce is a 2 

IL 3a /1 2a J.1 - a /1 J.1 + a /1 + 2(1 It" 3a 

To wOlk with more than Olle n0I111ul tandom variable it is convenient to use 
matrix notation We let x (\"1, r2, ,XII) be a vector ot II random varhlbles The 
expected vllIue of this vectOl is the vector X, whose components are the expected 
values of the components of x The covariance matrix associated with x is the II X 1/ 

matrix Q with components [Qll} cov(x/, r}) If x is regatded as a column vector 
and Xl is the corTesponding row vector, then Q can be expressed as 

Q E[(x x)(x - Xl' J 

If the II variables are jointly normal, the distribution of x is 

p(x) I e-~(X-iYQ-l(X_X) 
(2n),,/2IQl t /2 

If two jointly normal random variables are unconeIated, then it is easy to sec 
that the joint density function factors into a product of densities for the two separate 
variables Hence if two jointly normal random variables are uncorrelated, they are 
independent 

A most important property of jointly nor mal random variables is the summation 
property Specifically, if y and )' are jointly normal, Ole!! all tandom variables of the 
form ax + fJ\', where a and fJ arc constants, are also normal This result is easily 
extended to higher order sums In fact if x is a column vector of jointly nOImal random 
variables and T is an III x II matrix, then the vector Tx is an Ill-dimensional vector of 
jointly normal random variables 

A.3 lOGNORMAL RANDOM VARIABLES 

A random variable z. is logn0I111al it the random variable In z. is nOImal Equivalently, 
if r is normal, theu z eo

\ is lognormal In concrete terms this means that the density 
function fOI z has the form 

__ I_e-6(ln(-I'}~ 
.J2ii(I~ 
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We have the following values: 

E(z) 

E(lnz.) 

var(z.) 

vaI(ln 1.) 

II 

, 
,r 

(A I) 

(A2) 

(A 3) 

(AA) 

It foIIows from the summation result for jointly normal random variables that 
products and poweu; of jointly lognormal variables are again lognormal FOl example, 
if Ii and v are lognormal, then Z uO:v fi is also lognormal 



Appendix B 

CALCULUS AND OPTIMIZATION 

T
hiS appendix reviews the essential elements of calculus and optimization math­
ematics used in the text. 

B.l FUNCTIONS 

A function assigns a value that depends on its independent variables Usually a function 
is denoted by a single letter, such as j If the value ot ! depends on a single variable 
x, the conesponding function value is denoted by ! (x) An example is the function 
! (x) x' 3x We can evaluate this function at x 2 as ! (2) 2' 3 x 2 -2 
Although a function is most properly called by its name, such as f. it is sometimes 
convenient, and quite common, to refer to !(x) as a function, even though !(x) really 
is the value of ! at t 

A function mlly be defined only for certain numerical values In many cases, fm 
example, a function is defined only for integer values, in which case the independent 
vatiable is usually denoted by i, j, k, III, 01 II An example is the function d(lI) 

1/( I + I)", which is the discount function 
Functions of several variables arc also important Fm example, a function g may 

depend on two variables x and y. in which case the value of g at \: and v is g(x, v) 
An example is g(x, y) x~ + 3rv v~ 

Certain lypes of functions are commonly used in investment science These 
include: 

1. Exponential functions An exponential function is a function of a single variable 
of the form 

!(t) ac'" 

where a, h, and c are constants, VelY often the constant (. is e 27182818 
the base of the natUial logarithm 

The exponential function also arises when the variable is restricted to be an 
integer, such as the function k(/I) (I +/)", which shows how capital grows under 
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compound intelest In this case the function is said to exhibit geometric growth, 01 

to be a geomelric growth function 

2. Logaritbmic functions The naturallogatithm is the function denoted by In, which 
satisfies the relation 

x 

Some important values nre In(l) O,ln(e) I, and In(O) -00 

3. Linear functions A linear function of a single variable x has the form! (x) ax, 
where a is a constant A function f of several variables Xl. X2. • 'tn is linear it 
it has the form 

for some constants aI, [J;?. • all 

4. Inverse functions A function I has an inverse function g if for every x there 
holds g(f (x)) x. Often the inverse function is denoted by !-I 

As an example consider the function j (x) t 2 This function has the inverse 
rl(y) ft· Clearly rl(f«)) R x As another example, if ! is the 
logarithmic function j (x) In(.t), then the inverse function is I-I (y) eY 

because e1n(x) t It is also true that if g is the invenie of /. then f is the inverse 
of g For example, we know that Ink') 

5. Vector notation When working with several variables it is convenient to regard 
them as a vector and write, for example, x ('tI,X2, ,,1.'/1) We then write the 
value ot a function of these variables as I(x), 

B.2 DIFFERENTIAl CAlCULUS 

It is assumed that the reader is tamiliar with differential calculus We shaII review a 
certain numbeI of concepts that are used in the text 

1. Limits Differential calculus is based on the notion of a limit of a function If the 
function value ler) approaches the value L as x approaches to, we write 

L lim !(x). 
' ....... ·\0 

An example is Ii"mx-+ co l/t 0 

2. Derivatives Given a function I, the derivative ot I at x is 

dj(x) 

~ 
lim j(x + "x) 

6.\"-0 6..x 
!(x) 

Sometimes we write /,(x) for the derivative of at x II is impOItant to know 
these common derivatives: 

(0) If I(t) x", then j'(x) IIX,,-I 

(b) If I(t) e"", then /,(x) ae'" 
(c) If !(.l) In(x), tl,cn !'(x) I/x 
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3. Higher order de"ivatives Highel order derivatives are formed by taking deriva­
tives of derivatives FOI example, the second derivative of t is the derivative of 
the function J' We denote the 11th derivative of I by d" I leLr" In the special case 
of the second deIivative we often use the alternative notation f /I 

As an example, consider the function 1(1') = 111(1') The filst derivative is 
/,(x) = I/x; the second derivative is /"(1') = I/x' 

4. Partial derivatives A function of several variables can be difterentiated pattiully 
with respect to each of it.s argument.s We define 

aJ (x" x" '\"11) 
lim 

t::. r-+() 

FOI example, suppose 1(1', v) = r'+3xv v' Then al(r, v)lar = 21'+31' and 
al(t,y)lav=3x 21' 

We write the total differential of I as 

aJ aJ dl = -elI', + -elI', + 
Br[ Brz 

aJ 
+ c)\"n dx" 

5. Approximation A function t can be apPlOximated in n region near a given point 
Xo by using its deIivatives The following two approximations are especially useful: 

(a) 1("0+ 61') = 1'(1'0)6.1'+ 0(6X)' 
(11) 1(1'0+ 6x) = I (Xo) 6.1' + t!,,(ro)(6xl'+ 0(6X)3 

whele 0(61'1' and 0(6.r)3 denote terms of order (6X)' and (61')'. respectively 
These apploximations apply only to ordinary functions with well-defined deriva­
tives They do not apply to functions that contain Wiener processes (See Chap­
ter 11) 

B.3 OPTIMIZATION 

Optimization is a very useful tool for investment problems This section reviews only 
the barest essentials; but these are sufficient for most of the work in the text 

1. Necessary conditions A function I 01 a single variable I' is said to have a 
maximum at a point .1'0 if I (to) ?: 1(1') for nil I' If the point to is not ot a 
boundary point ot an interval over which t is defined, then it to is a maximum 
point, it is necessary that the delivative of t be zero at \'0; that is, 

/'(Xo) = 0 

This equation cun be used to find the maximum point to 
FOI example, consider the lunction I(x) = _1"+ 12x To find the maximum, 

we set the derivative equal to zero to obtain the equation -2 r + 12 = 0 This has 
solution x = 6, which is the maximum point 

A similar result holds when the function I depends on several variables At a 
maximum point (with none of the variables at a boundary point) each of the partial 
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derivatives of f must be zero In other words. at the maximum point, 

aJ(x"x" ,X/I) 
0 a,q = 

aJ(x"x" 
at2 

, .tl/) 
=0 

-"aJ,-,-(x..:',.:..,-;;x:::" __ ,,-,,,::,,,,:,) = 0 
ax:! 

This is a system of 11 equations for the 1l unknowns Xl, X2, , XII 

2. Lagrange multipliers Consider the problem of maximizing the function f of 
several variables when there is u constraint that the point x must sntisfy the auxiliary 
condition g(XI, .\"2, ,XII) = 0, We say that we are looking for a solution to the 
foIIowing mnximization problem: 

mux~mize t (Xl, tz, , XII) 

subject to g(x\, X2, , XII) = a 

The condition for a maximum can be found by introducing a lagtange multiplier 
A We form the Lagrangian 

We can then treat this lagrangian function as if it wete unconstrained to find the 
necessary conditions for a maximulTI Specifically, we set the partial derivatives 
of L with respect to each of the variables equal to zero This gives a system of 11 

equations, but there ate now n+ I unknowns, consisting of _tl, .X2, , tl/ and A We 
obtain an additional equation from the original constraint g(tl, .\"2. , XI/) = O. 
Therefore we have a system of 11 + I equations and 11 + I unknowns 

If there are additional constraints, we define additional Lagrange multipIiers­
one for each constraint For example. the problem 

maximize f (XI, .\"2. , XI/) , 
subject to g(.\I, .\2, ,XII) = 0 

h(tl, r2, ,XI/) = 0 

can be solved by inlloducing the two Lagrange multipliers A and f.t The La­
grangian is 

The partial derivatives of this Lagrangian are all set equal to zero, giving 11 equa­
tions Two additionnl equations me obtained from the original constraints Therefore 
there are 1l + 2 equations and 11 + 2 unknowns 
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Some plOblems have inequality constlaints of the form g(rb \:"2, , t"11) :5 
o If it is known that they are satisfied by strict inequality at the solution [with 
g(x[, X2, ,XII) < 0], then the constraint is not active and can be dlopped flOm 
consideration; no Lagrange multiplier is needed It it is known that the constraint is 
satisfied with equality at the solution, then a Lagrange multiplier can be introduced, 
as before In this case the Lagrange multiplier is nonnegative (that is, A ?: 0) 



ANSWERS TO EXERCISES 

CHAPTER 2 

CHAPTER 3 

484 

T
he answers to all odd-numbered exercises are given here [ If the exercise in­
volves a proof, a very brief outline or hint is given 

1. (a) $1,000; (b) $1,000,000 

3. (a) 304%; (b) 1956%; (c) 1925%. 

5. PV = $4,682,460 

7. x < 3.3 

9. $6,948. 

11. NPV, = 29 88 and NPV, = 31.84; hence recommend 2 
IRR, = 152% and IRR, = 124%; hence recommend I 

13. (b) c = 940, 1=64%. 

15. No inflation applied: NPV = -$435,000; inflation applied: NPV = $89,000 

1. $4,638 83 

3. (a) 95 13 years; (b) $40,746; (c) $38,387 

5. YTM < 9 366% 

7. The annual worth, ute AA = $6,449 and As = $7,845 

9. 91 17 

11. D = ~, DM = Ijl 
I 

13. dP jdA = -DP 

15. C = T' 

!Compil,lIion of [hcsc answers was [he res!!!! of a massive projccI by a number of dcvolcd individuals We 
do nor guaran[ec [hal [hey arc free from errors Please repan errors [0 [he au[hor 



CHAPTER 4 

CHAPTER 5 

CHAPTER 6 

CHAPTER 7 

ANSWERS TO EXERCISES 485 

1. 75% 

3. P = 65.9 

5. (a) f" ,,= [.,(t2)t2 ,(t,)t,]/(t2 - til; (c) r(t) = x(O)e'«)< 

7. P = 37 64. 

9. (I + I );(1 + f, J)J-' = (I + I)J implies (I + j, J)J-' = (I + I )J-', which implies 

Ii) = I 

11. PV = 9497 

13. r,"'-13835, "2",30995 

15. ak = 1/(1 + 1!_,)2, b! = 1/(1 + Ik_,) 

1. Approximate: projects I, 2, 5; optimal: projects I, 2, 3 

3. NPV = $610,000 achieved by projects 4,5,6,7 O! 1,4,5,7 

5. 16 in lattice, 40 in tree 

7. Critical d' = hvis I) '" 618 Values I = 33 and I = 25 give d = 75 and 
d = 8, so sol ~tions are the same 

9. (b) PV = $366,740; enhance 2 years, then normal 

11. Use hint and solve for S 

1. R = (2Xo X,)/Xo 

3. (a) Ci = 19/23; (b) 13 7%; (c) 114% 

5. (a) (I 5 X 10" + 5f/)/(l0" + 5f/); (b) 3 million units, 0 variance, 20% return 

7. (a) w = (5,0, 5); (b) w = (t, t, !); (c) w = (0, 5, 5) 

9. I = [I::'=,(I/A;)r' - I 

1. (a) c = 07 + Sa; (b) a = 64, borrow $1,000 and invest $2,000; (c) $1,182 

3. (a) I::: c,,::: 16; (b) 12::: c,,::: 16 

5. fJi = xjal (Lj'=! XjaJ)-1 
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CHAPTER 8 

CHAPTER 9 

CHAPTER 10 

7. (a) A = I; (b) Ci a~/(a5 -ar); (e) zero-beta point is efficient but below MVP; 
(d) r, = 10% 

9. The identities tequire simpJe algebra 

1. (a) 1144%; (b) a = 16.7%. 

3. Normalized v = (.217, .263, 360, 153); eigenvalue = 311 16; principal compo­
nent follows market well. 

5. (a) a(M = a; (b) a(a2 ) = .j2a'/~ 
7. Method. Index half-monthly points by i. Let 1', and p, be returns for full month 

and half month starting at i Assume Pi'S unconelated Then ri = Pi + Pi+I' 
Show that COV(li, ri+!) = ta2 Find error in F = i4 L~!l I"j, Ignoring missing 
half-month terms at the ends of the year, the method gives same result as the 
OIdinary method 

1. $108,610 

3. a(x) 

5. a=(A'-B'l/[U(A') U(B')], b=[B'U(A') A'U(B')]/fU(A') U(B')]. 

7. C=(3+e)'/I6, e=4./C-3 

9. b'=b/W. 

11. $1,500 

13. From hint: R, -R = eW[E(R", R,)- RMR] = eW[cov(RM, R,)+ R,,(R, -R)] 
This implies R, - R = ycov(RM, R,) for some y. Apply to RM to solve fOl Y 

15. P = E(f.) = E(::.) = *E( ~~) = E~) 

1. $442.02. 

3.5%. 

5. There is no cash flow at t = ° At T the flow is S/d(O, MH Lt:~' e(k)/d(k, M)­
F, which must be zero 

7. -$10034 

9. (a) V'_I(r,) = I d(i I, i); (b) Vor,,) = d(O, i-I) d(O, i); (c) I d(O, M) 

11. (a) $3 97 I million; (b) 8 64% 

13. -131,250 Ib orange juice; a",,, 714aold. 
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CHAPTER 12 

CHAPTER 13 
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15. Short $163,200 Treasury futures 

17. Proof based on cov(t, v') E(tv') E(xv)E(v) = 0 Both E(xv') and E(v) 
are zero by symmett y 

1. Assuming t'.t small, p 65, fI = I 106, d 905; without small t'.t approxi-
mation, p 64367, If = I 11005, d = 90086 Probabilities of nodes (from the 
top with small approximation) ale 179, 384, 311, II I, 015 

3. (a) Use (VI v,)'?: 0; (b) 15% and 954%; (c) arithmetic fOI simple interest, 
geometric for compound Usually geometric is best 

5, vm(ll) = e:!TF+a\e(T1 1) 

7. dG (~{/ tb')G dt + ~bG d: 

9, To first order both have expected value 5(1,+1) = (I + 11t'.t)5(1d 

L Cost is nonnegative 

3, Q=(5-K)-0+/(=5ifS?:/( LikewiseQ=O-(K-Sj+/(=SifS:;::K 

5. $2 83 American, $251 European 

7. C(5, J) ?: maxlO, 5 - /( BU)I---+ 5 as T ---+ 00 Clearly C(S, T) :" S I-Ience in 
the limit C = 5 

9. $7 

11. Offer is close; low by about 3% 

13. Almost identical! One-month intelval: $4801; halt-month: $4796 

15, $673 

1. $2 57 

3. a 251 

5, C(63) $6557, t'. 759, e = 6 02 

7, r = at'. = aN(d
,
) = N'(dl)ad l = N'(d

,
) For e usc r and Exercise 6 

as as as San 
9. a = -cov(t, v)/var(v) 

11. (a) $ 53; (b) $2 04 

13. $4242 million 
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CHAPTER 14 

CHAPTER 15 

CHAPTER 16 

1. (a) 91 72: (b) 9095 

3, Do backward evaluation on futures price lattice 

5. 600. 6 IS. 6 29, 644, 659, 6 74, 6,89, 7 OS, 7 19, 7 35 percent 

7, 767,8829,9799, 10 66, 113, 1193 are ao through as 

9. $162,800, 

11. F(t) = I tat + ta't' 

1. Y = ± 
3. max {t In [2a + (I a)]+ tIn [a/2 + (I a)]l gives a = t 

5. (a) ak = Pk 1'"1,,/,, for k < II: (b) a, = f" a2 = 0, a3 = fs 
7. Dow Jones average outperforms Mr Jones, 

9. (a) Conditions are 

(b) We have 

(Pi 

E (~) 0, 01 E(liPO) -ljE(Po) = 0, 
' I + In 

or cov('" Po) + r,E(Po) = 0, 

01 ri Tf 

, r)llt = 

cov(,,, Po) ----
E(Po) 

COV[lIi"IM, 1/(1 +Pollt +llo"IM)] 

E[I/(l + pollt + llo"IM)] 

To fiIst order (Pi I r )llt = a, ollt 

1. (a) Yes, use portfolio weights t, ~ to get I 2 risk free: (b) yes, lise weights 

3. (a) and (b) $ 8678 

5.Qll=,I,ql2= 36, Q21 = 4,Q22= 14 

7. S = $16 81, a = 206% 

9. Car B prefelfed by certainty equivalent difference 01 $370,74, 

11. V, E(y",) I)' fJ, cov(X2l'/V" I,) 
I + I + fMC, a'f, 
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